

Article

Decomposition of Complete Tripartite Graphs into Short Cycles

Arputha Jose. $\mathrm{T}^{1,\ast},$ Sampath Kumar S.¹, and Cecily Sahai C. 1

- ¹ Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai - 603110, India
- * Correspondence: arputhajose792@gmail.com

Abstract: For a graph *G* and for non-negative integers p , q and r , the triplet (p, q, r) is said to be an admissible triplet, if $3p + 4q + 6r = |E(G)|$. If *G* admits a decomposition into *p* cycles of length 3, *q* cycles of length 4 and *^r* cycles of length 6 for every admissible triplets (*p*, *^q*,*r*), then we say that *^G* has $a \{C_3^p\}$ C_3^q , C_4^q $^{q}_{4}$, C_{6}^{r}
ositi $\binom{r}{6}$ -decomposition. In this paper, the necessary conditions for the existence of $\{C_3^p\}$ C_4^p , C_4^q C_4^q, C_6^r $\binom{r}{6}$ decomposition of $K_{\ell,m,n}$ ($\ell \leq m \leq n$) are proved to be sufficient. This affirmatively answers the problem raised in [Decomposing complete tripartite graphs into cycles of lengths 3 and 4, Discrete Math. 197/198 (1999), 123-135]. As a corollary, we deduce the main results of [Decomposing complete tripartite graphs into cycles of lengths 3 and 4, Discrete Math., 197/198, 123-135 (1999)] and [Decompositions of complete tripartite graphs into cycles of lengths 3 and 6, Austral. J. Combin., 73(1), 220-241 (2019)].

Keywords: Cycle decompositions, Latin square, Complete tripartite graphs 2010 Mathematics Subject Classification: 05B15, 05C07, 05C38, 05C51.

1. Introduction

All graphs considered here are simple, finite and undirected. Let K_m and C_m denote the complete graph and a cycle on *m* vertices. Let P_{m+1} denotes a path on *m* edges. If $H_1, H_2, ..., H_n$ are edge disjoint subgraphs of *G* such that $E(G) = E(H_1) \cup E(H_2) \cup ... \cup E(H_n)$, where \cup denotes the disjoint union of graphs, then we say that $H_1, H_2, ..., H_n$ decomposes *G*. If each $H_i \simeq H$, then we say that *H* decomposes *G* and it is denoted by $H|G$. If each *H* is a cycle C_m , then we say that *G* admits a C_m -decomposition or *m*-cycle decomposition and is denoted by $C_m|G$. For non-negative integers p, q and r, the triplet (p, q, r) is said to be an admissible triplet for the graph *G*, if $3p + 4q + 6r = |E(G)|$. Similarly, the triplet (p', q', r') is said to be an admissible triplet for the sub-graph *H*, if $3p' + 4q' + 6r' = |E(H)|$. If
G admits a deconnosition into a cycles of length 3, *a* cycles of length 4 and *r* cycles of length 6 for *G* admits a decomposition into *p* cycles of length 3, *q* cycles of length 4 and *r* cycles of length 6 for every admissible triplets (p, q, r) , then we say that *G* has a ${C_3^p}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} $\binom{r}{6}$ -decomposition. For terms not defined here one can refer to [\[1,](#page-17-0) [2\]](#page-17-1).

A *latin square* of order *n* is a *n* × *n* array, each cell of which contains exactly one of the symbols in $\{1, 2, ..., n\}$, such that each row and each column of the array contains each of the symbols in $\{1, 2, ..., n\}$ exactly once. A latin square is said to be *idempotent* if the cell (i, i) contains the symbol $i, 1 \le i \le n$. A latin square of order *n* is said to be *cyclic* if it's first row entries are a_1, a_2, \dots, a_n , then the *p*th row entries are *a*_{*n*} row entries are a_p , a_{p+1} , a_{p+2} , \dots , a_{p-1} in order, where the subscripts are taken modulo *n* with residues 1, 2, ..., *n*, see [\[3\]](#page-17-2). A latin square is said to be a latin rectangle, if there exists a rectangular $\ell \times m$ array

with entries from the set $N = \{1, 2, ..., n\}$ such that each entry appears at most once in each row and column based on *n* elements [\[4\]](#page-18-0).

It is worth mentioning that cycle decomposition problems are NP - complete in general, see [\[5\]](#page-18-1). Recently, Paulraja and Srimathi [\[6,](#page-18-2) [7\]](#page-18-3) proved the necessary and sufficient conditions for the existence of ${C_3^p}$ $\frac{p}{3}$, C_6^r ϵ_6^r -decomposition of some product of complete graphs. Ganesamurthy and Paulraja [\[8\]](#page-18-4) gave the necessary and sufficient conditions for some classes of dense graph to admit a ${C_4^p}$ C_4^p, C_8^q
ficio $_{8}^{q}$ }decomposition. Very recently, Ezhilarasi and Muthusamy [\[9\]](#page-18-5), proved the necessary and sufficient conditions for the existence of $\{P_{2p+1}, C_{2p}\}$ -decomposition of even regular complete equipartite graphs for all prime *p*.

The problem of decomposing complete tripartite graphs into cycles have been studied by dif-ferent authors [\[4,](#page-18-0) [10–](#page-18-6)[16\]](#page-18-7). The necessary and sufficient conditions for the existence of ${C_3^p}$ C_3^p, C_4^q $_{4}^{q}$ }decomposition of complete tripartite graph were given by Billington [\[17\]](#page-18-8) in 1999. Recently, Gane-samurthy and Paulraja [\[3\]](#page-17-2) proved the necessary and sufficient conditions for the existence of ${C_3^p}$ C_3^p, C_6^r $\binom{r}{6}$ decomposition of complete tripartite graphs. Billington suggested finding the necessary and sufficient conditions for the existence of ${C_3^p}$ $\frac{p}{3}$, C_4^q $\frac{q}{4}$, C_6^r $K_{\ell,m,n}$ ($\ell \leq m \leq n$). The main theorem of reporting this paper answer this question in the affirmative.

Theorem 1. The complete tripartite graph $K_{\ell,m,n}$ ($\ell \leq m \leq n$) admits a { C_3^p
and only if the partite sets are of same parity and $3p + Aq + 6r = \ell m + mn$ C_3^p, C_4^q
 $A + \ell_1$ C^q _{*r*}, C^r _{*e*} 6 }*-decomposition if and only if the partite sets are of same parity and* $3p + 4q + 6r = \ell m + mn + \ell n$.

The main results of [\[17\]](#page-18-8) can be deduced as a corollary by substituting $r = 0$ in Theorem [1.](#page-1-0)

Corollary 1. [\[17\]](#page-18-8) *The complete tripartite graph* $K_{\ell,m,n}$ ($\ell \leq m \leq n$) *has an edge disjoint decomposition into p cycles of length* 3 *and q cycles of length* 4 *if and only if,*

- *(i)* ℓ, *^m*, *n are all even or odd.*
- *(ii) If* ℓ *is even or if* ℓ *is odd and* $m \ell \equiv 0 \pmod{4}$ *, then* $p \leq \ell m$ *.*
- *(iii) If* ℓ *is odd and* $m \ell \equiv 2 \pmod{4}$ *, then* $p \leq \ell m 2$ *.*
- *(iv) The value of p decreases from its maximum value in steps of size 4, down to 0 if* ℓ *is even and to l*, *if ℓ is odd.*

If we put $q = 0$ in Theorem [1,](#page-1-0) we have the following

Corollary 2. Let $K_{\ell,m,n}(\ell \leq m \leq n)$ be the complete tripartite. Then this complete tripartite graph *admits a* ${C_3^p}$ $^{p}_{3}$, C_{6}^{r} $\binom{r}{6}$ -decomposition whenever the partite sets are of same parity and $3p + 6r = \ell m + \ell$ $mn + \ell n$.

The corollary [2](#page-1-1) subsumes the main result of [\[3\]](#page-17-2).

Corollary 3. [\[3\]](#page-17-2) Let $K_{\ell,m,n}$ ($\ell \leq m \leq n$) be the complete tripartite graph and let $K_{\ell,m,n} \neq K_{1,1,n}$ when $n \equiv 1 \pmod{6}$ *and* $n > 1$ *. If* $\ell \equiv m \equiv n \pmod{6}$ *, then* $K_{\ell,m,n}$ *admits* a $\{C_3^p\}$ $\frac{p}{3}$, C^r_6 6 }*-decomposition for any* $p \equiv \ell \pmod{2}$, with $0 \le p \le \ell m$.

In order to prove our result, we make use of the following

Theorem 2. [\[18\]](#page-18-9) Let m and n be positive integers. Then the complete bipartite graph $K_{2m,2n}$ and *K*_{2*n*+1,2*n*+1}−*F* admits a { C_4^p $^{p}_{4}, C^{q}_{6}$
*q*_{*F*} *i* $\frac{q}{6}$, C_8^r
is a S_8^r } *- decomposition whenever* $4p+6q+8r = |E(K_{2m,2n})|$ *or* $4p+6q+8r =$ $|E(K_{2n+1,2n+1} - F)|$, where *F* is a 1-factor of $K_{2n+1,2n+1}$.

Lemma 1. [\[4\]](#page-18-0) Let ℓ , *m* and *n* be integers such that $\ell \leq m \leq n$. A latin rectangle of order $\ell \times m$ based *on n elements is equivalent to the existence of lm edge-disjoint triangles sitting inside the complete tripartite graph K*ℓ,*m*,*ⁿ.*

Remark 1. *Since a cycle of length 3 in a* ${C_3^p}$ $\frac{q}{3}$, C_4^q
dece $^{q}_{4}$, C_{ϵ}^{r} $\frac{f_6}{6}$ -decomposition of $K_{\ell,m,n}$ ($\ell \leq m \leq n$) needs to position of K_s maximum number of 3-cycles *visit all three partite sets, in any* $\{C_3^p\}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} 6 }*-decomposition of K*ℓ,*m*,*ⁿ, maximum number of* ³*-cycles is* ℓ*m.*

Throughout this paper, we denote $V(K_{\ell,m,n}) = A \cup B \cup C$ where $A = \{a_1, a_2, ..., a_\ell\}, B = \{b_1, b_2, ..., b_m\}$ and $C = \{c_1, c_2, ..., c_n\}.$

2. When Partite Sets are of Same Size

In this section, we prove the necessary conditions for the existence of ${C_3^p}$ C_3^p, C_4^q
or ρ - $^{q}_{4}$, $C_{\epsilon}^{r}_{4}$
r $\binom{r}{6}$ decomposition of the complete tripartite graphs $K_{\ell,m,n}$ are sufficient whenever $\ell = m = n$.

Remark 2. [\[17\]](#page-18-8) *A C*3*-decomposition of the complete tripartite graph K^m*,*m*,*^m can be achieved using a latin square as follows: an entry k in the cell* (i, j) *corresponds to a* C_3 *, given by* (a_i, b_j, c_k) *.*

Lemma 2. *The graph* $K_{2,2,2}$ *admits a* $\{C_3^p\}$ C_4^p, C_4^q C_4^q, C_6^r 6 }*-decomposition.*

Proof. In this case, all the possible triplets are: $(p, q, r) \in \{(4, 0, 0), (0, 3, 0), (0, 0, 2), (2, 0, 1)\}$. The decomposition is given below.

 $(4, 0, 0)$: (a_1, b_1, c_2) , (a_1, b_2, c_1) , (a_2, b_1, c_1) and (a_2, b_2, c_2) . $(0, 3, 0)$: (a_1, b_2, a_2, b_1) , (b_1, c_2, b_2, c_1) and (a_1, c_2, a_2, c_1) . $(0, 0, 2)$: $(a_1, b_1, c_1, b_2, a_2, c_2)$ and $(a_1, b_2, c_2, b_1, a_2, c_1)$. $(2, 0, 1)$: (a_1, b_1, c_1) , (a_2, b_2, c_2) and $(a_1, b_2, c_1, a_2, b_1, c_2)$. Thus, the graph $K_{2,2,2}$ admits a $\{C_3^p\}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} \Box ₆}-decomposition. □

Lemma 3. *The graph* $K_{3,3,3}$ *admits a* $\{C_3^p\}$ C_4^p, C_4^q C_4^q, C_6^r 6 }*-decomposition.*

Proof. Consider a cyclic idempotent latin square of order 3. By Remark [2,](#page-2-0) every entry *k* in the latin square corresponds to a C_3 in $K_{3,3,3}$. For a $\{C_3^p\}$ C_3^p, C_4^q $\frac{q}{4}$, C_6^r
 C_7 ^r₆}-decomposition of $K_{3,3,3}$, it is obvious that $p \neq 0$, since the total number of edges is odd. We fix a C_3 namely (a_1, b_1, c_1) , in all possible decompositions given below:

Now, $(p, q, r) \in \{(7, 0, 1), (5, 0, 2), (5, 3, 0), (3, 3, 1), (3, 0, 3), (1, 3, 2), (1, 6, 0), (1, 0, 4)\}$ are the set of admissible triplets in the required decomposition.

