
Ars Combinatoria, 160: 73–83
DOI:10.61091/ars-160-08
http://www.combinatorialpress.com/ars
Received 15 March 2020, Accepted 17 September 2020, Published 30 September 2024

Article

Decomposition of the λ-Fold Complete Equipartite Graph into Unicyclic
Graphs of Order Five

T. Sivakaran1,*

1 Department of Mathematics, Sri Sai Ram Engineering College, Sai Leo Nagar, West Tambaram
600 044, India

* Correspondence: shivaganesh1431991@gmail.com

Abstract: For a graph G and a subgraph H of a graph G, an H-decomposition of the graph G is a
partition of the edge set of G into subsets Ei, 1 ≤ i ≤ k, such that each Ei induces a graph isomorphic to
H. In this paper, it is proved that every simple connected unicyclic graph of order five decomposes the
λ-fold complete equipartite graph whenever the necessary conditions are satisfied. This generalizes a
result of Huang, Utilitas Math. 97 (2015), 109–117.
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1. Introduction

For a graph G and a positive integer λ, G(λ) is the graph obtained from G by replacing each
of its edges by λ parallel edges. Let Ck denote the cycle of length k. The complete graph on m
vertices is denoted by Km and its complement is denoted by Km. If H1, H2, . . . , Hk are edge-disjoint
subgraphs of a graph G such that E(G) =

⋃k
i= 1 E(Hi), then H1,H2, . . . ,Hk decompose G; we write it

as G = H1 ⊕ H2 ⊕ . . . ⊕ Hk. If each Hi � H, then G has an H-decomposition and we denote it by
H |G. A graph G has a Ck-decomposition or a k-cycle decomposition whenever Ck |G.

For two graphs G and H their wreath product, denoted by G ◦ H, has vertex set V(G) × V(H)
in which two vertices (g1, h1) and (g2, h2) are adjacent whenever g1g2 ∈ E(G) or, g1 = g2 and h1h2 ∈

E(H); see Figure 1. Clearly, if G = H1 ⊕ H2 ⊕ . . . ⊕ Hk, then G ◦ Kn = H1 ◦ Kn ⊕ H2 ◦ Kn ⊕ . . . ⊕

Hk ◦ Kn. It can be observed that Km ◦ Kn is isomorphic to the complete m-partite graph in which
each partite set has n vertices. For graphs G and H, and x ∈ V(G), x × V(H) = {(x, v) | v ∈ V(H)}
is called the layer of vertices of G ◦ H corresponding to x.

A latin square L of order n is an n × n array, each cell of which contains exactly one of the symbols
in {0, 1, 2, . . . , n − 1}, such that each row and each column of the array contains each of the symbols
in {0, 1, 2, . . . , n − 1} exactly once, see [1]. A quasigroup of order n is a pair (Q, ∗), where Q is a set
of size n and ∗ is a binary operation on Q such that for every pair of elements a, b ∈ Q, the equations
a ∗ x = b and y ∗ a = b have unique solutions. We consider a quasigroup is just a latin square with a
headline and a sideline, see [1].

Let G be a bipartite graph with bipartition (X, Y), where X = {x0, x1,

x2, . . . , xn−1}, Y = {y0, y1, y2, . . . , yn−1}; if G contains the set of edges Fi(X, Y) = {x jy j+i | 0 ≤
j ≤ n − 1, where addition in the subscript is taken modulo n}, 0 ≤ i ≤ n − 1, then G has the 1-factor
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Figure 1. The Graph P3 ◦ K4.

of distance i from X to Y. It is important to note that for 0 ≤ i ≤ n − 1, Fi(X, Y) = Fn−i(Y, X). An
edge e ∈ Fi(X,Y) is an edge of distance i from X to Y or it is an edge of distance n − i from Y to X.
Clearly, if G = Kn, n, then E(G) =

⋃n−1
i= 0 Fi(X, Y).

