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Abstract: For a graph G and for non-negative integers p, q and r, the triplet (p, q, r) is said to be an
admissible triplet, if 3p + 4q + 6r = |E(G)|. If G admits a decomposition into p cycles of length 3, q
cycles of length 4 and r cycles of length 6 for every admissible triplets (p, q, r), then we say that G has
a {Cp

3 ,C
q
4,C

r
6}-decomposition. In this paper, the necessary conditions for the existence of {Cp

3 ,C
q
4,C

r
6}-

decomposition of Kℓ,m,n(ℓ ≤ m ≤ n) are proved to be sufficient. This affirmatively answers the
problem raised in [Decomposing complete tripartite graphs into cycles of lengths 3 and 4, Discrete
Math. 197/198 (1999), 123-135]. As a corollary, we deduce the main results of [Decomposing
complete tripartite graphs into cycles of lengths 3 and 4, Discrete Math., 197/198, 123-135 (1999)]
and [Decompositions of complete tripartite graphs into cycles of lengths 3 and 6, Austral. J. Combin.,
73(1), 220-241 (2019)].
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1. Introduction

All graphs considered here are simple, finite and undirected. Let Km and Cm denote the complete
graph and a cycle on m vertices. Let Pm+1 denotes a path on m edges. If H1,H2, ...,Hn are edge disjoint
subgraphs of G such that E(G) = E(H1) ∪ E(H2) ∪ ... ∪ E(Hn), where ∪ denotes the disjoint union of
graphs, then we say that H1,H2, ...,Hn decomposes G. If each Hi ≃ H, then we say that H decomposes
G and it is denoted by H|G. If each H is a cycle Cm, then we say that G admits a Cm-decomposition
or m-cycle decomposition and is denoted by Cm|G. For non-negative integers p, q and r, the triplet
(p, q, r) is said to be an admissible triplet for the graph G, if 3p + 4q + 6r = |E(G)|. Similarly, the
triplet (p′, q′, r′) is said to be an admissible triplet for the sub-graph H, if 3p′ + 4q′ + 6r′ = |E(H)|. If
G admits a decomposition into p cycles of length 3, q cycles of length 4 and r cycles of length 6 for
every admissible triplets (p, q, r), then we say that G has a {Cp

3 ,C
q
4,C

r
6}-decomposition. For terms not

defined here one can refer to [1, 2].
A latin square of order n is a n× n array, each cell of which contains exactly one of the symbols in

{1, 2, ..., n}, such that each row and each column of the array contains each of the symbols in {1, 2, ..., n}
exactly once. A latin square is said to be idempotent if the cell (i, i) contains the symbol i, 1 ≤ i ≤ n.
A latin square of order n is said to be cyclic if it’s first row entries are a1, a2, · · · , an, then the pth

row entries are ap, ap+1, ap+2, · · · , ap−1 in order, where the subscripts are taken modulo n with residues
1, 2, ..., n, see [3]. A latin square is said to be a latin rectangle, if there exists a rectangular ℓ ×m array
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with entries from the set N = {1, 2, ..., n} such that each entry appears at most once in each row and
column based on n elements [4].

It is worth mentioning that cycle decomposition problems are NP - complete in general, see [5].
Recently, Paulraja and Srimathi [6, 7] proved the necessary and sufficient conditions for the exis-
tence of {Cp

3 ,C
r
6}-decomposition of some product of complete graphs. Ganesamurthy and Paulraja [8]

gave the necessary and sufficient conditions for some classes of dense graph to admit a {Cp
4 ,C

q
8}-

decomposition. Very recently, Ezhilarasi and Muthusamy [9], proved the necessary and sufficient
conditions for the existence of {P2p+1,C2p}-decomposition of even regular complete equipartite graphs
for all prime p.

The problem of decomposing complete tripartite graphs into cycles have been studied by dif-
ferent authors [4, 10–16]. The necessary and sufficient conditions for the existence of {Cp

3 ,C
q
4}-

decomposition of complete tripartite graph were given by Billington [17] in 1999. Recently, Gane-
samurthy and Paulraja [3] proved the necessary and sufficient conditions for the existence of {Cp

3 ,C
r
6}-

decomposition of complete tripartite graphs. Billington suggested finding the necessary and sufficient
conditions for the existence of {Cp

3 ,C
q
4,C

r
6}-decomposition of Kℓ,m,n(ℓ ≤ m ≤ n). The main theorem of

this paper answer this question in the affirmative.

Theorem 1. The complete tripartite graph Kℓ,m,n(ℓ ≤ m ≤ n) admits a {Cp
3 ,C

q
4,C

r
6}-decomposition if

and only if the partite sets are of same parity and 3p + 4q + 6r = ℓm + mn + ℓn.

The main results of [17] can be deduced as a corollary by substituting r = 0 in Theorem 1.

Corollary 1. [17] The complete tripartite graph Kℓ,m, n(ℓ ≤ m ≤ n) has an edge disjoint decomposi-
tion into p cycles of length 3 and q cycles of length 4 if and only if,

(i) ℓ,m, n are all even or odd.

(ii) If ℓ is even or if ℓ is odd and m − ℓ ≡ 0(mod 4), then p ≤ ℓm.

(iii) If ℓ is odd and m − ℓ ≡ 2(mod 4), then p ≤ ℓm − 2.

(iv) The value of p decreases from its maximum value in steps of size 4, down to 0 if ℓ is even and to
1, if ℓ is odd.

If we put q = 0 in Theorem 1, we have the following

Corollary 2. Let Kℓ,m,n(ℓ ≤ m ≤ n) be the complete tripartite. Then this complete tripartite graph
admits a {Cp

3 ,C
r
6}-decomposition whenever the partite sets are of same parity and 3p + 6r = ℓm +

mn + ℓn.

The corollary 2 subsumes the main result of [3].

Corollary 3. [3] Let Kℓ,m,n(ℓ ≤ m ≤ n) be the complete tripartite graph and let Kℓ,m,n , K1,1,n when
n ≡ 1(mod 6) and n > 1. If ℓ ≡ m ≡ n(mod 6), then Kℓ,m,n admits a {Cp

3 ,C
r
6}-decomposition for any

p ≡ ℓ(mod 2), with 0 ≤ p ≤ ℓm.

In order to prove our result, we make use of the following

Theorem 2. [18] Let m and n be positive integers. Then the complete bipartite graph K2m,2n and
K2n+1,2n+1−F admits a {Cp

4 ,C
q
6,C

r
8} - decomposition whenever 4p+6q+8r = |E(K2m,2n)| or 4p+6q+8r =

|E(K2n+1,2n+1 − F)|, where F is a 1-factor of K2n+1,2n+1.

Lemma 1. [4] Let ℓ,m and n be integers such that ℓ ≤ m ≤ n. A latin rectangle of order ℓ ×m based
on n elements is equivalent to the existence of ℓm edge-disjoint triangles sitting inside the complete
tripartite graph Kℓ,m,n.
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Remark 1. Since a cycle of length 3 in a {Cp
3 ,C

q
4,C

r
6}-decomposition of Kℓ,m,n(ℓ ≤ m ≤ n) needs to

visit all three partite sets, in any {Cp
3 ,C

q
4,C

r
6}-decomposition of Kℓ,m,n, maximum number of 3-cycles

is ℓm.

Throughout this paper, we denote V(Kℓ,m,n) = A∪B∪C where A = {a1, a2, ..., aℓ}, B = {b1, b2, ..., bm}

and C = {c1, c2, ..., cn}.

2. When Partite Sets are of Same Size

In this section, we prove the necessary conditions for the existence of {Cp
3 ,C

q
4,C

r
6}-

decomposition of the complete tripartite graphs Kℓ,m,n are sufficient whenever ℓ = m = n.

Remark 2. [17] A C3-decomposition of the complete tripartite graph Km,m,m can be achieved using
a latin square as follows: an entry k in the cell (i, j) corresponds to a C3, given by (ai, b j, ck) .

Lemma 2. The graph K2,2,2 admits a {Cp
3 ,C

q
4,C

r
6}-decomposition.

Proof. In this case, all the possible triplets are: (p, q, r) ∈ {(4, 0, 0), (0, 3, 0), (0, 0, 2), (2, 0, 1)}. The
decomposition is given below.

(4, 0, 0): (a1, b1, c2), (a1, b2, c1), (a2, b1, c1) and (a2, b2, c2).
(0, 3, 0): (a1, b2, a2, b1), (b1, c2, b2, c1) and (a1, c2, a2, c1).
(0, 0, 2): (a1, b1, c1, b2, a2, c2) and (a1, b2, c2, b1, a2, c1).
(2, 0, 1):(a1, b1, c1), (a2, b2, c2) and (a1, b2, c1, a2, b1, c2).
Thus, the graph K2,2,2 admits a {Cp

3 ,C
q
4,C

r
6}-decomposition. □

Lemma 3. The graph K3,3,3 admits a {Cp
3 ,C

q
4,C

r
6}-decomposition.

Proof. Consider a cyclic idempotent latin square of order 3. By Remark 2, every entry k in the latin
square corresponds to a C3 in K3,3,3. For a {Cp

3 ,C
q
4,C

r
6}-decomposition of K3,3,3, it is obvious that p , 0,

since the total number of edges is odd. We fix a C3 namely (a1, b1, c1), in all possible decompositions
given below:

Now, (p, q, r) ∈ {(7, 0, 1), (5, 0, 2), (5, 3, 0), (3, 3, 1), (3, 0, 3), (1, 3, 2), (1, 6, 0), (1, 0, 4)} are the set
of admissible triplets in the required decomposition.