(7, 0, 1): $(a_1, b_1, c_1), (a_2, b_2, c_3), (a_1, b_3, c_2), (a_2, b_3, c_1), (a_3, b_1, c_2), (a_3, b_2, c_1), (a_3, b_3, c_3)$ and $(a_1, b_2, c_2, a_2, b_1, c_3).$

(5, 0, 2): (a_1, b_1, c_1) , (a_1, b_2, c_2) , (a_2, b_2, c_3) , (a_2, b_1, c_2) , (a_3, b_3, c_2) , $(a_1, b_3, a_2, c_1, a_3, c_3)$ and $(a_3, b_1, c_3, b_3, c_1, b_2).$

(5, 3, 0): (a_1, b_1, c_1) , (a_2, b_3, c_1) , (a_3, b_1, c_2) , (a_3, b_2, c_1) , (a_3, b_3, c_3) , (a_1, b_2, c_2, b_3) , (a_1, c_2, a_2, c_3) and (a_2, b_1, c_3, b_2) .

(3, 3, 1): (a_1, b_1, c_1) , (a_2, b_1, c_3) , (a_3, b_1, c_2) , (a_1, b_2, c_1, b_3) , (a_2, b_2, c_2, b_3) , (a_3, b_3, c_3, b_2) and $(a_1, c_2, a_2, c_1, a_3, c_3).$

(3, 0, 3): (a_1, b_1, c_1) , (a_1, b_2, c_3) , (a_1, b_3, c_2) , $(a_2, b_1, c_3, a_3, b_2, c_1)$, $(a_2, b_3, c_1, a_3, b_1, c_2)$ and $(a_2, b_2, c_2, a_3, b_3, c_3).$

 $(1, 3, 2)$: (a_1, b_1, c_1) , (a_1, b_2, a_2, b_3) , (a_1, c_2, b_2, c_3) , (a_2, c_1, a_3, c_3) , $(a_2, b_1, c_3, b_3, a_3, c_2)$ and $(a_3, b_1, c_2, b_3, c_1, b_2).$

 $(1, 6, 0)$: (a_1, b_1, c_1) , (a_1, b_2, a_2, b_3) , (a_1, c_2, b_2, c_3) , (a_2, c_1, a_3, c_3) , (a_3, b_2, c_1, b_3) , (a_2, b_1, a_3, c_2) and

 $(b_1, c_2, b_3, c_3).$
(1, 0, 4): $(a_1, b_1, c_1), (a_1, b_2, a_2, c_1, a_3, c_3), (a_1, b_3, a_2, c_3, b_2, c_2), (a_2, b_1, c_3, b_3, a_3, c_2)$ and $(a_3, b_1, c_2, b_3, c_1, b_2).$

The above cases guarantees the existence of ${C_3^p}$ C_4^p, C_4^q $^{q}_{4}$, C_{ϵ}^{r} $\frac{1}{6}$ }-decomposition of $K_{3,3,3}$ for all admissible triplets. □

Theorem 3. *The graph* $K_{\ell,\ell,\ell}$ *, admits a* $\{C_3^p\}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} 6 }*-decomposition.*

Proof. Let the partite sets of $K_{\ell,\ell,\ell}$ be $A \cup B \cup C$ where, $A = \{a_1, a_2, ..., a_\ell\}, B = \{b_1, b_2, ..., b_\ell\}$ and ${c_1, c_2, ..., c_\ell}$. We consider the following two cases.

Case 1. ℓ is even.

Consider a cyclic latin square of order ℓ . This latin square is partitioned into 2×2 partial latin squares (with rows i , $i + 1$ and columns j , $j + 1$) of the form, The partial latin square of the above

form corresponds to 12 edges and can be decomposed into 3-cycles, 4-cycles and 6-cycles for the following admissible triplets $(p, q, r) \in \{(4, 0, 0), (2, 0, 1), (0, 3, 0), (0, 0, 2)\}.$

(4, 0, 0): The four 3-cycles can be obtained directly by using Remark [2.](#page-2-0)

(2, 0, 1): The two 3-cycles are (a_i, b_j, c_{k+1}) and $(a_{i+1}, b_{j+1}, c_{k+2})$. The required 6-cycle is $c_i, b_i, a_{i+1}, c_{i+1}$. $(a_i, c_k, b_j, a_{i+1}, c_{k+1}, b_{j+1}).$

(0 3 0): The r

(0, 3, 0): The required 4-cycles are given by (a_i, c_k, b_j, c_{k+1}) , $(a_i, b_j, a_{i+1}, b_{j+1})$ and $(a_{i+1}, c_{k+1}, b_{j+1}, c_{k+2}).$

 $(0, 0, 2)$: $(a_i, c_k, b_j, c_{k+1}, a_{i+1}, b_{j+1})$ and $(a_i, c_{k+1}, b_{j+1}, c_{k+2}, a_{i+1}, b_j)$ are the required 6-cycles.

Thus each of these 2×2 partial latin squares can be decomposed into 3, 4 and 6 cycles for all admissible triplets.

Hence $K_{\ell,\ell,\ell}$, where ℓ is even, admits a ${C_3^p}$ C_4^p , C_4^q $^{q}_{4}$, C_{ϵ}^{r} $\binom{r}{6}$ -decomposition.

Case 2. ℓ is odd.

Consider a cyclic latin square of order ℓ . As ℓ is odd, $p \neq 0$. Hence, we fix a 3-cycle, (a_1, b_1, c_1) that will be present in all possible decompositions. For $1 \le i \le \frac{\ell-1}{2}$, with the first row and first column entries of this latin square, we first partitioned the 2×2 partial latin square row and first column entries of this latin square, we first partitioned the 2×2 partial latin square entries of the form, The edges corresponding to partial latin square of the above form can be de-

composed into 3-cycles, 4-cycles and 6-cycles for all admissible triplets (p, q, r) , where $(p, q, r) \in$ $\{(8, 0, 0), (6, 0, 1), (4, 3, 0), (4, 0, 2), (2, 3, 1), (2, 0, 3), (0, 6, 0), (0, 0, 4), (0, 3, 2)\}.$

(8, 0, 0): This can be achieved directly from Remark [2.](#page-2-0)

(6, 0, 1): (a_1, b_{2i}, c_{2i}) , $(a_1, b_{2i+1}, c_{2i+1})$, (a_{2i}, b_1, c_{2i}) , $(a_{2i+1}, b_1, c_{2i+1})$, (a_{2i}, b_{2i}, c_{4i}) , $(a_{2i+1}, b_{2i+1}, c_{4i+1})$ and $(a_{2i}, c_{4i-1}, b_{2i}, a_{2i+1}, c_{4i}, b_{2i+1})$.
 $(a_{2i}, a_{4i-1}, b_{2i}, a_{2i+1}, c_{4i-1})$.

(4, 3, 0): (a_1, b_{2i}, c_{2i}) , $(a_1, b_{2i+1}, c_{2i+1})$, (a_{2i}, b_1, c_{2i}) , $(a_{2i+1}, b_1, c_{2i+1})$, $(a_{2i}, c_{4i-1}, b_{2i}, c_{4i})$,

the day that defined and $(a_{2i}, c_{2i+1}, c_{2i+1})$. $(a_{2i}, b_{2i}, a_{2i+1}, b_{2i+1})$ and $(a_{2i+1}, c_{4i}, b_{2i+1}, c_{4i+1})$.
 $(a_{2i}, b_{2i}, a_{2i+1}, a_{2i+1})$.

(4, 0, 2): (a_1, b_{2i}, c_{2i}) , $(a_1, b_{2i+1}, c_{2i+1})$, (a_{2i}, b_1, c_{2i}) , $(a_{2i+1}, b_1, c_{2i+1})$, $(a_{2i}, c_{4i-1}, b_{2i}, c_{4i}, a_{2i+1}, b_{2i+1})$ and $(a_{2i}, c_{4i}, b_{2i+1}, c_{4i+1}, a_{2i+1}, b_{2i})$.
 $(2, 3, 1)$: (a_{2i}, b_{2i}, c_{2i}) , (a_{2i}, c_{2i}) .

 $(2, 3, 1)$: (a_{2i}, b_{2i}, c_{2i}) , $(a_{2i+1}, b_{2i+1}, c_{2i})$, $(a_1, b_{2i}, c_{4i}, b_{2i+1})$, $(a_1, c_{2i}, b_1, c_{2i+1})$, $(a_{2i}, b_1, a_{2i+1}, c_{4i})$ and $(a_{2i}, b_{2i+1}, c_{4i+1}, a_{2i+1}, b_{2i}, c_{4i-1}).$
 $(2, 0, 3)$; (a_{2i}, b_{2i}, c_{4i})

(2, 0, 3): (a_{2i}, b_{2i}, c_{4i}) , $(a_{2i+1}, b_{2i+1}, c_{4i+1})$, $(a_{2i}, c_{4i-1}, b_{2i}, a_{2i+1}, c_{4i}, b_{2i+1})$, $(a_1, b_{2i}, c_{2i}, a_{2i}, b_1, c_{2i+1})$ and

 $(a_1, b_{2i+1}, c_{2i+1}, a_{2i+1}, b_1, c_{2i}).$
 $(0, 6, 0):$ $(a_1, b_{2i},$ (0, 6, 0): (a_1, b_2)
 (c_1, b_1, c_2) and (a_1, b_2) $(a_{2i}, b_{2i+1}), (a_{2i}, b_1, a_{2i+1}, c_{4i}), (a_{2i}, c_{2i}, b_{2i}, c_{2i+1}), (a_{2i+1}, b_{2i}, c_{4i}, b_{2i+1}),$ $(a_1, c_{2i}, b_1, c_{2i+1})$ and $(a_{2i+1}, c_{4i+1}, b_{2i+1}, c_{2i+1})$.
 $(a_1, b_1, c_2, b_2, c_3, c_4, c_5)$.

 $(0, 0, 4)$: $(a_1, b_{2i+1}, c_{2i+1}, a_{2i+1}, b_{2i}, c_{2i})$, $(a_1, b_{2i}, a_{2i}, c_{2i}, b_1, c_{2i+1})$, $(a_{2i}, b_1, a_{2i+1}, c_{4i+1}, b_{2i+1}, c_{4i})$ and $(a_{2i}, b_{2i+1}, a_{2i+1}, c_{4i}, b_{2i}, c_{4i-1}).$

 $(0, 3, 2)$: $(a_{2i}, b_{2i}, a_{2i+1}, b_{2i+1})$, $(a_{2i}, c_{4i-1}, b_{2i}, c_{4i})$, $(a_{2i+1}, c_{4i}, b_{2i+1}, c_{4i+1})$, $(a_1, b_{2i}, c_{2i}, a_{2i}, b_1, c_{2i+1})$ and $(a_1, b_{2i+1}, c_{2i+1}, a_{2i+1}, b_1, c_{2i}).$

The remaining entries of the latin square can be partitioned into 2×2 partial latin squares where the edges corresponding to each of the 2×2 partial latin square can be decomposed into all possible (C_3, C_4, C_6) as in Case 1.

Hence for all admissible triplets (p, q, r) , the graph $K_{\ell, \ell, \ell}$ admits a ${C_3^p}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} $\binom{r}{6}$ -decomposition. \square

3. When Partite Sets are of Different Size

In this section, we have proved the necessary conditions for the existence of ${C_3^p}$ C_3^p, C_4^q C_4^q, C_6^r $\binom{r}{6}$ decomposition of the complete tripartite graphs $K_{\ell,m,n}(\ell \leq m \leq n)$ are sufficient.

Lemma 4. *The graph* $K_{1,3,3}$ *admits a* $\{C_3^p\}$ C_4^p, C_4^q C_4^q, C_6^r 6 }*-decomposition.*

Proof. The graph $K_{1,3,3}$ has 15 edges. The maximum possible 3-cycles in the required decomposition will be three. Hence, the following are the admissible triplets $(p, q, r) \in \{(3, 0, 1), (1, 3, 0), (1, 0, 2)\}.$

 $(3, 0, 1)$: (a_1, b_1, c_1) , (a_1, b_2, c_2) , (a_1, b_3, c_3) and $(b_1, c_2, b_3, c_1, b_2, c_3)$.

 $(1, 3, 0)$: (a_1, b_1, c_1) , (a_1, b_2, c_1, b_3) , (a_1, c_2, b_2, c_3) and (b_1, c_2, b_3, c_3) .

 $(1, 0, 2)$: $(a_1, b_2, c_3, b_1, c_2, b_3)$, $(a_1, c_2, b_2, c_1, b_3, c_3)$ and (a_1, b_1, c_1) .

Thus, the graph $K_{1,3,3}$ admits a $\{C_3^p\}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} \Box ₆}-decomposition. □

Lemma 5. *The graph* $K_{1,5,5}$ *admits a* $\{C_3^p\}$ C_4^p, C_4^q C_4^q, C_6^r 6 }*-decomposition.*

Proof. The graph $K_{1,5,5}$ has 35 edges for which the set of admissible triplets are given by $(p, q, r) \in$ $\{(5, 5, 0), (5, 2, 2), (3, 5, 1), (3, 2, 3), (1, 8, 0), (1, 5, 2), (1, 2, 4)\}.$

(5, 5, 0): (a_1, b_1, c_1) , (a_1, b_2, c_2) , (a_1, b_3, c_3) , (a_1, b_4, c_4) , (a_1, b_5, c_5) , (b_1, c_2, b_3, c_4) , (b_1, c_3, b_4, c_5) , $(b_2, c_1, b_3, c_5), (b_2, c_3, b_5, c_4)$ and (b_4, c_1, b_5, c_2) .

(5, 2, 2): (a_1, b_1, c_1) , (a_1, b_2, c_2) , (a_1, b_3, c_3) , (a_1, b_4, c_4) , (a_1, b_5, c_5) , (b_2, c_3, b_5, c_4) , (b_4, c_1, b_5, c_2) , $(b_1, c_2, b_3, c_1, b_2, c_5)$ and $(b_1, c_3, b_4, c_5, b_3, c_4)$.

 $(3, 5, 1)$: (a_1, b_1, c_1) , (a_1, b_4, c_4) , (a_1, b_5, c_5) , (b_2, c_3, b_5, c_4) , (b_4, c_1, b_5, c_2) , (a_1, c_2, b_3, c_3) , $(b_1, c_3, b_4, c_5), (a_1, b_2, c_5, b_3)$ and $(b_1, c_2, b_2, c_1, b_3, c_4)$.

(3, 2, 3): (a_1, b_1, c_1) , (a_1, b_4, c_4) , (a_1, b_5, c_5) , (b_2, c_3, b_5, c_4) , (b_4, c_1, b_5, c_2) , $(a_1, b_2, c_5, b_4, c_3, b_3)$, $(b_1, c_2, b_2, c_1, b_3, c_4)$ and $(a_1, c_2, b_3, c_5, b_1, c_3)$.

 $(1, 8, 0)$: (a_1, b_1, c_1) , (a_1, b_2, c_1, b_3) , (a_1, b_4, c_5, b_5) , (b_1, c_2, b_3, c_4) , (b_2, c_3, b_3, c_5) , (b_4, c_4, b_5, c_1) , $(a_1, c_3, b_1, c_5), (a_1, c_2, b_2, c_4)$ and (b_4, c_2, b_5, c_3) .

 $(1, 5, 2)$: (a_1, b_1, c_1) , (a_1, b_2, c_1, b_3) , (a_1, b_4, c_5, b_5) , (b_1, c_2, b_3, c_4) , (b_2, c_3, b_3, c_5) , (b_4, c_4, b_5, c_1) , $(b_1, c_3, b_4, c_2, a_1, c_5)$ and $(b_2, c_2, b_5, c_3, a_1, c_4)$.

 $(1, 2, 4)$: (a_1, b_1, c_1) , (b_1, c_2, b_3, c_4) , (b_4, c_4, b_5, c_1) , $(b_1, c_3, b_4, c_2, a_1, c_5)$, $(b_2, c_2, b_5, c_3, a_1, c_4)$, $(a_1, b_2, c_1, b_3, c_5, b_4)$ and $(a_1, b_3, c_3, b_2, c_5, b_5)$.

Thus there exists a ${C_3^p}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} $K_{1,5,5}$ for all admissible triplets (p, q, r) . □

Lemma 6. *There exists a* $\{C_3^p\}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} $\binom{r}{6}$ -decomposition of $K_{1,7,7}$.

Proof. In order to prove the existence of ${C_3^p}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} $\binom{r}{6}$ -decomposition of $K_{1,7,7}$ we consider the following admissible triplets:

(7, 0, 7): Seven 3-cycles are as follows: by (a_1, b_1, c_1) , (a_1, b_2, c_2) , (a_1, b_3, c_3) , (a_1, b_4, c_4) , (a_1, b_5, c_5) , (a_1, b_6, c_6) and (a_1, b_7, c_7) . Seven 6-cycles are $(b_1, c_2, b_7, c_6, b_5, c_3)$, $(b_1, c_4, b_5, c_7, b_2, c_5)$,
 $(b_1, c_7, b_6, c_1, b_2, c_6)$, $(b_3, c_2, b_6, c_5, b_4, c_7)$, $(b_2, c_3, b_7, c_5, b_3, c_4)$, $(b_3, c_1, b_$ $(b_3, c_2, b_6, c_5, b_4, c_7),$ $(b_2, c_3, b_7, c_5, b_3, c_4),$ $(b_3, c_1, b_5, c_2, b_4, c_6)$ $(b_4, c_1, b_7, c_4, b_6, c_3).$

(7, 3, 5): Seven 3-cycles are same as above. Required 4-cycles are (b_3, c_1, b_5, c_2) , (b_3, c_6, b_4, c_7) and (b_4, c_2, b_6, c_5) . Five edge disjoint 6-cycles are given by, $(b_1, c_2, b_7, c_6, b_5, c_3)$, $(b_1, c_4, b_5, c_7, b_2, c_5)$, $(b_1, c_7, b_6, c_1, b_2, c_6)$, $(b_2, c_3, b_7, c_5, b_3, c_4)$ and $(b_4, c_1, b_7, c_4, b_6, c_3)$.

(7, 6, 3): The seven 3-cycles are as follows: (a_1, b_1, c_1) , (a_1, b_2, c_2) , (a_1, b_3, c_3) , (a_1, b_4, c_4) , (a_1, b_5, c_5) , (a_1, b_6, c_6) and (a_1, b_7, c_7) . Six 4-cycles are (b_3, c_1, b_5, c_2) , (b_3, c_6, b_4, c_7) , (b_4, c_2, b_6, c_5) , (b_1, c_4, b_5, c_7) , (b_1, c_6, b_2, c_5) and (b_2, c_1, b_6, c_7) . 6-cycles in the required decomposition are given by, $(b_1, c_2, b_7, c_6, b_5, c_3), (b_2, c_3, b_7, c_5, b_3, c_4)$ and $(b_4, c_1, b_7, c_4, b_6, c_3)$.

(7, 9, 1): (b_3, c_1, b_5, c_2) , (b_3, c_6, b_4, c_7) , (b_4, c_2, b_6, c_5) , (b_1, c_4, b_5, c_7) , (b_1, c_6, b_2, c_5) , (b_2, c_1, b_6, c_7) , (b_3, c_4, b_7, c_5) , (b_4, c_1, b_7, c_3) and (b_2, c_3, b_6, c_4) are the nine 4-cycles and the required 6-cycle is given by $(b_1, c_2, b_7, c_6, b_5, c_3)$. Required 3-cycles are same as above.

 $(5, 0, 8)$: (a_1, b_1, c_1) , (a_1, b_4, c_4) , (a_1, b_5, c_5) , (a_1, b_6, c_6) and (a_1, b_7, c_7) are the five copies of C_3 . Required 6-cycles are given by, $(a_1, c_2, b_7, c_6, b_5, c_3)$, $(a_1, b_2, c_2, b_1, c_3, b_3)$, $(b_1, c_4, b_5, c_7, b_2, c_5)$,
 $(b_1, c_7, b_6, c_1, b_2, c_6)$, $(b_3, c_2, b_6, c_5, b_4, c_7)$, $(b_2, c_3, b_7, c_5, b_3, c_4)$, $(b_3, c_1, b_5, c_2, b_4,$ $(b_2, c_3, b_7, c_5, b_3, c_4),$ $(b_4, c_1, b_7, c_4, b_6, c_3).$

(5, 3, 6): Three copies of 4-cycles are (b_3, c_1, b_5, c_6) , (b_4, c_2, b_7, c_6) and (a_1, c_2, b_5, c_3) . The six copies of C_6 are $(a_1, b_2, c_2, b_1, c_3, b_3)$, $(b_1, c_4, b_5, c_7, b_2, c_5)$, $(b_1, c_7, b_6, c_1, b_2, c_6)$, $(b_3, c_2, b_6, c_5, b_4, c_7)$, $(b_2, c_3, b_7, c_5, b_3, c_4)$ and $(b_4, c_1, b_7, c_4, b_6, c_3)$. Five copies of 3-cycles are same as above.

(5, 6, 4): Five copies of 3-cycles are (a_1, b_1, c_1) , (a_1, b_4, c_4) , (a_1, b_5, c_5) , (a_1, b_6, c_6) and (a_1, b_7, c_7) . Six copies of C_4 are given by, (b_3, c_1, b_5, c_6) , (b_4, c_2, b_7, c_6) , (a_1, c_2, b_5, c_3) , (a_1, b_2, c_4, b_3) , (b_1, c_2, b_2, c_3) and (b_3, c_3, b_7, c_5) . Four edge disjoint copies of 6-cycles are $(b_1, c_4, b_5, c_7, b_2, c_5)$, $(b_1, c_7, b_6, c_1, b_2, c_6)$, $(b_3, c_2, b_6, c_5, b_4, c_7)$ and $(b_4, c_1, b_7, c_4, b_6, c_3)$.

(5, 9, 2): Five copies of 3-cycles are same as above. Nine copies of 4-cycles are (b_3, c_1, b_5, c_6) , (b_4, c_2, b_7, c_6) , (a_1, c_2, b_5, c_3) , (a_1, b_2, c_4, b_3) , (b_1, c_2, b_2, c_3) , (b_3, c_3, b_7, c_5) , (b_1, c_4, b_5, c_7) , (b_1, c_6, b_2, c_5) and (b_2, c_1, b_6, c_7) . Two copies of 6-cycles are $(b_3, c_2, b_6, c_5, b_4, c_7)$ and $(b_4, c_1, b_7, c_4, b_6, c_3)$.

(5, 12, 0): (b_3, c_1, b_5, c_6) , (b_4, c_2, b_7, c_6) , (a_1, c_2, b_5, c_3) , (a_1, b_2, c_4, b_3) , (b_1, c_2, b_2, c_3) , (b_3, c_3, b_7, c_5) , (b_1, c_4, b_5, c_7) , (b_1, c_5, b_2, c_6) , (b_2, c_1, b_4, c_7) , (b_3, c_2, b_6, c_7) , (b_6, c_1, b_7, c_4) and (b_4, c_3, b_6, c_5) are the required 4-cycles. Five copies of 3-cycles are (a_1, b_1, c_1) , (a_1, b_4, c_4) , (a_1, b_5, c_5) , (a_1, b_6, c_6) and $(a_1, b_7, c_7).$

(3, 0, 9): Three copies of 3-cycles are (a_1, b_1, c_1) , (a_1, b_6, c_6) and (a_1, b_7, c_7) . Nine edge disjoint copies of 6-cycles are given by, $(a_1, c_2, b_3, c_1, b_5, c_3)$, $(b_3, c_6, b_5, c_2, b_6, c_7)$, $(b_1, c_5, b_3, c_3, b_7, c_6)$, $(b_2, c_5, b_7, c_2, b_4, c_6), (a_1, b_2, c_2, b_1, c_4, b_3), (b_1, c_3, b_2, c_4, b_5, c_7), (b_2, c_1, b_7, c_4, b_4, c_7),$ $(a_1, b_4, c_1, b_6, c_5, b_5)$ and $(a_1, c_4, b_6, c_3, b_4, c_5)$.

(3, 3, 7): Required copies of 3-cycles are same as above. Three copies of 4 cycles are (b_3, c_1, b_5, c_6) , (b_3, c_2, b_6, c_7) and (a_1, c_2, b_5, c_3) . 6-cycles in the required decomposition are $(b_1, c_5, b_3, c_3, b_7, c_6)$, $(b_2, c_5, b_7, c_2, b_4, c_6)$, $(a_1, b_2, c_2, b_1, c_4, b_3)$, $(b_1, c_3, b_2, c_4, b_5, c_7)$, $(b_2, c_1, b_7, c_4, b_4, c_7), (a_1, b_4, c_1, b_6, c_5, b_5)$ and $(a_1, c_4, b_6, c_3, b_4, c_5).$

(3, 6, 5): (b_3, c_1, b_5, c_6) , (b_3, c_2, b_6, c_7) , (a_1, c_2, b_5, c_3) , (b_4, c_2, b_7, c_6) , (b_1, c_5, b_2, c_6) and (b_3, c_3, b_7, c_5) are the required copies of 4-cycles. Five copies of 6-cycles are given by, $(a_1, b_2, c_2, b_1, c_4, b_3)$, $(b_1, c_3, b_2, c_4, b_5, c_7)$, $(b_2, c_1, b_7, c_4, b_4, c_7)$, $(a_1, b_4, c_1, b_6, c_5, b_5)$ and $(a_1, c_4, b_6, c_3, b_4, c_5)$. Two copies of 3-cycles in the required decomposition are (a_1, b_1, c_1) , Two copies of 3-cycles in the required decomposition are (a_1, b_1, c_1) , (a_1, b_6, c_6) and (a_1, b_7, c_7) .