(7, 0, 1): (a1, b1, c1), (a2, b2, c3), (a1, b3, c2), (a2, b3, c1), (a3, b1, c2), (a3, b2, c1), (a3, b3, c3) and
(a1, b2, c2, a2, b1, c3).

(5, 0, 2): (a1, b1, c1), (a1, b2, c2), (a2, b2, c3), (a2, b1, c2), (a3, b3, c2), (a1, b3, a2, c1, a3, c3) and
(a3, b1, c3, b3, c1, b2).

(5, 3, 0): (a1, b1, c1), (a2, b3, c1), (a3, b1, c2), (a3, b2, c1), (a3, b3, c3), (a1, b2, c2, b3), (a1, c2, a2, c3)
and (a2, b1, c3, b2).

(3, 3, 1): (a1, b1, c1), (a2, b1, c3), (a3, b1, c2), (a1, b2, c1, b3), (a2, b2, c2, b3), (a3, b3, c3, b2) and
(a1, c2, a2, c1, a3, c3).

(3, 0, 3): (a1, b1, c1), (a1, b2, c3), (a1, b3, c2), (a2, b1, c3, a3, b2, c1), (a2, b3, c1, a3, b1, c2) and
(a2, b2, c2, a3, b3, c3).

(1, 3, 2): (a1, b1, c1), (a1, b2, a2, b3), (a1, c2, b2, c3), (a2, c1, a3, c3), (a2, b1, c3, b3, a3, c2) and
(a3, b1, c2, b3, c1, b2).

(1, 6, 0): (a1, b1, c1), (a1, b2, a2, b3), (a1, c2, b2, c3), (a2, c1, a3, c3), (a3, b2, c1, b3), (a2, b1, a3, c2) and
(b1, c2, b3, c3).

(1, 0, 4): (a1, b1, c1), (a1, b2, a2, c1, a3, c3), (a1, b3, a2, c3, b2, c2), (a2, b1, c3, b3, a3, c2) and
(a3, b1, c2, b3, c1, b2).

The above cases guarantees the existence of {Cp
3 ,C

q
4,C

r
6}-decomposition of K3,3,3 for all admissible

triplets. □
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Theorem 3. The graph Kℓ,ℓ,ℓ, admits a {Cp
3 ,C

q
4,C

r
6}-decomposition.

Proof. Let the partite sets of Kℓ,ℓ,ℓ be A ∪ B ∪ C where, A = {a1, a2, ..., aℓ}, B = {b1, b2, ..., bℓ} and
{c1, c2, ..., cℓ}. We consider the following two cases.
Case 1. ℓ is even.

Consider a cyclic latin square of order ℓ. This latin square is partitioned into 2 × 2 partial latin
squares (with rows i, i + 1 and columns j, j + 1) of the form, The partial latin square of the above

j j + 1
i k k + 1

i + 1 k + 1 k + 2

form corresponds to 12 edges and can be decomposed into 3-cycles, 4-cycles and 6-cycles for the
following admissible triplets (p, q, r) ∈ {(4, 0, 0), (2, 0, 1), (0, 3, 0), (0, 0, 2)}.

(4, 0, 0): The four 3-cycles can be obtained directly by using Remark 2.
(2, 0, 1): The two 3-cycles are (ai, b j, ck+1) and (ai+1, b j+1, ck+2). The required 6-cycle is

(ai, ck, b j, ai+1, ck+1, b j+1).
(0, 3, 0): The required 4-cycles are given by (ai, ck, b j, ck+1), (ai, b j, ai+1, b j+1) and

(ai+1, ck+1, b j+1, ck+2).
(0, 0, 2): (ai, ck, b j, ck+1, ai+1, b j+1) and (ai, ck+1, b j+1, ck+2, ai+1, b j) are the required 6-cycles.
Thus each of these 2 × 2 partial latin squares can be decomposed into 3, 4 and 6 cycles for all

admissible triplets.
Hence Kℓ,ℓ,ℓ, where ℓ is even, admits a {Cp

3 ,C
q
4,C

r
6}-decomposition.

Case 2. ℓ is odd.
Consider a cyclic latin square of order ℓ. As ℓ is odd, p , 0. Hence, we fix a 3-cycle,

(a1, b1, c1) that will be present in all possible decompositions. For 1 ≤ i ≤ ℓ−1
2 , with the first

row and first column entries of this latin square, we first partitioned the 2 × 2 partial latin square
entries of the form, The edges corresponding to partial latin square of the above form can be de-

1 2i 2i + 1
1 2i 2i + 1
2i 2i 4i − 1 4i

2i + 1 2i + 1 4i 4i + 1

composed into 3-cycles, 4-cycles and 6-cycles for all admissible triplets (p, q, r), where (p, q, r) ∈
{(8, 0, 0), (6, 0, 1), (4, 3, 0), (4, 0, 2), (2, 3, 1), (2, 0, 3), (0, 6, 0), (0, 0, 4), (0, 3, 2)}.

(8, 0, 0): This can be achieved directly from Remark 2.
(6, 0, 1): (a1, b2i, c2i), (a1, b2i+1, c2i+1), (a2i, b1, c2i), (a2i+1, b1, c2i+1), (a2i, b2i, c4i), (a2i+1, b2i+1, c4i+1)

and (a2i, c4i−1, b2i, a2i+1, c4i, b2i+1).
(4, 3, 0): (a1, b2i, c2i), (a1, b2i+1, c2i+1), (a2i, b1, c2i), (a2i+1, b1, c2i+1), (a2i, c4i−1, b2i, c4i),

(a2i, b2i, a2i+1, b2i+1) and (a2i+1, c4i, b2i+1, c4i+1).
(4, 0, 2): (a1, b2i, c2i), (a1, b2i+1, c2i+1), (a2i, b1, c2i), (a2i+1, b1, c2i+1), (a2i, c4i−1, b2i, c4i, a2i+1, b2i+1)

and (a2i, c4i, b2i+1, c4i+1, a2i+1, b2i).
(2, 3, 1): (a2i, b2i, c2i), (a2i+1, b2i+1, c2i), (a1, b2i, c4i, b2i+1), (a1, c2i, b1, c2i+1), (a2i, b1, a2i+1, c4i) and

(a2i, b2i+1, c4i+1, a2i+1, b2i, c4i−1).
(2, 0, 3): (a2i, b2i, c4i), (a2i+1, b2i+1, c4i+1), (a2i, c4i−1, b2i, a2i+1, c4i, b2i+1), (a1, b2i, c2i, a2i, b1, c2i+1) and

(a1, b2i+1, c2i+1, a2i+1, b1, c2i).
(0, 6, 0): (a1, b2i, a2i, b2i+1), (a2i, b1, a2i+1, c4i), (a2i, c2i, b2i, c2i+1), (a2i+1, b2i, c4i, b2i+1),

(a1, c2i, b1, c2i+1) and (a2i+1, c4i+1, b2i+1, c2i+1).
(0, 0, 4): (a1, b2i+1, c2i+1, a2i+1, b2i, c2i), (a1, b2i, a2i, c2i, b1, c2i+1), (a2i, b1, a2i+1, c4i+1, b2i+1, c4i) and

(a2i, b2i+1, a2i+1, c4i, b2i, c4i−1).
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(0, 3, 2): (a2i, b2i, a2i+1, b2i+1), (a2i, c4i−1, b2i, c4i), (a2i+1, c4i, b2i+1, c4i+1), (a1, b2i, c2i, a2i, b1, c2i+1) and
(a1, b2i+1, c2i+1, a2i+1, b1, c2i).

The remaining entries of the latin square can be partitioned into 2 × 2 partial latin squares where
the edges corresponding to each of the 2 × 2 partial latin square can be decomposed into all possible
(C3,C4,C6) as in Case 1.

Hence for all admissible triplets (p, q, r), the graph Kℓ,ℓ,ℓ admits a {Cp
3 ,C

q
4,C

r
6}-decomposition. □

3. When Partite Sets are of Different Size

In this section, we have proved the necessary conditions for the existence of {Cp
3 ,C

q
4,C

r
6}-

decomposition of the complete tripartite graphs Kℓ,m,n(ℓ ≤ m ≤ n) are sufficient.

Lemma 4. The graph K1,3,3 admits a {Cp
3 ,C

q
4,C

r
6}-decomposition.

Proof. The graph K1,3,3 has 15 edges. The maximum possible 3-cycles in the required decomposition
will be three. Hence, the following are the admissible triplets (p, q, r) ∈ {(3, 0, 1), (1, 3, 0), (1, 0, 2)}.

(3, 0, 1): (a1, b1, c1), (a1, b2, c2), (a1, b3, c3) and (b1, c2, b3, c1, b2, c3).
(1, 3, 0): (a1, b1, c1), (a1, b2, c1, b3), (a1, c2, b2, c3) and (b1, c2, b3, c3).
(1, 0, 2): (a1, b2, c3, b1, c2, b3), (a1, c2, b2, c1, b3, c3) and (a1, b1, c1).
Thus, the graph K1,3,3 admits a {Cp

3 ,C
q
4,C

r
6}-decomposition. □

Lemma 5. The graph K1,5,5 admits a {Cp
3 ,C

q
4,C

r
6}-decomposition.

Proof. The graph K1,5,5 has 35 edges for which the set of admissible triplets are given by (p, q, r) ∈
{(5, 5, 0), (5, 2, 2), (3, 5, 1), (3, 2, 3), (1, 8, 0), (1, 5, 2), (1, 2, 4)}.

(5, 5, 0): (a1, b1, c1), (a1, b2, c2), (a1, b3, c3), (a1, b4, c4), (a1, b5, c5), (b1, c2, b3, c4), (b1, c3, b4, c5),
(b2, c1, b3, c5), (b2, c3, b5, c4) and (b4, c1, b5, c2).

(5, 2, 2): (a1, b1, c1), (a1, b2, c2), (a1, b3, c3), (a1, b4, c4), (a1, b5, c5), (b2, c3, b5, c4), (b4, c1, b5, c2),
(b1, c2, b3, c1, b2, c5) and (b1, c3, b4, c5, b3, c4).

(3, 5, 1): (a1, b1, c1), (a1, b4, c4), (a1, b5, c5), (b2, c3, b5, c4), (b4, c1, b5, c2), (a1, c2, b3, c3),
(b1, c3, b4, c5), (a1, b2, c5, b3) and (b1, c2, b2, c1, b3, c4).

(3, 2, 3): (a1, b1, c1), (a1, b4, c4), (a1, b5, c5), (b2, c3, b5, c4), (b4, c1, b5, c2), (a1, b2, c5, b4, c3, b3),
(b1, c2, b2, c1, b3, c4) and (a1, c2, b3, c5, b1, c3).

(1, 8, 0): (a1, b1, c1), (a1, b2, c1, b3), (a1, b4, c5, b5), (b1, c2, b3, c4), (b2, c3, b3, c5), (b4, c4, b5, c1),
(a1, c3, b1, c5), (a1, c2, b2, c4) and (b4, c2, b5, c3).

(1, 5, 2): (a1, b1, c1), (a1, b2, c1, b3), (a1, b4, c5, b5), (b1, c2, b3, c4), (b2, c3, b3, c5), (b4, c4, b5, c1),
(b1, c3, b4, c2, a1, c5) and (b2, c2, b5, c3, a1, c4).

(1, 2, 4): (a1, b1, c1), (b1, c2, b3, c4), (b4, c4, b5, c1), (b1, c3, b4, c2, a1, c5), (b2, c2, b5, c3, a1, c4),
(a1, b2, c1, b3, c5, b4) and (a1, b3, c3, b2, c5, b5).

Thus there exists a {Cp
3 ,C

q
4,C

r
6}-decomposition of the graph K1,5,5 for all admissible triplets (p, q, r).

□

Lemma 6. There exists a {Cp
3 ,C

q
4,C

r
6}-decomposition of K1,7,7.

Proof. In order to prove the existence of {Cp
3 ,C

q
4,C

r
6}-decomposition of K1,7,7 we consider the follow-

ing admissible triplets:
(7, 0, 7): Seven 3-cycles are as follows: by (a1, b1, c1), (a1, b2, c2), (a1, b3, c3), (a1, b4, c4),

(a1, b5, c5), (a1, b6, c6) and (a1, b7, c7). Seven 6-cycles are (b1, c2, b7, c6, b5, c3), (b1, c4, b5, c7, b2, c5),
(b1, c7, b6, c1, b2, c6), (b3, c2, b6, c5, b4, c7), (b2, c3, b7, c5, b3, c4), (b3, c1, b5, c2, b4, c6) and
(b4, c1, b7, c4, b6, c3).
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(7, 3, 5): Seven 3-cycles are same as above. Required 4-cycles are (b3, c1, b5, c2), (b3, c6, b4, c7)
and (b4, c2, b6, c5). Five edge disjoint 6-cycles are given by, (b1, c2, b7, c6, b5, c3), (b1, c4, b5, c7, b2, c5),
(b1, c7, b6, c1, b2, c6), (b2, c3, b7, c5, b3, c4) and (b4, c1, b7, c4, b6, c3).

(7, 6, 3): The seven 3-cycles are as follows: (a1, b1, c1), (a1, b2, c2), (a1, b3, c3), (a1, b4, c4),
(a1, b5, c5), (a1, b6, c6) and (a1, b7, c7). Six 4-cycles are (b3, c1, b5, c2), (b3, c6, b4, c7), (b4, c2, b6, c5),
(b1, c4, b5, c7), (b1, c6, b2, c5) and (b2, c1, b6, c7). 6-cycles in the required decomposition are given by,
(b1, c2, b7, c6, b5, c3), (b2, c3, b7, c5, b3, c4) and (b4, c1, b7, c4, b6, c3).

(7, 9, 1): (b3, c1, b5, c2), (b3, c6, b4, c7), (b4, c2, b6, c5), (b1, c4, b5, c7), (b1, c6, b2, c5), (b2, c1, b6, c7),
(b3, c4, b7, c5), (b4, c1, b7, c3) and (b2, c3, b6, c4) are the nine 4-cycles and the required 6-cycle is given
by (b1, c2, b7, c6, b5, c3). Required 3-cycles are same as above.

(5, 0, 8): (a1, b1, c1), (a1, b4, c4), (a1, b5, c5), (a1, b6, c6) and (a1, b7, c7) are the five copies of C3.
Required 6-cycles are given by, (a1, c2, b7, c6, b5, c3), (a1, b2, c2, b1, c3, b3), (b1, c4, b5, c7, b2, c5),
(b1, c7, b6, c1, b2, c6), (b3, c2, b6, c5, b4, c7), (b2, c3, b7, c5, b3, c4), (b3, c1, b5, c2, b4, c6) and
(b4, c1, b7, c4, b6, c3).

(5, 3, 6): Three copies of 4-cycles are (b3, c1, b5, c6), (b4, c2, b7, c6) and (a1, c2, b5, c3). The six
copies of C6 are (a1, b2, c2, b1, c3, b3), (b1, c4, b5, c7, b2, c5), (b1, c7, b6, c1, b2, c6), (b3, c2, b6, c5, b4, c7),
(b2, c3, b7, c5, b3, c4) and (b4, c1, b7, c4, b6, c3). Five copies of 3-cycles are same as above.

(5, 6, 4): Five copies of 3-cycles are (a1, b1, c1), (a1, b4, c4), (a1, b5, c5), (a1, b6, c6) and (a1, b7, c7).
Six copies of C4 are given by, (b3, c1, b5, c6), (b4, c2, b7, c6), (a1, c2, b5, c3), (a1, b2, c4, b3), (b1, c2, b2, c3)
and (b3, c3, b7, c5). Four edge disjoint copies of 6-cycles are (b1, c4, b5, c7, b2, c5), (b1, c7, b6, c1, b2, c6),
(b3, c2, b6, c5, b4, c7) and (b4, c1, b7, c4, b6, c3).

(5, 9, 2): Five copies of 3-cycles are same as above. Nine copies of 4-cycles are (b3, c1, b5, c6),
(b4, c2, b7, c6), (a1, c2, b5, c3), (a1, b2, c4, b3), (b1, c2, b2, c3), (b3, c3, b7, c5), (b1, c4, b5, c7), (b1, c6, b2, c5)
and (b2, c1, b6, c7). Two copies of 6-cycles are (b3, c2, b6, c5, b4, c7) and (b4, c1, b7, c4, b6, c3).

(5, 12, 0): (b3, c1, b5, c6), (b4, c2, b7, c6), (a1, c2, b5, c3), (a1, b2, c4, b3), (b1, c2, b2, c3), (b3, c3, b7, c5),
(b1, c4, b5, c7), (b1, c5, b2, c6), (b2, c1, b4, c7), (b3, c2, b6, c7), (b6, c1, b7, c4) and (b4, c3, b6, c5) are the
required 4-cycles. Five copies of 3-cycles are (a1, b1, c1), (a1, b4, c4), (a1, b5, c5), (a1, b6, c6) and
(a1, b7, c7).

(3, 0, 9): Three copies of 3-cycles are (a1, b1, c1), (a1, b6, c6) and (a1, b7, c7). Nine edge dis-
joint copies of 6-cycles are given by, (a1, c2, b3, c1, b5, c3), (b3, c6, b5, c2, b6, c7), (b1, c5, b3, c3, b7, c6),
(b2, c5, b7, c2, b4, c6), (a1, b2, c2, b1, c4, b3), (b1, c3, b2, c4, b5, c7), (b2, c1, b7, c4, b4, c7),
(a1, b4, c1, b6, c5, b5) and (a1, c4, b6, c3, b4, c5).

(3, 3, 7): Required copies of 3-cycles are same as above. Three copies of 4-
cycles are (b3, c1, b5, c6), (b3, c2, b6, c7) and (a1, c2, b5, c3). 6-cycles in the required decom-
position are (b1, c5, b3, c3, b7, c6), (b2, c5, b7, c2, b4, c6), (a1, b2, c2, b1, c4, b3), (b1, c3, b2, c4, b5, c7),
(b2, c1, b7, c4, b4, c7), (a1, b4, c1, b6, c5, b5) and (a1, c4, b6, c3, b4, c5).

(3, 6, 5): (b3, c1, b5, c6), (b3, c2, b6, c7), (a1, c2, b5, c3), (b4, c2, b7, c6), (b1, c5, b2, c6) and
(b3, c3, b7, c5) are the required copies of 4-cycles. Five copies of 6-cycles are given
by, (a1, b2, c2, b1, c4, b3), (b1, c3, b2, c4, b5, c7), (b2, c1, b7, c4, b4, c7), (a1, b4, c1, b6, c5, b5) and
(a1, c4, b6, c3, b4, c5). Two copies of 3-cycles in the required decomposition are (a1, b1, c1),
(a1, b6, c6) and (a1, b7, c7).