(3, 9, 3): Three copies of 3-cycles are same as above. Nine edge disjoint copies of 4-cycles are given by (b_3, c_1, b_5, c_6) , (b_3, c_2, b_6, c_7) , (a_1, c_2, b_5, c_3) , (b_4, c_2, b_7, c_6) , (b_1, c_5, b_2, c_6) , (b_3, c_3, b_7, c_5) , $(a_1, b_2, c_4, b_3), (b_1, c_2, b_2, c_3)$ and (b_1, c_4, b_5, c_7) . Required copies of 6-cycles are $(b_2, c_1, b_7, c_4, b_4, c_7)$, $(a_1, b_4, c_1, b_6, c_5, b_5)$ and $(a_1, c_4, b_6, c_3, b_4, c_5)$.

(3, 12, 1): Twelve edge disjoint copies of 4-cycles are (b_3, c_1, b_5, c_6) , (b_3, c_2, b_6, c_7) , (a_1, c_2, b_5, c_3) , $(b_4, c_2, b_7, c_6), (b_1, c_5, b_2, c_6), (b_3, c_3, b_7, c_5), (a_1, b_2, c_4, b_3), (b_1, c_2, b_2, c_3), (b_1, c_4, b_5, c_7), (b_2, c_1, b_4, c_7),$ (a_1, c_4, b_4, c_5) and (b_6, c_1, b_7, c_4) . Required C_6 is $(a_1, b_4, c_3, b_6, c_5, b_5)$. Three copies of 3-cycles are (a_1, b_1, c_1) , (a_1, b_6, c_6) and (a_1, b_7, c_7) .

Decomposition of Complete Tripartite Graphs into Short Cycles 91

(1, 0, 10): (a_1, b_1, c_1) is the required *C*₃. Ten edge disjoint copies of 6-cycles are $(a_1, c_2, b_3, c_1, b_5, c_3)$, $(b_3, c_6, b_5, c_2, b_6, c_7)$, $(b_1, c_5, b_3, c_3, b_7, c_6)$, $(b_2, c_5, b_7, c_2, b_4, c_6)$, are $(a_1, c_2, b_3, c_1, b_5, c_3)$, $(b_3, c_6, b_5, c_2, b_6, c_7)$, $(b_1, c_5, b_3, c_3, b_7, c_6)$, $(b_2, c_5, b_7, c_2, b_4, c_6)$,
 $(a_1, b_2, c_2, b_1, c_4, b_3)$, $(b_1, c_3, b_2, c_4, b_5, c_7)$, $(a_1, c_4, b_4, c_3, b_6, c_6)$, $(a_1, b_4, c_7, b_2, c_1,$ $(a_1, b_2, c_2, b_1, c_4, b_3),$ $(b_1, c_3, b_2, c_4, b_5, c_7),$ $(a_1, c_4, b_4, c_3, b_6, c_6),$ $(a_1, b_4, c_7, b_2, c_1, b_6),$ $(a_1, c_5, b_6, c_4, b_7, c_7)$ and $(a_1, b_5, c_5, b_4, c_1, b_7)$.
 $(1, 3, 8)$; (b_2, c_3, b_5, c_6) , (b_3, c_5, b_6, c_7) .

(1, 3, 8): (b_3 , c_1 , b_5 , c_6), (b_3 , c_2 , b_6 , c_7) and (a_1 , c_2 , b_5 , c_3) are the 3 edge disjoint copies of 4-cycles. Required 6-cycles are (b_1 , c_5 , b_3 , c_3 , b_7 , c_6), (b_2 , 4-cycles. Required 6-cycles are $(b_1, c_5, b_3, c_3, b_7, c_6)$, $(b_2, c_5, b_7, c_2, b_4, c_6)$, $(a_1, b_2, c_2, b_1, c_4, b_3)$,
 $(b_1, c_3, b_2, c_4, b_5, c_7)$, $(a_1, c_4, b_4, c_3, b_6, c_6)$, $(a_1, b_4, c_7, b_2, c_1, b_6)$, $(a_1, c_5, b_6, c_4, b_7,$ $(b_1, c_3, b_2, c_4, b_5, c_7)$, $(a_1, c_4, b_4, c_3, b_6, c_6)$, $(a_1, b_4, c_7, b_2, c_1, b_6)$, $(a_1, c_5, b_6, c_4, b_7, c_7)$ and
 $(a_1, b_5, c_5, b_6, c_6, b_7)$. The required C_5 is (a_1, b_3, c_5) . $(a_1, b_5, c_5, b_4, c_1, b_7)$. The required C_3 is (a_1, b_1, c_1) .
(1.6.6): One copy of C_3 is given by (a_1, b_1, c_1) .

(1, 6, 6): One copy of C_3 is given by, (a_1, b_1, c_1) . Required 4-cycles are as follows: (b_3, c_1, b_5, c_6) , (b_3, c_2, b_6, c_7) , (a_1, c_2, b_5, c_3) , (b_4, c_2, b_7, c_6) , (b_1, c_5, b_2, c_6) and (b_3, c_3, b_7, c_5) . 6-cycles in the required decomposition are given by, $(a_1, b_2, c_2, b_1, c_4, b_3)$, $(b_1, c_3, b_2, c_4, b_5, c_7)$, $(a_1, c_4, b_4, c_3, b_6, c_6)$, $(a_1, b_4, c_7, b_2, c_1, b_6)$, $(a_1, c_5, b_6, c_4, b_7, c_7)$ and $(a_1, b_5, c_5, b_4, c_1, b_7)$.

(1, 9, 4): (a_1, b_1, c_1) is the required C_3 . Nine copies of 4-cycles are as follows: (b_3, c_1, b_5, c_6) , $(b_3, c_2, b_6, c_7), (a_1, c_2, b_5, c_3), (b_4, c_2, b_7, c_6), (b_1, c_5, b_2, c_6), (b_3, c_3, b_7, c_5), (a_1, b_2, c_4, b_3), (b_1, c_2, b_2, c_3)$ and (b_1, c_4, b_5, c_7) . Required 6-cycles are as follows: $(a_1, c_4, b_4, c_3, b_6, c_6)$, $(a_1, b_4, c_7, b_2, c_1, b_6)$, $(a_1, c_5, b_6, c_4, b_7, c_7)$ and $(a_1, b_5, c_5, b_4, c_1, b_7)$.

 $(1, 12, 2)$: (a_1, b_1, c_1) is the required C_3 . Twelve copies of 4-cycles are as follows: (b_3, c_1, b_5, c_6) , $(b_3, c_2, b_6, c_7), (a_1, c_2, b_5, c_3), (b_4, c_2, b_7, c_6), (b_1, c_5, b_2, c_6), (b_3, c_3, b_7, c_5), (a_1, b_2, c_4, b_3),$

 (b_1, c_2, b_2, c_3) , (b_1, c_4, b_5, c_7) , (a_1, c_4, b_7, c_7) , (a_1, b_4, c_3, b_6) and (a_1, c_5, b_6, c_6) . 6-cycles in the required decomposition is given by, $(b_2, c_1, b_6, c_4, b_4, c_7)$ and $(a_1, b_5, c_5, b_4, c_1, b_7)$.

(1, 15, 0): Required 4-cycles are given by: (b_3, c_1, b_5, c_6) , (b_3, c_2, b_6, c_7) , (a_1, c_2, b_5, c_3) , $(b_4, c_2, b_7, c_6), (b_1, c_5, b_2, c_6), (b_3, c_3, b_7, c_5), (a_1, b_2, c_4, b_3), (b_1, c_2, b_2, c_3), (b_1, c_4, b_5, c_7), (a_1, c_5, b_6, c_6),$ (b_4, c_3, b_6, c_4) , (a_1, c_4, b_7, c_7) , (a_1, b_4, c_5, b_5) , (a_1, b_6, c_1, b_7) and (b_2, c_1, b_4, c_7) . The C_3 in the required decomposition is (a_1, b_1, c_1) .

Thus the graph $K_{1,7,7}$ admits a $\{C_3^p\}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} σ_6^r -decomposition for all admissible triplets (p, q, r) . □

Theorem 4. *The graph* $K_{1,m,m}$ *where m is odd, admits a* ${C_3^p}$ C_4^p, C_4^q C_4^q, C_6^r $\binom{r}{6}$ -decomposition where $1 \leq p \leq m$ and 3*p* + 4*q* + 6*r* = m^2 + 2*m*.

Proof. The graph $K_{1,m,m}$ has $m^2 + 2m$ edges. Since *m* is odd, here $p \neq 0$. Consider the case $m \equiv 1/(m \times 10^4)$ 1(mod 4). Let $m = 4n + 1$. Here,

$$
K_{1,m,m} = (a_1, b_1, c_1) \oplus (K_{1,5,5} - C_3) \oplus (K_{1,5,5} - C_3) \oplus ... \oplus (K_{1,5,5} - C_3) \oplus (K_{4,4}) \oplus (K_{4,4}) \oplus ... \oplus (K_{4,4})
$$

n copies

By Lemma [5,](#page-4-0) the graph $K_{1,5,5} - C_3$ admits a (C_3, C_4, C_6) decomposition for all admissible triplets. Theorem [2](#page-1-2) guarantees the existence of (C_4, C_6) - cycle decomposition of $K_{4,4}$ for all admissible pairs (q', r') . Now consider the case $m \equiv 3 \pmod{4}$. Let $m = 4n + 3$. In this case,

$$
K_{1,m,m} = (a_1, b_1, c_1) \oplus (K_{1,7,7} - C_3) \oplus \underbrace{(K_{1,5,5} - C_3) \oplus (K_{1,5,5} - C_3) \oplus \dots \oplus (K_{1,5,5} - C_3)}_{(n-1) \text{ copies}}
$$

\n
$$
\oplus \underbrace{(K_{4,6}) \oplus (K_{4,6}) \oplus \dots \oplus (K_{4,6})}_{2(n-1) \text{ copies}}.
$$

By Lemmas [5](#page-4-0) and [6,](#page-4-1) the graph $K_{1,5,5}-C_3$ and $K_{1,7,7}-C_3$ can be decomposed into copies of 3-cycles, 4-cycles and 6-cycles for all admissible triplets. Theorem [2](#page-1-2) guarantees the existence of 4-cycles and 6-cycles for all possible pairs (q', r') . Thus, the graph $K_{1,m,m}$ can be decomposed into ${C_3^p}$
all admissible triplets (p, q, r) C_4^p, C_4^q C_4^q, C_6^r $_{6}^{r}$ } for all admissible triplets (p, q, r) . □

Lemma 7. *There exists a* ${C_3^p}$ $\frac{p}{3}$, C_4^q $^{q}_{4}$, C_{6}^{r} 6 }*-decomposition of the graph K*ℓ,ℓ,*^m*.

Proof. The graph $K_{\ell,\ell,m} = K_{\ell,\ell,\ell} \oplus K_{2\ell,m-\ell}$. By Theorem [3,](#page-3-0) the graph $K_{\ell,\ell,\ell}$ admits a 3-cycle, 4-cycle and 6-cycle decomposition for all possible values of *p*, *q* and *r*. Theorem [2](#page-1-2) guarantees the existence of 4-cycles and 6-cycles in $K_{2\ell,m-\ell}$ for all possible pair (q', r') .
It is easy to verify that whenever $m - \ell = 2$ and $n - \ell^2$ the

It is easy to verify that whenever $m - \ell = 2$ and $p = \ell^2$ then $r = 0$. When $p < \ell^2$, then there exists velocing for all possible triplets (p, q, r) 4-cycles and 6-cycles for all possible triplets (*p*, *^q*,*r*).

Thus the graph $K_{\ell,\ell,m}$ can be decomposed into *p* copies of C_3 , *q* copies of C_4 and *r* copies of C_6 for admissible triplets (p, a, r) . all admissible triplets (p, q, r) .

Lemma 8. *The graph* $K_{\ell,m,m}$ *with* $m - \ell \equiv 0 \pmod{4}$ *has a* $\{C_3^p\}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} 6 }*-decomposition.*

Proof. Let $\{a_1, a_2, ..., a_l\}$, $\{b_1, b_2, ..., b_m\}$ and $\{c_1, c_2, ..., c_m\}$ be the partite sets of $K_{\ell,m,m}$. In order to prove this lemma, consider a cyclic latin square of order *m*.