(3, 9, 3): Three copies of 3-cycles are same as above. Nine edge disjoint copies of 4-cycles
are given by (b3, c1, b5, c6), (b3, c2, b6, c7), (a1, c2, b5, c3), (b4, c2, b7, c6), (b1, c5, b2, c6), (b3, c3, b7, c5),
(a1, b2, c4, b3), (b1, c2, b2, c3) and (b1, c4, b5, c7). Required copies of 6-cycles are (b2, c1, b7, c4, b4, c7),
(a1, b4, c1, b6, c5, b5) and (a1, c4, b6, c3, b4, c5).

(3, 12, 1): Twelve edge disjoint copies of 4-cycles are (b3, c1, b5, c6), (b3, c2, b6, c7), (a1, c2, b5, c3),
(b4, c2, b7, c6), (b1, c5, b2, c6), (b3, c3, b7, c5), (a1, b2, c4, b3), (b1, c2, b2, c3), (b1, c4, b5, c7), (b2, c1, b4, c7),
(a1, c4, b4, c5) and (b6, c1, b7, c4). Required C6 is (a1, b4, c3, b6, c5, b5). Three copies of 3-cycles are
(a1, b1, c1), (a1, b6, c6) and (a1, b7, c7).

Ars Combinatoria Volume 160, 85–103



Decomposition of Complete Tripartite Graphs into Short Cycles 91

(1, 0, 10): (a1, b1, c1) is the required C3. Ten edge disjoint copies of 6-cycles
are (a1, c2, b3, c1, b5, c3), (b3, c6, b5, c2, b6, c7), (b1, c5, b3, c3, b7, c6), (b2, c5, b7, c2, b4, c6),
(a1, b2, c2, b1, c4, b3), (b1, c3, b2, c4, b5, c7), (a1, c4, b4, c3, b6, c6), (a1, b4, c7, b2, c1, b6),
(a1, c5, b6, c4, b7, c7) and (a1, b5, c5, b4, c1, b7).

(1, 3, 8): (b3, c1, b5, c6), (b3, c2, b6, c7) and (a1, c2, b5, c3) are the 3 edge disjoint copies of
4-cycles. Required 6-cycles are (b1, c5, b3, c3, b7, c6), (b2, c5, b7, c2, b4, c6), (a1, b2, c2, b1, c4, b3),
(b1, c3, b2, c4, b5, c7), (a1, c4, b4, c3, b6, c6), (a1, b4, c7, b2, c1, b6), (a1, c5, b6, c4, b7, c7) and
(a1, b5, c5, b4, c1, b7). The required C3 is (a1, b1, c1).

(1, 6, 6): One copy of C3 is given by, (a1, b1, c1). Required 4-cycles are as follows: (b3, c1, b5, c6),
(b3, c2, b6, c7), (a1, c2, b5, c3), (b4, c2, b7, c6), (b1, c5, b2, c6) and (b3, c3, b7, c5). 6-cycles in the re-
quired decomposition are given by, (a1, b2, c2, b1, c4, b3), (b1, c3, b2, c4, b5, c7), (a1, c4, b4, c3, b6, c6),
(a1, b4, c7, b2, c1, b6), (a1, c5, b6, c4, b7, c7) and (a1, b5, c5, b4, c1, b7).

(1, 9, 4): (a1, b1, c1) is the required C3. Nine copies of 4-cycles are as follows: (b3, c1, b5, c6),
(b3, c2, b6, c7), (a1, c2, b5, c3), (b4, c2, b7, c6), (b1, c5, b2, c6), (b3, c3, b7, c5), (a1, b2, c4, b3), (b1, c2, b2, c3)
and (b1, c4, b5, c7). Required 6-cycles are as follows: (a1, c4, b4, c3, b6, c6), (a1, b4, c7, b2, c1, b6),
(a1, c5, b6, c4, b7, c7) and (a1, b5, c5, b4, c1, b7).

(1, 12, 2): (a1, b1, c1) is the required C3. Twelve copies of 4-cycles are as follows: (b3, c1, b5, c6),
(b3, c2, b6, c7), (a1, c2, b5, c3), (b4, c2, b7, c6), (b1, c5, b2, c6), (b3, c3, b7, c5), (a1, b2, c4, b3),
(b1, c2, b2, c3), (b1, c4, b5, c7), (a1, c4, b7, c7), (a1, b4, c3, b6) and (a1, c5, b6, c6). 6-cycles in the required
decomposition is given by, (b2, c1, b6, c4, b4, c7) and (a1, b5, c5, b4, c1, b7).

(1, 15, 0): Required 4-cycles are given by: (b3, c1, b5, c6), (b3, c2, b6, c7), (a1, c2, b5, c3),
(b4, c2, b7, c6), (b1, c5, b2, c6), (b3, c3, b7, c5), (a1, b2, c4, b3), (b1, c2, b2, c3), (b1, c4, b5, c7), (a1, c5, b6, c6),
(b4, c3, b6, c4), (a1, c4, b7, c7), (a1, b4, c5, b5), (a1, b6, c1, b7) and (b2, c1, b4, c7). The C3 in the required
decomposition is (a1, b1, c1).

Thus the graph K1,7,7 admits a {Cp
3 ,C

q
4,C

r
6}-decomposition for all admissible triplets (p, q, r). □

Theorem 4. The graph K1,m,m where m is odd, admits a {Cp
3 ,C

q
4,C

r
6}-decomposition where 1 ≤ p ≤ m

and 3p + 4q + 6r = m2 + 2m.

Proof. The graph K1,m,m has m2 + 2m edges. Since m is odd, here p , 0. Consider the case m ≡
1(mod 4). Let m = 4n + 1. Here,

K1,m,m = (a1, b1, c1) ⊕ (K1,5,5 −C3) ⊕ (K1,5,5 −C3) ⊕ ... ⊕ (K1,5,5 −C3)︸                                                        ︷︷                                                        ︸
n copies

⊕ (K4,4) ⊕ (K4,4) ⊕ ... ⊕ (K4,4)︸                             ︷︷                             ︸
n(n - 1) copies

.

By Lemma 5, the graph K1,5,5 −C3 admits a (C3,C4,C6) decomposition for all admissible triplets.
Theorem 2 guarantees the existence of (C4,C6)- cycle decomposition of K4,4 for all admissible pairs
(q
′

, r
′

). Now consider the case m ≡ 3(mod 4). Let m = 4n + 3. In this case,

K1,m,m =(a1, b1, c1) ⊕ (K1,7,7 −C3) ⊕ (K1,5,5 −C3) ⊕ (K1,5,5 −C3) ⊕ ... ⊕ (K1,5,5 −C3)︸                                                        ︷︷                                                        ︸
(n - 1) copies

⊕ (K4,6) ⊕ (K4,6) ⊕ ... ⊕ (K4,6)︸                             ︷︷                             ︸
2(n - 1) copies

.

By Lemmas 5 and 6, the graph K1,5,5−C3 and K1,7,7−C3 can be decomposed into copies of 3-cycles,
4-cycles and 6-cycles for all admissible triplets. Theorem 2 guarantees the existence of 4-cycles and
6-cycles for all possible pairs (q

′

, r
′

). Thus, the graph K1,m,m can be decomposed into {Cp
3 ,C

q
4,C

r
6} for

all admissible triplets (p, q, r). □
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Lemma 7. There exists a {Cp
3 ,C

q
4,C

r
6}-decomposition of the graph Kℓ,ℓ,m.

Proof. The graph Kℓ,ℓ,m = Kℓ,ℓ,ℓ ⊕ K2ℓ,m−ℓ. By Theorem 3, the graph Kℓ,ℓ,ℓ admits a 3-cycle, 4-cycle
and 6-cycle decomposition for all possible values of p, q and r. Theorem 2 guarantees the existence
of 4-cycles and 6-cycles in K2ℓ,m−ℓ for all possible pair (q

′

, r
′

).
It is easy to verify that whenever m − ℓ = 2 and p = ℓ2 then r = 0. When p < ℓ2, then there exists

4-cycles and 6-cycles for all possible triplets (p, q, r).
Thus the graph Kℓ,ℓ,m can be decomposed into p copies of C3, q copies of C4 and r copies of C6 for

all admissible triplets (p, q, r). □

Lemma 8. The graph Kℓ,m,m with m − ℓ ≡ 0(mod 4) has a {Cp
3 ,C

q
4,C

r
6}-decomposition.

Proof. Let {a1, a2, ..., al}, {b1, b2, ..., bm} and {c1, c2, ..., cm} be the partite sets of Kℓ,m,m. In order to prove
this lemma, consider a cyclic latin square of order m.

By Lemma 1, the edges corresponding to the entries in the first ℓ rows of the latin square corre-
sponds to the maximum possible cycles of length 3. Thus p = ℓm is achieved. Further, the entries
in the first ℓ rows of the latin square can be then partitioned into 2 × 2 partial latin squares and the
corresponding edges can be decomposed into copies of 3-cycles, 4-cycles and 6-cycles depending
upon the values of (p′, q′, r′) similar to Case 1 or Case 2 of Theorem 3, according as ℓ even or odd.

Next, we consider the remaining m − ℓ rows of the latin square, where the entries will be of the
form,

1 2 3 4 · · · m − 1 m
ℓ + 1 ℓ + 2 ℓ + 3 ℓ + 4 · · · ℓ − 1 ℓ

ℓ + 2 ℓ + 3 ℓ + 4 ℓ + 5 · · · ℓ ℓ + 1
ℓ + 3 ℓ + 4 ℓ + 5 ℓ + 6 · · · ℓ + 1 ℓ + 2
ℓ + 4 ℓ + 5 ℓ + 6 ℓ + 7 · · · ℓ + 2 ℓ + 3

Note that each entry in the remaining m − ℓ rows represent an edge between the second and
third partite sets. We first decompose the edges corresponding to the entries in these m − ℓ rows
of the latin square into C4. Consider a block of first four rows, say rows ℓ + 1, ℓ + 2, ℓ + 3, ℓ + 4.
The entries in the rows correspond to 4m edges and are decomposed into copies of C4 as fol-
lows: For example, we consider the bold entries as shown above, which corresponds to a 4-cycle
(b1, cℓ+1, bm−1, cℓ+2). Similarly, the underlined entries and the entries in the rectangular box corre-
sponds to the 4-cycles (b1, cℓ+3, b3, cℓ+4) and (b2, cℓ+2, bm, cℓ+3), respectively. These three cycles of
length four are taken together to have two copies of C6 and are given by (b1, cℓ+1, bm−1, cℓ+2, bm, cℓ+3)
and (b1, cℓ+2, b2, cℓ+3, b3, cℓ+4). Similarly, the remaining entries in this block can be decomposed into
4-cycles and 6-cycles accordingly. This can be repeated for all the block of four consecutive rows.
After converting a group of 4-cycles into required number of 6-cycles, if there are unused 4-cycles in
a block of four rows and if there are three such blocks, then it is straight forward to see that they can
be transformed into 6-cycles using edge trading.

This proves the existence of {Cp
3 ,C

q
4,C

r
6}-decomposition of the graph Kℓ,m,m with m−ℓ ≡ 0(mod 4).

□

Lemma 9. For p = ℓ(ℓ + 2) and 4q + 6r = 2(ℓ + 2), the graph Kℓ, ℓ+2, ℓ+2 admits a {Cp
3 ,C

q
4,C

r
6}-

decomposition.

Proof. Consider the bipartite graph Kℓ+2, ℓ+2, a proper subgraph of Kℓ, ℓ+2, ℓ+2. The degree of each ver-
tex in Kℓ+2, ℓ+2 is ℓ + 2. From this complete bipartite graph, we first construct a 2-factor F con-
sisting q copies of C4 and r copies of C6. For this, we consider base cycles C = b1c1b2c2 and
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C
′

= b2q+1c2q+1b2q+2c2q+2b2q+3c2q+3. Then the 2-factor F is given by

{ρ0(C), ρ2(C), ..., ρ2q−2(C)}
⋃
{ρ0(C

′

), ρ3(C
′

), ..., ρℓ−2q−1(C
′

)}.

Now, if we decompose the graph (Kℓ, ℓ+2, ℓ+2−F ) into ℓ(ℓ+2) copies of 3-cycles, then we are done. This
can be achieved as follows: after the removal of F and ℓ(ℓ + 2) copies of 3-cycles from Kℓ, ℓ+2, ℓ+2, the
edges in between second and third partite sets can be decomposed into 1-factors F1, F2, ..., Fℓ. Now,
for 1 ≤ i ≤ ℓ, the edges incident with a vertex ai together with a 1-factor Fi would yield a C3-factor,
which completes the proof of this lemma. □

In order to prove the existence of {Cp
3 ,C

q
4,C

r
6}-decomposition of Kℓ,m,m with m − ℓ ≡ 2(mod 4), we

use a latin square which is constructed from an idempotent latin square. Since there is no idempotent
latin square of order 2 × 2, we now prove the existence of {Cp

3 ,C
q
4,C

r
6}-decomposition of the graph

K3,5,5.

Lemma 10. The graph K3,5,5 admits a {Cp
3 ,C

q
4,C

r
6}-decomposition.

Proof. In order to prove the existence of {Cp
3 ,C

q
4,C

r
6}-decomposition of K3,5,5 for all possible values

of p, q and r, the following cases are considered.
(15, 1, 1): The maximum number of possible 3-cycles in the required decomposition of K3,5,5 is 15

which are as follows: (a1, b1, c3), (a1, b2, c4), (a1, b3, c1), (a1, b4, c5), (a1, b5, c2), (a2, b1, c5), (a2, b2, c3),
(a2, b3, c4), (a2, b4, c2), (a2, b5, c1), (a3, b1, c4), (a3, b2, c5), (a3, b3, c2), (a3, b4, c1) and (a3, b5, c3). The
remaining 10 edges from second and third partite which can be decomposed into a C4 and C6 given
by, (b1, c2, b2, c1) and (b3, c3, b4, c4, b5, c5).

(13, 4, 0): Required edge disjoint copies of 3-cycles are (a1, b2, c4), (a1, b3, c1), (a1, b5, c2),
(a2, b1, c5), (a2, b2, c3), (a2, b3, c4), (a2, b4, c2), (a2, b5, c1), (a3, b1, c4), (a3, b2, c5), (a3, b3, c2), (a3, b4, c1)
and (a3, b5, c3). Four copies of 4-cycles are (b1, c1, b2, c2), (b4, c4, b5, c5), (a1, b1, c3, b4) and
(a1, c3, b3, c5).

(13, 1, 2): Edge disjoint copies of 3-cycles are same as above. Required C4 is given by
(b1, c1, b2, c2). Two copies of 6-cycles are (a1, b1, c3, b3, c5, b4) and (a1, c3, b4, c4, b5, c5).

(11, 4, 1): Required copies of 3-cycles are given by, (a1, b2, c4), (a1, b3, c1), (a1, b5, c2), (a2, b2, c3),
(a2, b3, c4), (a2, b5, c1), (a3, b1, c4), (a3, b2, c5), (a3, b3, c2), (a3, b4, c1) and (a3, b5, c3). Four copies
of 4-cycles are (a2, c2, b1, c5), (b4, c4, b5, c5), (a2, b1, c3, b4) and (a1, c3, b3, c5). Required C6 is
(a1, b1, c1, b2, c2, b4).

(11, 1, 3): Required copies of 3-cycles will be the same as given above. Three copies of 6-cycles
are (b3, c3, b4, c4, b5, c5), (a2, c2, b4, a1, b1, c5) and (a1, c3, b1, a2, b4, c5). Required C4 is (b1, c1, b2, c2).

(9, 7, 0): Seven copies of 4-cycles are as follows, (b1, c1, b2, c2), (a1, c3, b4, c5), (a1, b4, c2, b5),
(a1, b1, a2, c2), (b1, c3, b3, c5), (a2, b3, c4, b4) and (a2, c4, b5, c5). Required copies of 3-cycles are given
by (a1, b2, c4), (a1, b3, c1), (a2, b2, c3), (a2, b5, c1), (a3, b1, c4), (a3, b2, c5), (a3, b3, c2), (a3, b4, c1) and
(a3, b5, c3).

(9, 4, 2): Nine copies of 3-cycles are given by (a1, b2, c4), (a1, b3, c1), (a2, b2, c3), (a2, b5, c1),
(a3, b1, c4), (a3, b2, c5), (a3, b3, c2), (a3, b4, c1) and (a3, b5, c3). Four edge disjoint copies of 4-
cycles are (b1, c1, b2, c2), (a1, c3, b4, c5), (a2, b3, c4, b4) and (b1, c3, b3, c5). Required 6-cycles are
(a1, b1, a2, c4, b5, c2) and (a1, b4, c2, a2, c5, b5).

(9, 1, 4): Required copies of 3-cycles are same as given above. (b1, c1, b2, c2) is the required
C4. Edge disjoint copies of 6-cycles are as follows: (a1, b1, a2, c4, b5, c2), (a1, b4, c2, a2, c5, b5),
(a1, c3, b3, a2, b4, c5) and (b1, c3, b4, c4, b3, c5).

(7, 7, 1): (a1, b2, c4), (a1, b3, c1), (a2, b2, c3), (a2, b5, c1), (a3, b1, c4), (a3, b2, c5) and (a3, b4, c1) are
the seven edge disjoint copies of 3-cycles and the required C6 is (a2, b3, c5, b1, c3, b4). Seven copies
of 4-cycles are as follows: (b1, c1, b2, c2), (a1, b1, a2, c5), (a1, b4, c5, b5), (a2, c2, b4, c4), (a1, c2, b3, c3),
(a3, c2, b5, c3) and (a3, b3, c4, b5).
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(7, 4, 3): Four copies of 4-cycles are (b1, c1, b2, c2), (a1, b1, a2, c5), (a1, b4, c5, b5) and (a2, c2, b4, c4).
Required 6-cycles are (a3, c2, b5, c4, b3, c3), (a1, c2, b3, a3, b5, c3) and (a2, b3, c5, b1, c3, b4). Seven
copies of 3-cycles are same as given above.

(7, 1, 5): (a3, c2, b5, c4, b3, c3), (a1, c2, b3, a3, b5, c3), (a2, b3, c5, b1, c3, b4), (a1, b4, c2, a2, c5, b5) and
(a1, b1, a2, c4, b4, c5) are the five edge disjoint copies of 6-cycles required and one copy of C4 is
(b1, c1, b2, c2). Required seven copies of 3-cycles are (a1, b2, c4), (a1, b3, c1), (a2, b2, c3), (a2, b5, c1),
(a3, b1, c4), (a3, b2, c5) and (a3, b4, c1).

(5, 10, 0): Five copies of 3-cycles are (a1, b2, c4), (a2, b2, c3), (a3, b1, c4), (a3, b2, c5) and (a3, b4, c1).
Ten edge disjoint copies of 4-cycles are (b1, c3, b3, c5), (b3, c1, b5, c4), (a1, c2, a3, c3), (a2, b4, c3, b5),
(a1, c1, a2, b3), (a3, b3, c2, b5), (a1, b4, c5, b5), (a1, b1, a2, c5), (a2, c2, b4, c4) and (b1, c1, b2, c2).