By Lemma [1,](#page-1-3) the edges corresponding to the entries in the first ℓ rows of the latin square corresponds to the maximum possible cycles of length 3. Thus $p = \ell m$ is achieved. Further, the entries in the first ℓ rows of the latin square can be then partitioned into 2×2 partial latin squares and the corresponding edges can be decomposed into copies of 3-cycles, 4-cycles and 6-cycles depending upon the values of (p', q', r') similar to Case 1 or Case 2 of Theorem [3,](#page-3-0) according as ℓ even or odd.
Next, we consider the remaining $m - \ell$ rows of the latin square, where the entries will be of the

Next, we consider the remaining $m - \ell$ rows of the latin square, where the entries will be of the form,

Note that each entry in the remaining $m - \ell$ rows represent an edge between the second and third partite sets. We first decompose the edges corresponding to the entries in these $m - \ell$ rows of the latin square into C_4 . Consider a block of first four rows, say rows $\ell + 1$, $\ell + 2$, $\ell + 3$, $\ell + 4$. The entries in the rows correspond to 4*m* edges and are decomposed into copies of *C*⁴ as follows: For example, we consider the bold entries as shown above, which corresponds to a 4-cycle $(b_1, c_{\ell+1}, b_{m-1}, c_{\ell+2})$. Similarly, the underlined entries and the entries in the rectangular box corresponds to the 4-cycles $(b_1, c_{\ell+3}, b_3, c_{\ell+4})$ and $(b_2, c_{\ell+2}, b_m, c_{\ell+3})$, respectively. These three cycles of length four are taken together to have two copies of C_6 and are given by $(b_1, c_{\ell+1}, b_{m-1}, c_{\ell+2}, b_m, c_{\ell+3})$ and $(b_1, c_{\ell+2}, b_2, c_{\ell+3}, b_3, c_{\ell+4})$. Similarly, the remaining entries in this block can be decomposed into 4-cycles and 6-cycles accordingly. This can be repeated for all the block of four consecutive rows. After converting a group of 4-cycles into required number of 6-cycles, if there are unused 4-cycles in a block of four rows and if there are three such blocks, then it is straight forward to see that they can be transformed into 6-cycles using edge trading.

This proves the existence of ${C_3^p}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} $K_{\ell,m,m}$ with $m - \ell \equiv 0 \pmod{4}$. □

Lemma 9. For $p = \ell(\ell + 2)$ and $4q + 6r = 2(\ell + 2)$, the graph $K_{\ell, \ell+2, \ell+2}$ admits a $\{C_3^p\}$ C_4^p, C_4^q C_4^q, C_6^r 6 } *decomposition.*

Proof. Consider the bipartite graph $K_{\ell+2,\ell+2}$, a proper subgraph of $K_{\ell,\ell+2,\ell+2}$. The degree of each vertex in $K_{\ell+2,\ell+2}$ is $\ell+2$. From this complete bipartite graph, we first construct a 2-factor $\mathcal F$ consisting *q* copies of C_4 and *r* copies of C_6 . For this, we consider base cycles $C = b_1c_1b_2c_2$ and $\overline{C}' = b_{2q+1}c_{2q+1}b_{2q+2}c_{2q+2}b_{2q+3}c_{2q+3}$. Then the 2-factor $\mathcal F$ is given by

$$
\{\rho^{0}(C), \rho^{2}(C), ..., \rho^{2q-2}(C)\} \bigcup \{\rho^{0}(C^{'}), \rho^{3}(C^{'}), ..., \rho^{\ell-2q-1}(C^{'})\}.
$$

Now, if we decompose the graph $(K_{\ell,\ell+2,\ell+2}-\mathcal{F})$ into $\ell(\ell+2)$ copies of 3-cycles, then we are done. This can be achieved as follows: after the removal of $\mathcal F$ and $\ell(\ell+2)$ copies of 3-cycles from $K_{\ell,\ell+2,\ell+2}$, the edges in between second and third partite sets can be decomposed into 1-factors $F_1, F_2, ..., F_\ell$. Now, for $1 \le i \le \ell$, the edges incident with a vertex g_i together with a 1-factor F_i would yield a C_i -factor for $1 \le i \le \ell$, the edges incident with a vertex a_i together with a 1-factor F_i would yield a C_3 -factor, which completes the proof of this lemma. \Box

In order to prove the existence of ${C_3^p}$ C_3^q , C_4^q $^{q}_{4}$, C_{6}^{r}
² ^r₆}-decomposition of $K_{\ell,m,m}$ with $m - \ell \equiv 2 \pmod{4}$, we idempotent latin square. Since there is no idempotent use a latin square which is constructed from an idempotent latin square. Since there is no idempotent latin square of order 2×2 , we now prove the existence of ${C_3^p}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} $\binom{r}{6}$ -decomposition of the graph $K_{3,5,5}$.

Lemma 10. *The graph* $K_{3,5,5}$ *admits a* $\{C_3^p\}$ C_4^p, C_4^q C_4^q, C_6^r 6 }*-decomposition.*

Proof. In order to prove the existence of ${C_3^p}$ C_3^p , C_4^q
ared C_4^q, C_6^r K_6 }-decomposition of $K_{3,5,5}$ for all possible values of *^p*, *^q* and *^r*, the following cases are considered.

 $(15, 1, 1)$: The maximum number of possible 3-cycles in the required decomposition of $K_{3,5,5}$ is 15 which are as follows: (a_1, b_1, c_3) , (a_1, b_2, c_4) , (a_1, b_3, c_1) , (a_1, b_4, c_5) , (a_1, b_5, c_2) , (a_2, b_1, c_5) , (a_2, b_2, c_3) , $(a_2, b_3, c_4), (a_2, b_4, c_2), (a_2, b_5, c_1), (a_3, b_1, c_4), (a_3, b_2, c_5), (a_3, b_3, c_2), (a_3, b_4, c_1)$ and (a_3, b_5, c_3) . The remaining 10 edges from second and third partite which can be decomposed into a C_4 and C_6 given by, (b_1, c_2, b_2, c_1) and $(b_3, c_3, b_4, c_4, b_5, c_5)$.

(13, 4, 0): Required edge disjoint copies of 3-cycles are (a_1, b_2, c_4) , (a_1, b_3, c_1) , (a_1, b_5, c_2) , $(a_2, b_1, c_5), (a_2, b_2, c_3), (a_2, b_3, c_4), (a_2, b_4, c_2), (a_2, b_5, c_1), (a_3, b_1, c_4), (a_3, b_2, c_5), (a_3, b_3, c_2), (a_3, b_4, c_1)$
and (a_3, b_5, c_3) . Four copies of 4-cycles are $(b_1, c_1, b_2, c_2), (b_4, c_4, b_5, c_5), (a_1, b_1, c_3, b_4)$ a Four copies of 4-cycles are (b_1, c_1, b_2, c_2) , (b_4, c_4, b_5, c_5) , (a_1, b_1, c_3, b_4) and $(a_1, c_3, b_3, c_5).$

 $(13, 1, 2)$: Edge disjoint copies of 3-cycles are same as above. Required C_4 is given by (b_1, c_1, b_2, c_2) . Two copies of 6-cycles are $(a_1, b_1, c_3, b_3, c_5, b_4)$ and $(a_1, c_3, b_4, c_4, b_5, c_5)$.

(11, 4, 1): Required copies of 3-cycles are given by, (a_1, b_2, c_4) , (a_1, b_3, c_1) , (a_1, b_5, c_2) , (a_2, b_2, c_3) , (a_2, b_3, c_4) , (a_2, b_5, c_1) , (a_3, b_1, c_4) , (a_3, b_2, c_5) , (a_3, b_3, c_2) , (a_3, b_4, c_1) and (a_3, b_5, c_3) . Four copies of 4-cycles are (a_2, c_2, b_1, c_5) , (b_4, c_4, b_5, c_5) , (a_2, b_1, c_3, b_4) and (a_1, c_3, b_3, c_5) . Required C_6 is $(a_1, b_1, c_1, b_2, c_2, b_4).$

(11, 1, 3): Required copies of 3-cycles will be the same as given above. Three copies of 6-cycles are $(b_3, c_3, b_4, c_4, b_5, c_5)$, $(a_2, c_2, b_4, a_1, b_1, c_5)$ and $(a_1, c_3, b_1, a_2, b_4, c_5)$. Required C_4 is (b_1, c_1, b_2, c_2) .

(9, 7, 0): Seven copies of 4-cycles are as follows, (b_1, c_1, b_2, c_2) , (a_1, c_3, b_4, c_5) , (a_1, b_4, c_2, b_5) , $(a_1, b_1, a_2, c_2), (b_1, c_3, b_3, c_5), (a_2, b_3, c_4, b_4)$ and (a_2, c_4, b_5, c_5) . Required copies of 3-cycles are given by (a_1, b_2, c_4) , (a_1, b_3, c_1) , (a_2, b_2, c_3) , (a_2, b_5, c_1) , (a_3, b_1, c_4) , (a_3, b_2, c_5) , (a_3, b_3, c_2) , (a_3, b_4, c_1) and $(a_3, b_5, c_3).$

(9, 4, 2): Nine copies of 3-cycles are given by (a_1, b_2, c_4) , (a_1, b_3, c_1) , (a_2, b_2, c_3) , (a_2, b_5, c_1) , (a_3, b_1, c_4) , (a_3, b_2, c_5) , (a_3, b_3, c_2) , (a_3, b_4, c_1) and (a_3, b_5, c_3) . Four edge disjoint copies of 4cycles are (b_1, c_1, b_2, c_2) , (a_1, c_3, b_4, c_5) , (a_2, b_3, c_4, b_4) and (b_1, c_3, b_3, c_5) . Required 6-cycles are $(a_1, b_1, a_2, c_4, b_5, c_2)$ and $(a_1, b_4, c_2, a_2, c_5, b_5)$.

(9, 1, 4): Required copies of 3-cycles are same as given above. (b_1, c_1, b_2, c_2) is the required *C*₄. Edge disjoint copies of 6-cycles are as follows: $(a_1, b_1, a_2, c_4, b_5, c_2)$, $(a_1, b_4, c_2, a_2, c_5, b_5)$, $(a_1, c_3, b_3, a_2, b_4, c_5)$ and $(b_1, c_3, b_4, c_4, b_3, c_5)$.

 $(7, 7, 1)$: (a_1, b_2, c_4) , (a_1, b_3, c_1) , (a_2, b_2, c_3) , (a_2, b_5, c_1) , (a_3, b_1, c_4) , (a_3, b_2, c_5) and (a_3, b_4, c_1) are the seven edge disjoint copies of 3-cycles and the required C_6 is $(a_2, b_3, c_5, b_1, c_3, b_4)$. Seven copies of 4-cycles are as follows: (b_1, c_1, b_2, c_2) , (a_1, b_1, a_2, c_5) , (a_1, b_4, c_5, b_5) , (a_2, c_2, b_4, c_4) , (a_1, c_2, b_3, c_3) , (a_3, c_2, b_5, c_3) and (a_3, b_3, c_4, b_5) .

(7, 4, 3): Four copies of 4-cycles are (b_1, c_1, b_2, c_2) , (a_1, b_1, a_2, c_5) , (a_1, b_4, c_5, b_5) and (a_2, c_2, b_4, c_4) . Required 6-cycles are $(a_3, c_2, b_5, c_4, b_3, c_3)$, $(a_1, c_2, b_3, a_3, b_5, c_3)$ and $(a_2, b_3, c_5, b_1, c_3, b_4)$. Seven copies of 3-cycles are same as given above.

 $(7, 1, 5)$: $(a_3, c_2, b_5, c_4, b_3, c_3)$, $(a_1, c_2, b_3, a_3, b_5, c_3)$, $(a_2, b_3, c_5, b_1, c_3, b_4)$, $(a_1, b_4, c_2, a_2, c_5, b_5)$ and $(a_1, b_1, a_2, c_4, b_4, c_5)$ are the five edge disjoint copies of 6-cycles required and one copy of C_4 is (b_1, c_1, b_2, c_2) . Required seven copies of 3-cycles are (a_1, b_2, c_4) , (a_1, b_3, c_1) , (a_2, b_2, c_3) , (a_2, b_5, c_1) , $(a_3, b_1, c_4), (a_3, b_2, c_5)$ and (a_3, b_4, c_1) .

(5, 10, 0): Five copies of 3-cycles are (a_1, b_2, c_4) , (a_2, b_2, c_3) , (a_3, b_1, c_4) , (a_3, b_2, c_5) and (a_3, b_4, c_1) . Ten edge disjoint copies of 4-cycles are (b_1, c_3, b_3, c_5) , (b_3, c_1, b_5, c_4) , (a_1, c_2, a_3, c_3) , (a_2, b_4, c_3, b_5) , $(a_1, c_1, a_2, b_3), (a_3, b_3, c_2, b_5), (a_1, b_4, c_5, b_5), (a_1, b_1, a_2, c_5), (a_2, c_2, b_4, c_4)$ and (b_1, c_1, b_2, c_2) .

(5, 7, 2): Five copies of 3-cycles are same as given above. Required 4-cycle are as follows: (a_1, b_4, c_5, b_5) , (a_1, c_2, a_3, c_3) , (a_2, b_4, c_3, b_5) , (b_3, c_1, b_5, c_4) , (a_2, c_2, b_4, c_4) , (a_3, b_3, c_2, b_5) and (b_1, c_1, b_2, c_2) . 6-cycles in the required decomposition are given by $(a_1, b_1, c_3, b_3, a_2, c_5)$ and $(a_1, b_3, c_5, b_1, a_2, c_1).$

(5, 4, 4): (a_1, b_2, c_4) , (a_2, b_2, c_3) , (a_3, b_1, c_4) , (a_3, b_2, c_5) and (a_3, b_4, c_1) are the five copies of 3-cycles. 4-cycles in the required decomposition are (a_1, b_4, c_5, b_5) , (b_3, c_1, b_5, c_4) , (a_3, b_3, c_2, b_5) and (b_1, c_1, b_2, c_2) . Four copies of 6-cycles are given by, $(a_1, b_1, c_3, b_3, a_2, c_5)$, $(a_1, b_3, c_5, b_1, a_2, c_1)$, $(a_1, c_2, b_4, a_2, b_5, c_3)$ and $(a_2, c_2, a_3, c_3, b_4, c_4)$.