(5, 7, 2): Five copies of 3-cycles are same as given above. Required 4-cycle are as fol-
lows: (a1, b4, c5, b5), (a1, c2, a3, c3), (a2, b4, c3, b5), (b3, c1, b5, c4), (a2, c2, b4, c4), (a3, b3, c2, b5) and
(b1, c1, b2, c2). 6-cycles in the required decomposition are given by (a1, b1, c3, b3, a2, c5) and
(a1, b3, c5, b1, a2, c1).

(5, 4, 4): (a1, b2, c4), (a2, b2, c3), (a3, b1, c4), (a3, b2, c5) and (a3, b4, c1) are the five copies of
3-cycles. 4-cycles in the required decomposition are (a1, b4, c5, b5), (b3, c1, b5, c4), (a3, b3, c2, b5)
and (b1, c1, b2, c2). Four copies of 6-cycles are given by, (a1, b1, c3, b3, a2, c5), (a1, b3, c5, b1, a2, c1),
(a1, c2, b4, a2, b5, c3) and (a2, c2, a3, c3, b4, c4).

(5, 1, 6): Five copies of 3-cycles are same as given above. Six copies of 6-
cycles are (a1, b1, c3, b3, a2, c5), (a1, b3, c5, b1, a2, c1), (a1, c2, b4, a2, b5, c3), (a2, c2, a3, c3, b4, c4),
(a3, b3, c1, b1, c2, b5) and (b2, c1, b5, c4, b3, c2) and one copy of C4 in the required decomposition is
(a1, b4, c5, b5).

(3, 1, 7): Edge disjoint copies of 3-cycles are (a3, b1, c4), (a3, b2, c5) and (a2, b2, c4). Required
copies of 6-cycles are as follows: (a1, b1, c3, b3, a2, c5), (a1, b3, c5, b1, a2, c1), (a1, c2, b4, a2, b5, c3),
(b2, c1, b5, c4, b3, c2), (a2, c2, a3, c1, b4, c3), (a3, b3, c1, b1, c2, b5) and (a1, b2, c3, a3, b4, c4). Required 4-
cycle is given by (a1, b4, c5, b5).

(3, 4, 5): Edge disjoint copies of 3-cycles is same as given above. Required 4-cycles
are (a1, b1, c3, b3), (a1, c1, a2, c5), (a2, b1, c5, b3) and (a1, b4, c5, b5). Five copies of 6-cycles are
given by (a1, c2, b4, a2, b5, c3), (b2, c1, b5, c4, b3, c2), (a2, c2, a3, c1, b4, c3), (a3, b3, c1, b1, c2, b5) and
(a1, b2, c3, a3, b4, c4).

(3, 7, 3): Seven copies of 4-cycles are (a1, b1, c3, b3), (a1, c1, a2, c5), (a2, b1, c5, b3), (a1, b4, c5, b5),
(a1, c2, a2, c3), (a2, b4, c3, b5) and (a3, c1, b4, c2). Required 6-cycles are given by, (b2, c1, b5, c4, b3, c2),
(a3, b3, c1, b1, c2, b5) and (a1, b2, c3, a3, b4, c4). Edge disjoint copies of 3-cycles are (a3, b1, c4),
(a3, b2, c5) and (a2, b2, c4).

(3, 10, 1): (a1, b1, c3, b3), (a1, c1, a2, c5), (a2, b1, c5, b3), (a1, b4, c5, b5), (a1, c2, a2, c3), (a2, b4, c3, b5),
(a3, c1, b4, c2), (b1, c1, b2, c2), (b3, c1, b5, c4) and (a3, b3, c2, b5) are the ten edge disjoint copies of 4-
cycles. Required 6-cycle is given by (a1, b2, c3, a3, b4, c4). Edge disjoint copies of 3-cycles are same
as given above.

(1, 10, 2): Ten copies of 4-cycles are (a1, b1, c3, b3), (a1, c1, a2, c5), (a2, b1, c5, b3), (a1, b4, c5, b5),
(a3, b1, c4, b4), (a1, b2, a2, c4), (a3, c4, b2, c3), (b1, c1, b2, c2), (b3, c1, b5, c4) and (a3, b3, c2, b5). Two
copies of 6-cycles are (a1, c2, b4, a2, b5, c3) and (a2, c2, a3, c1, b4, c3). Required C3 is (a3, b2, c5).

(1, 7, 4): Required copies of 4-cycles are as follows: (a1, b1, c3, b3), (a1, c1, a2, c5), (a2, b1, c5, b3),
(a1, b4, c5, b5), (a3, b1, c4, b4), (a1, b2, a2, c4) and (a3, c4, b2, c3). Four copies of 6-cycles are
(a1, c2, b4, a2, b5, c3), (a2, c2, a3, c1, b4, c3), (a3, b3, c1, b1, c2, b5) and (b2, c1, b5, c4, b3, c2). Required C3

is (a3, b2, c5).
(1, 4, 6): (a1, b4, c5, b5), (a3, b1, c4, b4), (a1, b2, a2, c4) and (a3, c4, b2, c3) gives the required 4-

cycles. Edge disjoint copies of 6-cycles are given by (a1, c2, b4, a2, b5, c3), (a2, c2, a3, c1, b4, c3),
(a3, b3, c1, b1, c2, b5), (b2, c1, b5, c4, b3, c2), (a1, b1, c3, b3, a2, c5) and (a1, c1, a2, b1, c5, b3). Required 3-
cycle is (a3, b2, c5).

Ars Combinatoria Volume 160, 85–103



Decomposition of Complete Tripartite Graphs into Short Cycles 95

(1, 1, 8): (a1, c2, b4, a2, b5, c3), (a2, c2, a3, c1, b4, c3), (a3, b3, c1, b1, c2, b5), (b2, c1, b5, c4, b3, c2),
(a1, b1, c3, b3, a2, c5), (a1, c1, a2, b1, c5, b3), (a1, b2, a2, c4, a3, b4) and (a1, c4, b1, a3, c5, b5) are the 8 edge
disjoint copies of 6-cycles. Required 4-cycle is given by (b2, c4, b4, c5). One copy of C3 is given by
(a3, b2, c5).

Thus the graph K3,5,5 admits a {Cp
3 ,C

q
4,C

r
6}-decomposition for all possible triplets. □

Definition 1. [17] In a n × n latin square, if each of the 2 × 2 subsquare has entries of the form,

x x + 1
x + 1 x

is called a subsquare of the form (x).

Next to prove the existence of {Cp
3 ,C

q
4,C

r
6}-decomposition of Kℓ,m,m with m − ℓ ≡ 2(mod 4), we

use the following construction given by Elizabeth J. Billington [17].
Recall that if the cell (i, i) of a latin square of order n contains an entry i then the latin square is

called idempotent latin square. When n is odd, an idempotent latin square can be constructed easily by
using the entries in a cyclic order. But when n is even, an idempotent latin square can be constructed
by using the stripping the transversal technique which is explained in [19].

Lemma 11. [17] For any P > 2, there exists a latin square of order 2p + 1 possessing p(p − 1) 2 × 2
cell disjoint subsquares of the form (x).

In the following example, using an idempotent latin square of order 5, we construct an idempotent
latin square of order 11 by using Lemma 11 which consists of 20 cell disjoint 2 × 2 subsquares of the
form (x).

Example 1. Consider the latin square L5.

L5 =

1 4 2 5 3
4 2 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5

We can obtain the required latin square, L11 using Lemma 11 as given below.

L11 =

0 2 1 4 3 6 5 8 7 10 9
2 1 0 7 8 3 4 9 10 5 6
1 0 2 8 7 4 3 10 9 6 5
4 7 8 3 0 9 10 5 6 1 2
3 8 7 0 4 10 9 6 5 2 1
6 3 4 9 10 5 0 1 2 7 8
5 4 3 10 9 0 6 2 1 8 7
8 9 10 5 6 1 2 7 0 3 4
7 10 9 6 5 2 1 0 8 4 3
10 5 6 1 2 7 8 3 4 9 0
9 6 5 2 1 8 7 4 3 0 10

Lemma 12. For m − ℓ ≡ 2(mod 4), there exists a {Cp
3 ,C

q
4,C

r
6}-decomposition of Kℓ,m,m.
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Proof. The proof is splitted into 2 cases.
Case 1. ℓ is odd.

The graph Kℓ,m,m with m − ℓ ≡ 2(mod 4) has m2 + 2ℓm edges. Let m = 2M + 1 and ℓ = 2L + 1.
Here, the number of edges is odd and hence p , 0. Let us fix one C3 as (a0, b0, c0) in all possible
decomposition. In order to prove this result, we use the latin square as described in Lemma 11, say
Lm. This latin square is of order m, which will be of the form,

0 2 1 4 3 6 5 . . . 2L 2L − 1 ... 2M 2M − 1
2 1 0
1 0 2
4 3 0
3 0 4
6 5 0
5 0 6
...

...
...
...
...
...
... . . .

...
... . . .

...

2L 2L − 1 0
2L − 1 0 2L
...

...
...
...
...
...
... . . .

...
... . . .

...

2M 2M − 1 0
2M − 1 0 2M

Clearly, p ≤ ℓm and equality can be achieved by considering the entries in the first ℓ rows of Lm.
These 3ℓm edges can be decomposed into all possible 3, 4 and 6 cycles as follows:

It may be noted that the edges corresponding to the entry k in the cell (i, j) of the first ℓ rows
correspond to a 3-cycle, (ai, b j, ck). Similarly, an entry c in the cell (a, b) after first ℓ rows correspond
to a single edge from partite set 2 to partite set 3. Now, the entries in the first ℓ rows of the latin
square Lm other than row 0 and column 0 can be partitioned into L(M − 1) 2 × 2 subsquares of the
form (x) as given in Definition 1 together with L 2 × 2 partial latin square of the form: Observe

2i − 1 2i
2i − 1 2i − 1 0

2i 0 2i

that the edges corresponding to each of the 2 × 2 subsquares is isomorphic to K2,2,2 which admits a
(C3,C4,C6)-decomposition by Lemma 2. Now consider each of the L partial latin squares together

2i − 1 2i
2i − 1 2i − 1 0

2i 0 2i

with the corresponding entries of row 0 and column 0, that is:

0 2i − 1 2i
0 2i 2i − 1

2i − 1 2i 2i − 1 0
2i 2i − 1 0 2i

The corresponding edges induce a graph isomorphic to K3,3,3 − C3. By Lemma 3, the graph
K3,3,3 − C3 admits a (C3,C4,C6)-decomposition for all admissible triplets. Observe that the edges
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corresponding to the entries in the following cells are not used so far in the decomposition

m⋃
i=ℓ+1

{(0, i)}
m⋃

i=ℓ+1

{(i, 0)}
m⋃

i=ℓ+1

{(i, 1), (i, 2), ..., (i,m)}.

Now consider the edges corresponding to the entries of the cells

m⋃
i=ℓ+1

{(0, i)}
m⋃

i=ℓ+1

{(i, 0)}
m⋃

i=ℓ+1

{(i, i)}
m⋃

i=ℓ+1

{(i, i + 1), (i + 1, i)}.

That is, for some k with ℓ + 1 ≤ k ≤ m, the entries will be of the form:

0 2k − 1 2k
0 2k 2k − 1

2k − 1 2k 2k − 1 0
2k 2k − 1 0 2k

Table 1. Partial Latin Square along with Row 0 and Column 0 Entries

The edges corresponding to the entries given in Table 1 can be either decomposed into
three 4-cycles (a0, b2k−1, c0, b2k), (a0, c2k−1, b2k−1, c2k) and (b0, c2k−1, b2k, c2k) or into two 6-cycles
(a0, c2k−1, b2k−1, c0, b2k, c2k) and (a0, b2k−1, c2k, b0, c2k−1, b2k).

The remaining edges, corresponding to the last (m−ℓ) rows are decomposed into required (C4,C6)
by grouping three 2× 2 subsquares(note that each 2× 2 subsquare corresponds to a 4-cycle) such that
these subsquares are from 4 columns of Lm and contains four symbols. For example, see Tables 2 and
3.

1 2 3 4
M − 2 M − 1 2M − 1 2M
M − 1 M − 2 2M 2M − 1

2M − 1 2M
2M 2M − 1

Table 2. Partial Latin Square 1

1 2 3 4
2M − 5 2M − 4
2M − 4 2M − 5

2M − 5 2M − 4 M − 4 M − 3
2M − 4 2M − 5 M − 3 M − 4

Table 3. Partial Latin Square 2

The edges corresponding to the entries as shown in Table 2 can be decomposed into two 6-
cycles (b1, cM−2, b2, c2M−1, b3, c2M) and (b1, cM−1, b2, c2M, b4, c2M−1). Similarly, the edges correspond-
ing to the entries in Table 3 can be decomposed into two 6-cycles (b1, c2M−4, b3, cM−3, b4, c2M−5) and
(b2, c2M−4, b4, cM−4, b3, c2M−5).

Similarly, the edges corresponding to other groups with the above mentioned condition(4 column
and 4 symbols) admits a (C4,C6)-decomposition for all admissible pairs.

Now it remains to show that when m − ℓ ≡ 2(mod 4), the last m − ℓ rows of Lm are partitioned into
any of the form of Table 2 or 3. First, we consider M is odd. The case when m − ℓ = 2 has been dealt
in Lemma 9. Consider m − ℓ = 6, by the construction of the latin square Lm, there are 3(M − 1) of
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2 × 2 subsquares each of which corresponds to a 4-cycle. The entries in the last 6 rows of the latin
square is grouped as shown in Figure 1(Note that a box in Figure 1 correspond to a subsquare in the
latin square). Hence, we are done with m − ℓ = 6. Next, the case m − ℓ = 10 is considered. By the

*

*

*

Figure 1. Partition of the Latin Square

construction of the latin square, there are 5(M − 1) subsquares and 5 partial latin square in the last 10
rows of the latin square. Note that, each subsquare corresponds to a 4-cycle. Thus, there are 5(M − 1)
4-cycles available corresponding to the entries in the last 10 rows. In order to construct 6-cycles, we
may trade certain set of three 4-cycles for two 6-cycles. Here, depending upon m, the following 3
cases arise. when m ≡ 1 (mod 6), then q ≥ 1. Similarly, when m ≡ 3 (mod 6), then q ≥ 0 and when
m ≡ 5 (mod 6), then q ≥ 1. For instance, consider the case m − ℓ ≡ 3(mod 6). The entries in these 10
rows are grouped as shown in Figure 2. It is easy to verify that each of the partial latin square shown
in Figure 2 either corresponds to three 4-cycles or two 6-cycles. Thus the edges corresponding to the
entries in the last 10 rows of the latin square can be decomposed into (C4,C6) for all admissible pairs.

A similar approach can be used to partition the last 10 rows of Lm in the case m ≡ 1(mod 6) and
m ≡ 5(mod 6). Thus, the case m − ℓ = 10 is done.

*

*

*

*

*

Figure 2. Partition of the Last 10 Rows of the Latin Square

Next, we consider the case m − ℓ = 14. These 14 rows are made up of 7(M − 1) subsquares where
each subsquare corresponds to a 4-cycle and 7 partial latin square. Depending upon the value of m,
the following 3 cases arise. when m ≡ 1 (mod 6), then q ≥ 2. Similarly, when m ≡ 3 (mod 6), then
q ≥ 0 and when m ≡ 5 (mod 6), then q ≥ 2. For instance, consider the case m − ℓ ≡ 3(mod 6). The
entries in these 14 rows can be partitioned into partial latin squares as shown in Figure 3. Observe

*

*

*

*

*

*

*

1

1

1

Figure 3. m − ℓ = 14

that each of the partial latin square considered in Figure 3 corresponds to either three 4-cycles or two
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6-cycles. Thus the edges corresponding to the last 14 rows of the latin square can be decomposed into
copies of (C4,C6) for all admissible pairs.

The same approach can be used to partition the last 14 rows of the latin square in cases when
m ≡ 1(mod 6) and m ≡ 5(mod 6).

In the case when p = ℓm, the edges corresponding to the last m − ℓ rows can be decomposed into
(C4,C6) using edge trading as follows. The edges corresponding to the entries in the subsquare corre-
sponds to 4-cycles and by grouping three 4-cycles with the above mentioned condition(4 columns and
4 entries) can be decomposed into two 6-cycles. The partial latin square together with corresponding
column 0 entry corresponds to a 6-cycle. For some k, this partial latin square will be of the form:

0 2k − 1 2k
2k − 1 2k 2k − 1 0

2k 2k − 1 0 2k

Two such 6-cycles can be decomposed into three 4-cycles as follows. For instance, consider m−ℓ =
6, then the last 6 rows of the latin square will be of the form; See Table 4.

0 1 2 3 4 · · · 2M − 5 2M − 4 2M − 3 2M − 2 2M − 1 2M
2M − 4 M − 2 M − 1 2M − 1 2M · · · 2M − 5 0 M − 4 M − 3 2M − 3 2M − 2
2M − 5 M − 1 M − 2 2M 2M − 1 · · · 0 2M − 4 M − 3 M − 4 2M − 2 2M − 3
2M − 2 2M − 1 2M 2M − 5 2M − 4 · · · M − 4 M − 3 2M − 3 0 M − 2 M − 1
2M − 3 2M 2M − 1 2M − 4 2M − 5 · · · M − 3 M − 4 0 2M − 2 M − 1 M − 2

2M 2M − 5 2M − 4 M − 4 M − 3 · · · 2M − 3 2M − 2 M − 2 M − 1 2M − 1 0
2M − 1 2M − 4 2M − 5 M − 3 M − 4 · · · 2M − 2 2M − 3 M − 1 M − 2 0 2M

Table 4. Last 6 Rows of m − ℓ Rows

Consider the highlighted entries in the above Table 4 which correspond to three 4-cycles and two
6-cycles. There are 24 edges corresponding to the considered entries and can be decomposed into
6 copies of C4, given by, (b0, c2M−5, b2M−5, c2M−3), (b2M−2, c0, b2M−5, c2M−2), (b0, c2M−4, b2M−4, c2M−2),
(b2M−4, cM−4, b2M−5, cM−3), (b2M−3, c0, b2M−4, c2M−3) and (b2M−2, cM−4, b2M−3, cM−3).

It is straightforward to check that similar edge trading is possible to have all possible (C4, C6)
corresponding to the edges of the entries in these (m − ℓ) rows.

When m − ℓ > 14, m − ℓ = 6x + 10y + 14z where x, y, z ≥ 0 and the entries in the last m − ℓ rows
of the latin square can be partitioned as above and the corresponding edges can be decomposed into
(C4,C6). Thus, there exists a {Cp

3 ,C
q
4,C

r
6}-decomposition of Kℓ,m,m with p ≤ ℓm and m − ℓ ≡ 2(mod 4)

when M is odd.
Similarly, when M is even, the entries in the last m − ℓ rows of the latin square can be grouped

using the above mentioned conditions(4 columns and 4 entries).
Thus, there exists a {Cp

3 ,C
q
4,C

r
6}-decomposition of Kℓ,m,m with p ≤ ℓm and m − ℓ ≡ 2(mod 4).