(5, 1, 6): Five copies of 3-cycles are same as given above. Six copies of 6 cycles are $(a_1, b_1, c_3, b_3, a_2, c_5)$, $(a_1, b_3, c_5, b_1, a_2, c_1)$, $(a_1, c_2, b_4, a_2, b_5, c_3)$, $(a_2, c_2, a_3, c_3, b_4, c_4)$, $(a_3, b_3, c_1, b_1, c_2, b_5)$ and $(b_2, c_1, b_5, c_4, b_3, c_2)$ and one copy of C_4 in the required decomposition is $(a_1, b_4, c_5, b_5).$

(3, 1, 7): Edge disjoint copies of 3-cycles are (a_3, b_1, c_4) , (a_3, b_2, c_5) and (a_2, b_2, c_4) . Required copies of 6-cycles are as follows: $(a_1, b_1, c_3, b_3, a_2, c_5)$, $(a_1, b_3, c_5, b_1, a_2, c_1)$, $(a_1, c_2, b_4, a_2, b_5, c_3)$, $(b_2, c_1, b_5, c_4, b_3, c_2)$, $(a_2, c_2, a_3, c_1, b_4, c_3)$, $(a_3, b_3, c_1, b_1, c_2, b_5)$ and $(a_1, b_2, c_3, a_3, b_4, c_4)$. Required 4cycle is given by (a_1, b_4, c_5, b_5) .

(3, 4, 5): Edge disjoint copies of 3-cycles is same as given above. Required 4-cycles are (a_1, b_1, c_3, b_3) , (a_1, c_1, a_2, c_5) , (a_2, b_1, c_5, b_3) and (a_1, b_4, c_5, b_5) . Five copies of 6-cycles are given by $(a_1, c_2, b_4, a_2, b_5, c_3)$, $(b_2, c_1, b_5, c_4, b_3, c_2)$, $(a_2, c_2, a_3, c_1, b_4, c_3)$, $(a_3, b_3, c_1, b_1, c_2, b_5)$ and $(a_1, b_2, c_3, a_3, b_4, c_4).$

(3, 7, 3): Seven copies of 4-cycles are (a_1, b_1, c_3, b_3) , (a_1, c_1, a_2, c_5) , (a_2, b_1, c_5, b_3) , (a_1, b_4, c_5, b_5) , $(a_1, c_2, a_2, c_3), (a_2, b_4, c_3, b_5)$ and (a_3, c_1, b_4, c_2) . Required 6-cycles are given by, $(b_2, c_1, b_5, c_4, b_3, c_2)$, $(a_3, b_3, c_1, b_1, c_2, b_5)$ and $(a_1, b_2, c_3, a_3, b_4, c_4)$. Edge disjoint copies of 3-cycles are (a_3, b_1, c_4) , (a_3, b_2, c_5) and (a_2, b_2, c_4) .

(3, 10, 1): (a_1, b_1, c_3, b_3) , (a_1, c_1, a_2, c_5) , (a_2, b_1, c_5, b_3) , (a_1, b_4, c_5, b_5) , (a_1, c_2, a_2, c_3) , (a_2, b_4, c_3, b_5) , $(a_3, c_1, b_4, c_2), (b_1, c_1, b_2, c_2), (b_3, c_1, b_5, c_4)$ and (a_3, b_3, c_2, b_5) are the ten edge disjoint copies of 4cycles. Required 6-cycle is given by $(a_1, b_2, c_3, a_3, b_4, c_4)$. Edge disjoint copies of 3-cycles are same as given above.

(1, 10, 2): Ten copies of 4-cycles are (a_1, b_1, c_3, b_3) , (a_1, c_1, a_2, c_5) , (a_2, b_1, c_5, b_3) , (a_1, b_4, c_5, b_5) , $(a_3, b_1, c_4, b_4), (a_1, b_2, a_2, c_4), (a_3, c_4, b_2, c_3), (b_1, c_1, b_2, c_2), (b_3, c_1, b_5, c_4)$ and (a_3, b_3, c_2, b_5) . Two copies of 6-cycles are $(a_1, c_2, b_4, a_2, b_5, c_3)$ and $(a_2, c_2, a_3, c_1, b_4, c_3)$. Required C_3 is (a_3, b_2, c_5) .

(1, 7, 4): Required copies of 4-cycles are as follows: (a_1, b_1, c_3, b_3) , (a_1, c_1, a_2, c_5) , (a_2, b_1, c_5, b_3) , $(a_1, b_4, c_5, b_5), (a_3, b_1, c_4, b_4), (a_1, b_2, a_2, c_4)$ and (a_3, c_4, b_2, c_3) . Four copies of 6-cycles are $(a_1, c_2, b_4, a_2, b_5, c_3), (a_2, c_2, a_3, c_1, b_4, c_3), (a_3, b_3, c_1, b_1, c_2, b_5)$ and $(b_2, c_1, b_5, c_4, b_3, c_2)$. Required C_3 is (a_3, b_2, c_5) .

 $(1, 4, 6)$: (a_1, b_4, c_5, b_5) , (a_3, b_1, c_4, b_4) , (a_1, b_2, a_2, c_4) and (a_3, c_4, b_2, c_3) gives the required 4cycles. Edge disjoint copies of 6-cycles are given by $(a_1, c_2, b_4, a_2, b_5, c_3)$, $(a_2, c_2, a_3, c_1, b_4, c_3)$, $(a_3, b_3, c_1, b_1, c_2, b_5)$, $(b_2, c_1, b_5, c_4, b_3, c_2)$, $(a_1, b_1, c_3, b_3, a_2, c_5)$ and $(a_1, c_1, a_2, b_1, c_5, b_3)$. Required 3cycle is (a_3, b_2, c_5) .

(1, 1, 8): $(a_1, c_2, b_4, a_2, b_5, c_3), (a_2, c_2, a_3, c_1, b_4, c_3), (a_3, b_3, c_1, b_1, c_2, b_5), (b_2, c_1, b_5, c_4, b_3, c_2),$ $(a_1, b_1, c_3, b_3, a_2, c_5), (a_1, c_1, a_2, b_1, c_5, b_3), (a_1, b_2, a_2, c_4, a_3, b_4)$ and $(a_1, c_4, b_1, a_3, c_5, b_5)$ are the 8 edge disjoint copies of 6-cycles. Required 4-cycle is given by (b_2, c_4, b_4, c_5) . One copy of C_3 is given by $(a_3, b_2, c_5).$

Thus the graph $K_{3,5,5}$ admits a $\{C_3^p\}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} σ_6^r -decomposition for all possible triplets. \Box

Definition 1. [\[17\]](#page-18-8) *In a n* \times *n latin square, if each of the* 2 \times 2 *subsquare has entries of the form,*

is called a subsquare of the form (*x*)*.*

Next to prove the existence of ${C_3^p}$ $^{p}_{3}$, C^{q}_{4}
b_V E $\frac{q}{4}$, C_6^r
Fliza K_{6}^{r} -decomposition of $K_{\ell,m,m}$ with $m - \ell \equiv 2 \pmod{4}$, we use the following construction given by Elizabeth J. Billington [\[17\]](#page-18-8).

Recall that if the cell (*i*, *ⁱ*) of a latin square of order *ⁿ* contains an entry *ⁱ* then the latin square is called idempotent latin square. When *n* is odd, an idempotent latin square can be constructed easily by using the entries in a cyclic order. But when *n* is even, an idempotent latin square can be constructed by using the stripping the transversal technique which is explained in [\[19\]](#page-18-10).

Lemma 11. [\[17\]](#page-18-8) *For any P* > 2*, there exists a latin square of order* $2p + 1$ *possessing p(p-1)* 2×2 *cell disjoint subsquares of the form* (*x*)*.*

In the following example, using an idempotent latin square of order 5, we construct an idempotent latin square of order [11](#page-10-0) by using Lemma 11 which consists of 20 cell disjoint 2×2 subsquares of the form (x) .

Example 1. *Consider the latin square L*5*.*

*We can obtain the required latin square, L*¹¹ *using Lemma [11](#page-10-0) as given below.*

	$\overline{0}$	$\overline{2}$	1	4	3	6	5	8	7	10	9
	$\overline{2}$	1	$\overline{0}$	7	8	3	4	9	10	5	6
	$\mathbf{1}$	$\overline{0}$	$\overline{2}$	8	7	$\overline{4}$	3	10	9	6	5
	4	7	8	3	$\overline{0}$	9	10	5	6	1	$\overline{2}$
	3	8	7	$\overline{0}$	4	10	9	6	5	$\overline{2}$	1
$L_{11} =$	6	3	4	9	10	5	$\boldsymbol{0}$	$\mathbf{1}$	$\mathfrak{2}$	7	8
	5	4	3	10	9	$\overline{0}$	6	$\overline{2}$	1	8	7
	8	9	10	5	6	1	$\overline{2}$	7	$\overline{0}$	3	4
	7	10	9	6	5	$\overline{2}$	$\mathbf{1}$	$\overline{0}$	8	4	3
	10	5	6	1	2	7	8	3	4	9	0
	9	6	5	$\overline{2}$	1	8	7	4	3	$\overline{0}$	10

Lemma 12. *For* $m - \ell \equiv 2 \pmod{4}$, *there exists a* { C_3^p C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} $\binom{m}{6}$ -decomposition of $K_{\ell,m,m}$.

Proof. The proof is splitted into 2 cases.

Case 1. ℓ is odd.

The graph $K_{\ell,m,m}$ with $m - \ell \equiv 2 \pmod{4}$ has $m^2 + 2\ell m$ edges. Let $m = 2M + 1$ and $\ell = 2L + 1$. Here, the number of edges is odd and hence $p \neq 0$. Let us fix one C_3 as (a_0, b_0, c_0) in all possible decomposition. In order to prove this result, we use the latin square as described in Lemma [11,](#page-10-0) say *^L^m*. This latin square is of order *^m*, which will be of the form,

Clearly, $p \leq \ell m$ and equality can be achieved by considering the entries in the first ℓ rows of L_m . These $3\ell m$ edges can be decomposed into all possible 3, 4 and 6 cycles as follows:

It may be noted that the edges corresponding to the entry k in the cell (i, j) of the first ℓ rows correspond to a 3-cycle, (a_i, b_j, c_k) . Similarly, an entry *c* in the cell (a, b) after first ℓ rows correspond to a single edge from partite set 2 to partite set 3. Now, the entries in the first ℓ rows of the latin to a single edge from partite set 2 to partite set 3. Now, the entries in the first ℓ rows of the latin square L_m other than row 0 and column 0 can be partitioned into $L(M - 1)$ 2 × 2 subsquares of the form (*x*) as given in Definition [1](#page-10-1) together with L 2 \times 2 partial latin square of the form: Observe

that the edges corresponding to each of the 2×2 subsquares is isomorphic to $K_{2,2,2}$ which admits a (C_3, C_4, C_6) -decomposition by Lemma [2.](#page-2-1) Now consider each of the *L* partial latin squares together

with the corresponding entries of row 0 and column 0, that is:

The corresponding edges induce a graph isomorphic to $K_{3,3,3} - C_3$ $K_{3,3,3} - C_3$ $K_{3,3,3} - C_3$. By Lemma 3, the graph $K_{3,3,3} - C_3$ admits a (C_3, C_4, C_6) -decomposition for all admissible triplets. Observe that the edges corresponding to the entries in the following cells are not used so far in the decomposition

$$
\bigcup_{i=\ell+1}^m \{(0,i)\} \bigcup_{i=\ell+1}^m \{(i,0)\} \bigcup_{i=\ell+1}^m \{(i,1),(i,2),...,(i,m)\}.
$$

Now consider the edges corresponding to the entries of the cells

$$
\bigcup_{i=\ell+1}^m \{(0,i)\}\bigcup_{i=\ell+1}^m \{(i,0)\}\bigcup_{i=\ell+1}^m \{(i,i)\}\bigcup_{i=\ell+1}^m \{(i,i+1),(i+1,i)\}.
$$

That is, for some *k* with $\ell + 1 \leq k \leq m$, the entries will be of the form:

	$\mathbf{\Omega}$	$2k - 1$	2k
		2k	$2k - 1$
$2k-1$	2k	$2k-1$	0
2k	$2k - 1$		2k

Table 1. Partial Latin Square along with Row 0 and Column 0 Entries

The edges corresponding to the entries given in Table [1](#page-12-0) can be either decomposed into three 4-cycles $(a_0, b_{2k-1}, c_0, b_{2k})$, $(a_0, c_{2k-1}, b_{2k-1}, c_{2k})$ and $(b_0, c_{2k-1}, b_{2k}, c_{2k})$ or into two 6-cycles $(a_0, c_{2k-1}, b_{2k-1}, c_0, b_{2k}, c_{2k})$ and $(a_0, b_{2k-1}, c_{2k}, b_0, c_{2k-1}, b_{2k})$.
The remaining edges corresponding to the last $(m - \ell)$

The remaining edges, corresponding to the last $(m-\ell)$ rows are decomposed into required (C_4, C_6) by grouping three 2×2 subsquares(note that each 2×2 subsquare corresponds to a 4-cycle) such that these subsquares are from 4 columns of *L^m* and contains four symbols. For example, see Tables [2](#page-12-1) and [3.](#page-12-2)

$M-2$	$M-1$	$\mid 2M-1$	2M
$M-1$	$M-2$	2M	$2M - 1$
$2M-1$	2M		
2M	$2M-1$		

Table 2. Partial Latin Square 1

	$2M - 5$ $2M - 4$		
	$2M-4$ $2M-5$		
$2M - 5$ $2M - 4$ $M - 4$		$M-3$	
$2M-4$ $2M-5$ $M-3$		$M - 4$	

Table 3. Partial Latin Square 2

The edges corresponding to the entries as shown in Table [2](#page-12-1) can be decomposed into two 6 cycles $(b_1, c_{M-2}, b_2, c_{2M-1}, b_3, c_{2M})$ and $(b_1, c_{M-1}, b_2, c_{2M}, b_4, c_{2M-1})$. Similarly, the edges correspond-ing to the entries in Table [3](#page-12-2) can be decomposed into two 6-cycles $(b_1, c_{2M-4}, b_3, c_{M-3}, b_4, c_{2M-5})$ and (*b*², *^c*2*M*−⁴, *^b*⁴, *^cM*−⁴, *^b*³, *^c*2*M*−5).