Case 2. ℓ is even.
In order to prove this case, we consider a latin square of order m,
The first ℓ rows of the above latin square can be partitioned into 2 × 2 subsquares each of which

correspond to K2,2,2. Lemma 2 guarantees the existence of 3, 4 and 6 cycle decomposition of K2,2,2

for all admissible triplets. By the structure of the latin square, the edges corresponding to each 2 × 2
subsquare in the remaining (m − ℓ) rows give rise to C4. As in previous case three 4 cycles can be
used to construct two 6-cycles. Hence the proof of this lemma. □

Theorem 5. The graph Kℓ,m, n(ℓ ≤ m ≤ n), admits a {Cp
3 ,C

q
4,C

r
6}-decomposition.

Proof. The graph Kℓ,m,n = Kℓ,m,m
⊕

Kℓ+m,n−m. By Lemmas 8, 9, 10, 12, there exists a 3, 4 and 6 cycle
decomposition of Kℓ,m,m for all admissible triplets. Theorem 2 assures the existence of 4 and 6 cycle
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1 2 3 4 · · · m − 1 m
2 1 4 3 · · · m m − 1
...

...
...

... · · ·
...

...

ℓ − 1 ℓ ℓ + 1 ℓ + 2 · · · ℓ − 2 ℓ − 3
ℓ ℓ − 1 ℓ + 2 ℓ + 1 · · · ℓ − 3 ℓ − 2
ℓ + 1 ℓ + 2 ℓ + 3 ℓ + 4 · · · ℓ − 1 ℓ

ℓ + 2 ℓ + 1 ℓ + 4 ℓ + 3 · · · ℓ ℓ − 1
ℓ + 3 ℓ + 4 ℓ + 5 ℓ + 6 · · · ℓ + 1 ℓ + 2
ℓ + 4 ℓ + 3 ℓ + 6 ℓ + 5 · · · ℓ + 2 ℓ + 1
...

...
...

... · · ·
...

...

m − 1 m 1 2 · · · m − 3 m − 2
m m − 1 2 1 · · · m − 2 m − 3

decomposition of Kℓ+m,n−m for all m and n, where n − m > 2. Hence we consider the case n − m = 2
to complete the proof of this theorem.
Case 1. m − ℓ ≡ 0(mod 4).

Consider the graph Kℓ,m, n with m − ℓ ≡ 0(mod 4). In order to prove this result, it is enough to
consider the graph Kℓ, ℓ+4, ℓ+6. The graph Kℓ, ℓ+4, ℓ+6 can be represented using a partial latin square of
order ℓ + 6, as shown in Figure 4. The first ℓ × (ℓ + 4) entries form a latin rectangle. Entries outside

Figure 4. Partial Latin Square Corresponding to Kℓ,ℓ+4,ℓ+6

the latin rectangle are separated by double line. Each entry of column ℓ + 5 and ℓ + 6 denote an edge
from partite set 1 to 3. Similarly, each entry of rows ℓ + 1 to ℓ + 6 denote an edge from partite set 2 to
3. That is, if the cell (ℓ, ℓ + 5) contains the entry ℓ + 5, then the corresponding edge is aℓcℓ+5.

The edges corresponding to the latin rectangle can be decomposed into cycles of length 3, 4 and 6
for all admissible triplets depending upon p, q and r similar to Case 1 or Case 2 of Theorem 3.

Now, we consider the edges corresponding to the entries outside the latin rectangle (the remaining
edges from partite set 1 to 3 and the edges from partite set 2 and 3). We decompose these edges into
C4 using two different construction which are as follows:
Construction 1. In this type of construction, we use the edges between partite set 1 to 3 and partite
set 2 to 3 to construct a C4. For example, consider the four underlined entries as shown in table below.
These entries correspond to a C4 namely (a1, cℓ+5, b1, cℓ+6) in Kℓ, ℓ+4, ℓ+6.
Construction 2. In this type of construction, we consider only the edges between the partite set 2 to
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1 ℓ + 5 ℓ + 6
1 ℓ + 5 ℓ + 6
ℓ + 5 ℓ + 5
ℓ + 6 ℓ + 6

3 to construct a C4. For example, consider the four bold entries as shown in the table below. These
entries also correspond to a C4 namely, (b1, cℓ+3, b3, cℓ+4).

1 3
ℓ + 1 ℓ + 3
ℓ + 2 ℓ + 4
ℓ + 3 ℓ + 3
ℓ + 4 ℓ + 4

Thus by using these two types of construction, all the remaining edges can be decomposed into
4-cycles. Thus, we have a C4-decomposition of the remaining edges.

In order to obtain all possible 4 and 6-cycles, we use two different types of edge trading, say, Type
1 and Type 2.
Type 1. This edge trading is similar to Construction 1, where we use edges between partite set 1 to 3
and partite set 2 to 3. For instance, consider the entries in rectangular box shown in Table 4. These
entries correspond to three 4-cycles (a1, cℓ+5, b1, cℓ+6), (a2, cℓ+6, b2, c1) and (b2, cℓ+4, b4, cℓ+5) which can
be decomposed into two copies of C6 (a1, cℓ+5, b4, cℓ+4, b2, cℓ+6) and (a2, c1, b2, cℓ+5, b1, cℓ+6).
Type 2. This edge trading is similar to Construction 2, where we use only the edges between partite
set 2 to 3. For instance, consider the bold entries in Table 4. These entries correspond to three 4-
cycles (b1, cℓ+1, bℓ+3, cℓ+2), (b1, cℓ+3, b3, cℓ+4) and (b2, cℓ+2, bℓ+4, cℓ+3) which can then be decomposed
into 2 copies of C6 given by (b1, cℓ+1, bℓ+3, cℓ+2, bℓ+4, cℓ+3) and (b1, cℓ+2, b2, cℓ+3, b3, cℓ+4).

By using Type 1 and Type 2 edge trading, all the remaining edges can be decomposed into copies
of (C4,C6).

Thus, all the remaining edges corresponding to the entries outside the latin rectangle can be de-
composed into copies of 4 and 6 cycles.

Thus the graph Kℓ,m, n with m − ℓ ≡ 0(mod 4) admits a {Cp
3 ,C

q
4,C

r
6}-decomposition.

Case 2. m − ℓ = 2(mod 4).
In this case, let Kℓ,m,m+2 = Kℓ,m,m

⊕
Kℓ+m, 2. By Theorem 2, all the edges corresponding to Kℓ+m, 2

can be decomposed into edge disjoint copies of C4. In order to obtain cycles of length 6, we use
edge trading. Let ℓ be even. In order to prove this result, it is enough to consider the graph Kℓ, ℓ+2,ℓ+4.
Then the graph Kℓ, ℓ+2,ℓ+2 along with the entries corresponding to the bipartite graph K2ℓ+2,2 can be
represented using the partial latin square of order ℓ + 4. See Figure 5.

Similar to Case 1, the first ℓ×(ℓ+2) entries form a latin rectangle. Entries outside the latin rectangle
are separated by double line. Each entry outside the latin rectangle represent a single edge. The edges
corresponding to the entries in the latin rectangle can be decomposed into copies of 3-cycles, 4-cycles
and 6-cycles similar to Case 1 of Theorem 3.

By the structure of the latin square, the edges corresponding to the entries in rows ℓ + 1 and ℓ + 2
can be decomposed into 4-cycles. Now in order to obtain all possible 4 and 6-cycles, we use the
following edge trading.

Here, we take ℓ+2
2 C4 from Kℓ, ℓ+2, ℓ+2(the edges corresponding to the entries in the last 2 rows of

the latin square Kℓ, ℓ+2, ℓ+2) together with the edges of K2ℓ+2, 2 which can be then decomposed into 6-
cycles. For instance, consider the highlighted entries in Table 5. The edges corresponding to these
entries gives rise to a C6 given by (b1, cℓ+1, b2, cℓ+3, a1, cℓ+4). Similarly, the entries in the rectangular
box correspond to a C6 given by (b1, cℓ+2, b2, cℓ+4, a2, cℓ+3). By proceeding this way, the remaining
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Figure 5. The Latin Square Corresponding to Kℓ,m,m
⊕

Kℓ+m,n−m

edges can be decomposed into copies of C6.
When ℓ is odd, the complete tripartite graph Kℓ,m, n can be represented using a partial latin square

similar to the even case where the edges corresponding to the entries in the latin rectangle can be de-
composed into 3, 4 and 6 cycles similar to Case 2 of Theorem 3. The remaining edges corresponding
to the entries outside the latin rectangle can be decomposed into 4 and 6 cycles using the above edge
trading technique.

Thus the graph Kℓ,m, n(ℓ ≤ m ≤ n) can be decomposed into p copies of C3, q copies of C4 and r
copies of C6 for all admissible triplets (p, q, r). □

Theorem 1. The complete tripartite graph Kℓ,m, n(ℓ ≤ m ≤ n) admits a {Cp
3 ,C

q
4,C

r
6}-decomposition if

and only if the partite sets are of same parity and 3p + 4q + 6r = ℓm + mn + ℓn.

Proof. The proof follows from Lemma 7, Theorem 3, Theorem 4 and Theorem 5. □

4. Conclusion

In this paper, the necessary condition for the existence of {Cp
3 ,C

q
4,C

r
6}-decomposition of complete

tripartite graph Kℓ,m,n(ℓ ≤ m ≤ n) has been proved to be sufficient. This answers the problem posted
by Billington in the affirmative. The problem of {Cp

3 ,C
q
4,C

r
6}-decomposition of Km ◦ K̄n is still open

for m > 3.
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