Similarly, the edges corresponding to other groups with the above mentioned condition(4 column and 4 symbols) admits a (C_4, C_6) -decomposition for all admissible pairs.

Now it remains to show that when $m - \ell \equiv 2 \pmod{4}$, the last $m - \ell$ rows of L_m are partitioned into any of the form of Table [2](#page-12-1) or [3.](#page-12-2) First, we consider *M* is odd. The case when $m - \ell = 2$ has been dealt in Lemma [9.](#page-7-0) Consider $m - \ell = 6$, by the construction of the latin square L_m , there are 3($M - 1$) of

 2×2 subsquares each of which corresponds to a 4-cycle. The entries in the last 6 rows of the latin square is grouped as shown in Figure [1\(](#page-13-0)Note that a box in Figure [1](#page-13-0) correspond to a subsquare in the latin square). Hence, we are done with $m - \ell = 6$. Next, the case $m - \ell = 10$ is considered. By the

Figure 1. Partition of the Latin Square

construction of the latin square, there are $5(M-1)$ subsquares and 5 partial latin square in the last 10 rows of the latin square. Note that, each subsquare corresponds to a 4-cycle. Thus, there are 5(*M* − 1) 4-cycles available corresponding to the entries in the last 10 rows. In order to construct 6-cycles, we may trade certain set of three 4-cycles for two 6-cycles. Here, depending upon *m*, the following 3 cases arise. when $m \equiv 1 \pmod{6}$, then $q \ge 1$. Similarly, when $m \equiv 3 \pmod{6}$, then $q \ge 0$ and when $m \equiv 5 \pmod{6}$, then $q \ge 1$. For instance, consider the case $m - \ell \equiv 3 \pmod{6}$. The entries in these 10 rows are grouped as shown in Figure [2.](#page-13-1) It is easy to verify that each of the partial latin square shown in Figure [2](#page-13-1) either corresponds to three 4-cycles or two 6-cycles. Thus the edges corresponding to the entries in the last 10 rows of the latin square can be decomposed into (C_4, C_6) for all admissible pairs.

A similar approach can be used to partition the last 10 rows of L_m in the case $m \equiv 1 \pmod{6}$ and $m \equiv 5 \pmod{6}$. Thus, the case $m - \ell = 10$ is done.

Figure 2. Partition of the Last 10 Rows of the Latin Square

Next, we consider the case $m - \ell = 14$. These 14 rows are made up of $7(M - 1)$ subsquares where each subsquare corresponds to a 4-cycle and 7 partial latin square. Depending upon the value of *m*, the following 3 cases arise. when $m \equiv 1 \pmod{6}$, then $q \ge 2$. Similarly, when $m \equiv 3 \pmod{6}$, then *q* ≥ 0 and when $m \equiv 5 \pmod{6}$, then $q \ge 2$. For instance, consider the case $m - \ell \equiv 3 \pmod{6}$. The entries in these 14 rows can be partitioned into partial latin squares as shown in Figure [3.](#page-13-2) Observe

that each of the partial latin square considered in Figure [3](#page-13-2) corresponds to either three 4-cycles or two

6-cycles. Thus the edges corresponding to the last 14 rows of the latin square can be decomposed into copies of (C_4, C_6) for all admissible pairs.

The same approach can be used to partition the last 14 rows of the latin square in cases when $m \equiv 1 \pmod{6}$ and $m \equiv 5 \pmod{6}$.

In the case when $p = \ell m$, the edges corresponding to the last $m - \ell$ rows can be decomposed into (C_4, C_6) using edge trading as follows. The edges corresponding to the entries in the subsquare corresponds to 4-cycles and by grouping three 4-cycles with the above mentioned condition(4 columns and 4 entries) can be decomposed into two 6-cycles. The partial latin square together with corresponding column 0 entry corresponds to a 6-cycle. For some *k*, this partial latin square will be of the form:

	$\mathbf{\Omega}$	$2k-1$	$2k$
$2k - 1$	2k	$2k - 1$	$\overline{0}$
2k	$2k-1$	0	2k

Two such 6-cycles can be decomposed into three 4-cycles as follows. For instance, consider *^m*−ℓ ⁼ ⁶, then the last 6 rows of the latin square will be of the form; See Table [4.](#page-14-0)

				$\overline{4}$	\cdots	$2M - 5$	$2M - 4$		$2M-3$ $2M-2$ $2M-1$		2M
$2M - 4$	$M-2$	$M-1$	$2M-1$	2M	\cdots	$2M - 5$	$\sqrt{1-\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{$	$M-4$	$M-3$	$2M - 3$	$2M - 2$
$2M - 5$	$M-1$	$M-2$	2M	$2M - 1$. 11	~ 0	$2M-4$	$M-3$	$M-4$	$2M-2$	$2M - 3$
$2M-2$	$2M-1$	2M	$2M-5$	$2M - 4$	\cdots	$M-4$	$M-3$	$2M-3$	\blacksquare	$M-2$	$M-1$
$2M - 3$	2M	$2M - 1$		$2M-4$ $2M-5$		$M-3$	$M-4$	θ	$2M - 2$	$M-1$	$M-2$
2M	$2M - 5$	$2M-4$	$M-4$	$M-3$	\cdots	$2M - 3$	$2M-2$	$M-2$	$M-1$	$2M-1$	$\overline{0}$
$2M-1$	$2M - 4$		$1 \t2M-5$ $M-3$ $M-4$. 1		$2M-2$ 2M -3	$M-1$	$M-2$	Ω	2M

Table 4. Last 6 Rows of $m - \ell$ Rows

Consider the highlighted entries in the above Table [4](#page-14-0) which correspond to three 4-cycles and two 6-cycles. There are 24 edges corresponding to the considered entries and can be decomposed into 6 copies of C_4 , given by, $(b_0, c_{2M-5}, b_{2M-5}, c_{2M-3})$, $(b_{2M-2}, c_0, b_{2M-5}, c_{2M-2})$, $(b_0, c_{2M-4}, b_{2M-4}, c_{2M-2})$, $(b_{2M-4}, c_{M-4}, b_{2M-5}, c_{M-3}), (b_{2M-3}, c_0, b_{2M-4}, c_{2M-3})$ and $(b_{2M-2}, c_{M-4}, b_{2M-3}, c_{M-3}).$

It is straightforward to check that similar edge trading is possible to have all possible (C_4, C_6) corresponding to the edges of the entries in these $(m - \ell)$ rows.

When $m - \ell > 14$, $m - \ell = 6x + 10y + 14z$ where $x, y, z \ge 0$ and the entries in the last $m - \ell$ rows of the latin square can be partitioned as above and the corresponding edges can be decomposed into (C_4, C_6) . Thus, there exists a $\{C_3^p\}$ C_4^p, C_4^q $^{q}_{4}$, C_{ϵ}^{r} $K_{\ell,m,m}$ with $p \leq \ell m$ and $m - \ell \equiv 2 \pmod{4}$ when *M* is odd.

Similarly, when *M* is even, the entries in the last $m - \ell$ rows of the latin square can be grouped using the above mentioned conditions(4 columns and 4 entries).

Thus, there exists a ${C_3^p}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} $K_{\ell,m,m}$ with $p \leq \ell m$ and $m - \ell \equiv 2 \pmod{4}$. **Case 2.** ℓ is even.

In order to prove this case, we consider a latin square of order *m*,

The first ℓ rows of the above latin square can be partitioned into 2×2 subsquares each of which correspond to $K_{2,2,2}$ $K_{2,2,2}$ $K_{2,2,2}$. Lemma 2 guarantees the existence of 3,4 and 6 cycle decomposition of $K_{2,2,2}$ for all admissible triplets. By the structure of the latin square, the edges corresponding to each 2×2 subsquare in the remaining $(m - \ell)$ rows give rise to C_4 . As in previous case three 4 cycles can be used to construct two 6-cycles. Hence the proof of this lemma. used to construct two 6-cycles. Hence the proof of this lemma.

Theorem 5. *The graph* $K_{\ell,m,n}$ ($\ell \leq m \leq n$), *admits a* { C_3^p C_4^p, C_4^q C_4^q, C_6^r 6 }*-decomposition.*

Proof. The graph $K_{\ell,m,n} = K_{\ell,m,m} \bigoplus K_{\ell+m,n-m}$. By Lemmas [8,](#page-7-1) [9,](#page-7-0) [10,](#page-8-0) [12,](#page-15-0) there exists a 3, 4 and 6 cycle decomposition of K_n for all admissible triplets. Theorem 2 assures the existence of 4 and 6 cycle decomposition of $K_{\ell,m,m}$ for all admissible triplets. Theorem [2](#page-1-2) assures the existence of 4 and 6 cycle

decomposition of $K_{\ell+m,n-m}$ for all *m* and *n*, where $n - m > 2$. Hence we consider the case $n - m = 2$ to complete the proof of this theorem.

Case 1. $m - \ell \equiv 0 \pmod{4}$.

Consider the graph $K_{\ell,m,n}$ with $m - \ell \equiv 0 \pmod{4}$. In order to prove this result, it is enough to consider the graph $K_{\ell, \ell+4, \ell+6}$. The graph $K_{\ell, \ell+4, \ell+6}$ can be represented using a partial latin square of order ℓ + 6, as shown in Figure [4.](#page-15-1) The first $\ell \times (\ell + 4)$ entries form a latin rectangle. Entries outside

	$\mathbf{1}$	$\bf{2}$	3	4	~ 100 km s $^{-1}$	$\ell+3$	$\ell + 4$	$\ell + 5$	$\ell + 6$
1	$\mathbf{1}$	$\overline{2}$	3	4	~ 100	$\ell + 3$	$\ell + 4$	$\ell + 5$	$\ell + 6$
$\bf{2}$	$\boldsymbol{2}$	3	4	5	~ 100	$\ell + 4$	$\ell + 5$	$\ell + 6$	$\mathbf{1}$
		\bullet	\bullet	\bullet	~ 100		\blacksquare		
ℓ	ℓ	$\ell+1$	$\ell+2$	$\ell + 3$	\sim \sim \sim	$\ell-4$	$\ell-3$	$\ell-2$	$\ell-1$
$\ell+1$	$\ell+1$	$\ell+2$	$\ell + 3$	$\ell + 4$	~ 100	$\ell-3$	$\ell-2$		
$\ell+2$	$\ell+2$	$\ell + 3$	$\ell + 4$	$\ell + 5$	\sim \sim \sim	$\ell-2$	$\ell-1$		
$\ell + 3$	$\ell + 3$	$\ell + 4$	$\ell + 5$	$\ell + 6$	~ 100	$\ell-1$	ℓ		
$\ell + 4$	$\ell + 4$	$\ell + 5$	$\ell + 6$	1	\sim \sim \sim	ℓ	$\ell+1$		
$\ell + 5$	$\ell + 5$	$\ell + 6$	$\mathbf{1}$	2	~ 100	$\ell+1$	$\ell+2$		
$\ell + 6$	$\ell + 6$	$\mathbf{1}$	$\overline{2}$	3	\sim \sim \sim	$\ell+2$	$\ell + 3$		

Figure 4. Partial Latin Square Corresponding to *^K*ℓ,ℓ+4,ℓ+⁶

the latin rectangle are separated by double line. Each entry of column $\ell + 5$ and $\ell + 6$ denote an edge from partite set 1 to 3. Similarly, each entry of rows $\ell + 1$ to $\ell + 6$ denote an edge from partite set 2 to 3. That is, if the cell $(\ell, \ell + 5)$ contains the entry $\ell + 5$, then the corresponding edge is $a_{\ell}c_{\ell+5}$.

The edges corresponding to the latin rectangle can be decomposed into cycles of length 3, 4 and 6 for all admissible triplets depending upon *p*, *q* and *r* similar to Case 1 or Case 2 of Theorem [3.](#page-3-0)

Now, we consider the edges corresponding to the entries outside the latin rectangle (the remaining edges from partite set 1 to 3 and the edges from partite set 2 and 3). We decompose these edges into *C*⁴ using two different construction which are as follows:

Construction 1. In this type of construction, we use the edges between partite set 1 to 3 and partite set 2 to 3 to construct a *C*4. For example, consider the four underlined entries as shown in table below. These entries correspond to a C_4 namely $(a_1, c_{\ell+5}, b_1, c_{\ell+6})$ in $K_{\ell, \ell+4, \ell+6}$.

Construction 2. In this type of construction, we consider only the edges between the partite set 2 to

		$\ell + 5$	ℓ + 6
		$\ell + 5$	ℓ + 6
$\ell + 5$	$\ell + 5$		
ℓ + 6	ℓ + 6		

3 to construct a *C*4. For example, consider the four bold entries as shown in the table below. These entries also correspond to a C_4 namely, $(b_1, c_{\ell+3}, b_3, c_{\ell+4})$.

Thus by using these two types of construction, all the remaining edges can be decomposed into 4-cycles. Thus, we have a *C*4-decomposition of the remaining edges.

In order to obtain all possible 4 and 6-cycles, we use two different types of edge trading, say, Type 1 and Type 2.

Type 1. This edge trading is similar to Construction 1, where we use edges between partite set 1 to 3 and partite set 2 to 3. For instance, consider the entries in rectangular box shown in Table [4.](#page-15-1) These entries correspond to three 4-cycles $(a_1, c_{\ell+5}, b_1, c_{\ell+6}), (a_2, c_{\ell+6}, b_2, c_1)$ and $(b_2, c_{\ell+4}, b_4, c_{\ell+5})$ which can be decomposed into two copies of C_6 ($a_1, c_{\ell+5}, b_4, c_{\ell+4}, b_2, c_{\ell+6}$) and ($a_2, c_1, b_2, c_{\ell+5}, b_1, c_{\ell+6}$).

Type 2. This edge trading is similar to Construction 2, where we use only the edges between partite set 2 to 3. For instance, consider the bold entries in Table [4.](#page-15-1) These entries correspond to three 4 cycles $(b_1, c_{\ell+1}, b_{\ell+3}, c_{\ell+2})$, $(b_1, c_{\ell+3}, b_3, c_{\ell+4})$ and $(b_2, c_{\ell+2}, b_{\ell+4}, c_{\ell+3})$ which can then be decomposed into 2 copies of C_6 given by $(b_1, c_{\ell+1}, b_{\ell+3}, c_{\ell+2}, b_{\ell+4}, c_{\ell+3})$ and $(b_1, c_{\ell+2}, b_2, c_{\ell+3}, b_3, c_{\ell+4})$.

By using Type 1 and Type 2 edge trading, all the remaining edges can be decomposed into copies of (C_4, C_6) .

Thus, all the remaining edges corresponding to the entries outside the latin rectangle can be decomposed into copies of 4 and 6 cycles.

Thus the graph $K_{\ell,m,n}$ with $m - \ell \equiv 0 \pmod{4}$ admits a $\{C_3^p\}$ C_4^p, C_4^q $^{q}_{4}$, C_{6}^{r} $\binom{r}{6}$ -decomposition. **Case 2.** $m - \ell = 2 \pmod{4}$.

In this case, let $K_{\ell,m,m+2} = K_{\ell,m,m} \bigoplus K_{\ell+m,2}$. By Theorem [2,](#page-1-2) all the edges corresponding to $K_{\ell+m,2}$ can be decomposed into edge disjoint copies of *C*4. In order to obtain cycles of length 6, we use edge trading. Let ℓ be even. In order to prove this result, it is enough to consider the graph $K_{\ell, \ell+2,\ell+4}$. Then the graph $K_{\ell,\ell+2,\ell+2}$ along with the entries corresponding to the bipartite graph $K_{2\ell+2,2}$ can be represented using the partial latin square of order $\ell + 4$. See Figure [5.](#page-17-3)

Similar to Case 1, the first $\ell \times (\ell+2)$ entries form a latin rectangle. Entries outside the latin rectangle are separated by double line. Each entry outside the latin rectangle represent a single edge. The edges corresponding to the entries in the latin rectangle can be decomposed into copies of 3-cycles, 4-cycles and 6-cycles similar to Case 1 of Theorem [3.](#page-3-0)

By the structure of the latin square, the edges corresponding to the entries in rows $\ell + 1$ and $\ell + 2$ can be decomposed into 4-cycles. Now in order to obtain all possible 4 and 6-cycles, we use the following edge trading.

Here, we take $\frac{\ell+2}{2}C_4$ from $K_{\ell, \ell+2, \ell+2}$ (the edges corresponding to the entries in the last 2 rows of the latin square $K_{\ell, \ell+2, \ell+2}$) together with the edges of $K_{2\ell+2, 2}$ which can be then decomposed into 6cycles. For instance, consider the highlighted entries in Table [5.](#page-17-3) The edges corresponding to these entries gives rise to a C_6 given by $(b_1, c_{\ell+1}, b_2, c_{\ell+3}, a_1, c_{\ell+4})$. Similarly, the entries in the rectangular box correspond to a C_6 given by $(b_1, c_{\ell+2}, b_2, c_{\ell+4}, a_2, c_{\ell+3})$. By proceeding this way, the remaining

	1	$\overline{2}$	3	4	~ 100	$\ell+1$	$\ell+2$	$\ell + 3$	$\ell + 4$
$\mathbf{1}$	1	$\overline{2}$	3	4	~ 100			$\ell + 3$	$\ell + 4$
$\overline{2}$	$\boldsymbol{2}$	1	4	3	~ 100			$\ell+3$	$\ell + 4$
3	3	4	5	6	~ 100			$\ell + 3$	$\ell + 4$
4	4	3	6	5	\sim \sim \sim			$\ell + 3$	$\ell + 4$
\mathbf{r} \bullet \bullet		\bullet \sim \bullet	\bullet \bullet	٠ \bullet	\sim \sim \sim		٠ \bullet		
$\ell-1$	$\ell-1$	ℓ	$\ell+1$	$\ell+2$		$\ell-3$	$\ell-2$	$\ell + 3$	$\ell + 4$
ℓ	ℓ	$\ell-1$	$\ell+2$	$\ell+1$	\sim \sim \sim	$\ell-2$	$\ell-3$	$\ell + 3$	$\ell + 4$
$\ell+1$	$\ell+1$	$\ell+2$	$\ell + 3$	$\ell + 4$	\sim \sim \sim	$\ell-1$	ℓ		
$\ell+2$	$\ell+2$	$\ell+1$	$\ell + 4$	$\ell + 3$	~ 100 km $^{-1}$	ℓ	$\ell-1$		
$\ell + 3$	$\ell + 3$	$\ell + 3$	$\ell+3$	$\ell+3$	~ 100 km $^{-1}$	$\ell + 3$	$\ell + 3$		
$\ell + 4$	$\ell + 4$	$\ell + 4$	$\ell + 4$	$\ell + 4$	~ 100	$\ell + 4$	$\ell + 4$		

Figure 5. The Latin Square Corresponding to $K_{\ell,m,m} \bigoplus K_{\ell+m,n-m}$

edges can be decomposed into copies of C_6 .

When ℓ is odd, the complete tripartite graph $K_{\ell,m,n}$ can be represented using a partial latin square similar to the even case where the edges corresponding to the entries in the latin rectangle can be decomposed into 3, 4 and 6 cycles similar to Case 2 of Theorem [3.](#page-3-0) The remaining edges corresponding to the entries outside the latin rectangle can be decomposed into 4 and 6 cycles using the above edge trading technique.

Thus the graph $K_{\ell,m,n}$ ($\ell \leq m \leq n$) can be decomposed into *p* copies of *C*₃, *q* copies of *C*₄ and *r* ones of *C*₆ for all admissible triplets (n, a, r) . copies of C_6 for all admissible triplets (p, q, r) .

Theorem [1](#page-1-0). The complete tripartite graph $K_{\ell,m,n}$ ($\ell \leq m \leq n$) admits a { C_3^p C_3^q, C_4^q C^q _{*r*}, C^r _{*f*} $\binom{r}{6}$ -decomposition if and only if the partite sets are of same parity and $3p + 4q + 6r = \ell m + mn + \ell n$.

Proof. The proof follows from Lemma [7,](#page-7-2) Theorem [3,](#page-3-0) Theorem [4](#page-6-0) and Theorem [5.](#page-17-3) □

4. Conclusion

In this paper, the necessary condition for the existence of ${C_3^p}$ C_4^p , C_4^q
ant $\overline{C_4}$ $\frac{q}{4}$, C_ℓ^r
This $\binom{r}{6}$ -decomposition of complete tripartite graph $K_{\ell,m,n}$ ($\ell \leq m \leq n$) has been proved to be sufficient. This answers the problem posted by Billington in the affirmative. The problem of ${C_3^p}$ C_4^p, C_4^q C_4^q, C_6^r K_n^r -decomposition of $K_m \circ \bar{K}_n$ is still open for $m > 3$.

Declaration of Competing Interest

There is no conflict of interest related to this work.

References

- 1. Balakrishnan, R. and Ranganathan, K., 2012. *A Textbook of Graph Theory*. Springer Science and Business Media.
- 2. West, D. B., 2001. *Introduction to Graph Theory*. Prentice Hall.
- 3. Ganesamurthy, S. and Paulraja, P., 2019. Decompositions of complete tripartite graphs into cycles of lengths 3 and 6. *Australasian Journal of Combinatorics, 73*(1), pp.220-241.
- 4. Cavenagh, N. J. and Billington, E. J., 2000. On decomposing complete tripartite graphs into 5 cycles. *Australasian Journal of Combinatorics, 22*, pp.41-62.
- 5. Bryant, D., 2007. Cycle decompositions of complete graphs. In *London Mathematical Society Lecture Note Series* (Vol. 346, pp.67-97).
- 6. Paulraja, P. and Srimathi, R., 2020. Decompositions of complete equipartite graphs into cycles of lengths 3 and 6. *Australasian Journal of Combinatorics, 78*(2), pp.297-313.
- 7. Paulraja, P. and Srimathi, R., 2021. Decomposition of the tensor product of complete graphs into cycles of lengths 3 and 6. *Discussiones Mathematicae Graph Theory, 41*(1), pp.249-266.
- 8. Ganesamurthy, S. and Paulraja, P., 2021. Decompositions of some classes of dense graphs into cycles of lengths 4 and 8. *Graphs and Combinatorics, 37*(4), pp.1291-1310.
- 9. Ezhilarasi, A.P. and Muthusamy, A., 2023. Decomposition of complete equipartite graphs into paths and cycles of length 2p. *Discrete Mathematics, 346*(1), p.113160.
- 10. Alipour, S., Mahmoodian, E. S. and Mollaahmadi, E., 2012. On decomposing complete tripartite graphs into 5-cycles. *Australasian Journal of Combinatorics, 54*, pp.289-301.
- 11. Billington, E. J. and Hoffman, D. G., 2003. Decomposition of complete tripartite graphs into gregarious 4-cycles. *Discrete Mathematics, 261*(1-3), pp.87-111.
- 12. Billington, E. J. and Cavenagh, N. J., 2007. Decomposing complete tripartite graphs into closed trails of arbitrary lengths. *Czechoslovak Mathematical Journal, 57*(132), pp.523-551.
- 13. Billington, E. J. and Cavenagh, N. J., 2011. Decomposing complete tripartite graphs into 5-cycles when the partite sets have similar size. *Aequationes Mathematicae, 82*(3), pp.277-289.
- 14. Cavenagh, N. J., 1998. Decompositions of complete tripartite graphs into k-cycles. *Australasian Journal of Combinatorics, 18*, pp.193-200.
- 15. Cavenagh, N. J., 2002. Further decompositions of complete tripartite graphs into 5-cycles. *Discrete Mathematics, 256*(1-2), pp.55-81.
- 16. Mahmoodian, E. S. and Mirzakhani, M., 1995. Decomposition of complete tripartite graphs into 5-cycles. In *Combinatorics Advances* (pp. 235-241).
- 17. Billington, E. J., 1999. Decomposing complete tripartite graphs into cycles of lengths 3 and 4. *Discrete Mathematics, 197*/*198*, pp.123-135.
- 18. Chou, C.-C., Fu, C.-M. and Huang, W.-C., 1999. Decomposition of *^K^m*,*ⁿ* into short cycles. *Discrete Mathematics, 197*, pp.195-203.
- 19. Lindner, C. C. and Rodger, C. A., 2017. *Design Theory*. CRC Press.

© 2024 the Author(s), licensee Combinatorial Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://[creativecommons.org](http://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)