We denote the graphs of Figure 2 by Hi, 1 ≤ i ≤ 4 and C5. For all i such that 1 ≤ i ≤ 4,
Hi has the vertex set {a, b, c, d, e}. The graph H1 with the edge set {ab, bc, ca, bd, ce} is denoted by
((a, b, c); bd, ce) or (C; bd, ce), where C denotes the cycle (a, b, c); the graph H2 with the edge set
{ab, bc, ca, cd, ce} is denoted by ((a, b, c); cd, ce) or (C; cd, ce), where C denotes the cycle (a, b, c); the
graph H3 with the edge set {ab, bc, ca, cd, de} is denoted by ((a, b, c); cd, de) or (C; cd, de),where C de-
notes the cycle (a, b, c); the graph H4 with the edge set {ab, bc, cd, da, de} is denoted by ((a, b, c, d); de)
or (C; de), where C denotes the cycle (a, b, c, d) and the cycle C5 with the edge set {ab, bc, cd, de, ea}
is denoted by (a, b, c, d, e).

In the future, for 1 ≤ i ≤ 4, Hi, stands for the graphs in Figure 2.

Figure 2

Decomposition of a graph into a specified subgraph is an interesting area of research in graph
theory. In particular Kk-decomposition of Kn (BIBD) has received much attention, see [2]. The
K3-design of order n is known as the Steiner triple system. Decompositions of Kn into complete
subgraphs, complete bipartite graphs, complete equipartite graphs, linear forests have been studied,
see [3–6]. Decomposition of (Km ◦ Kn)(λ) (GDD) into K3 (resp. K4) is studied in [7, 8]. Cycle
decompositions of the graphs Kn(λ), Kn − F, where F is a perfect matching of Kn, Kn,m(λ) and (Km ◦

Kn)(λ) are considered in [9–13].
Bermond et al. [14] studied the decompositions of complete graphs into isomorphic subgraphs with

five vertices. Further, Bermond and Schönheim [15] obtained G-decompositions of Kn, where G has
four vertices or less. Moreover, in [16], Huang obtained decompositions of the complete equipartite
graphs into connected unicyclic graphs of size five. Here we obtain decompositions of the λ-fold
complete equipartite graphs into connected unicyclic graphs of size five, whenever the necessary
conditions are satisfied. This generalizes a result of Huang [16].

The main result of this paper is the following:

Theorem 1. If m and n are at least 3, then for 1 ≤ i ≤ 4, Hi | (Km ◦ Kn)(λ) if and only if 5 | λnm(m−1).
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2. Decompositions of λ-Fold Complete Equipartite Graph Into Unicylic Graphs

In this section, we prove that every simple connected unicyclic graph on five vertices decomposes
the graph (Km ◦ Kn)(λ), whenever the necessary conditions are satisfied.

Lemma 1. If n ≥ 3 and Hi |G, 1 ≤ i ≤ 3, then Hi decomposes the graph G ◦ Kn.

Proof. Consider the graph G ◦ Kn = (Hi ⊕ Hi ⊕· · ·⊕ Hi) ◦ Kn = Hi ◦ Kn ⊕ Hi ◦ Kn ⊕ · · · ⊕ Hi ◦ Kn.

We need to prove that for all i such that 1 ≤ i ≤ 3, Hi |Hi ◦ Kn. Let (L, ∗) be a quasigroup of order n,
where L = {0, 1, 2, . . . , n − 1}. Let the vertices of Hi be as shown in Figure 2 and let the vertex set of
Kn be {0, 1, 2, . . . , n−1}. Let {(a, j); 0 ≤ j ≤ n−1} be the layer of Hi ◦ Kn corresponding to the vertex
a in V(Hi). Then the graphs in

{(
((a, ℓ), (b, k), (c, ℓ ∗ k)); (b, k)(d, ℓ), (c, ℓ ∗ k)(e, ℓ)

)
| ∀ ℓ, k ∈ L

}
, each

one of them is isomorphic to H1, decompose the graph H1 ◦ Kn, the graphs in
{(

((a, ℓ), (b, k), (c, ℓ ∗
k)); (c, ℓ ∗ k)(d, ℓ), (c, ℓ ∗ k)(e, ℓ)

)
| ∀ ℓ, k ∈ L

}
, each one of them is isomorphic to H2, decompose the

graph H2 ◦ Kn and the graphs in
{(

((a, ℓ), (b, k), (c, ℓ ∗ k)); (c, ℓ ∗ k)(d, ℓ), (d, ℓ)(e, k)
)
| ∀ ℓ, k ∈ L

}
, each

one of them is isomorphic to H3, decompose the graph H3 ◦ Kn. □

Lemma 2. If n ≥ 2 and H4 |G, then H4 decomposes the graph G ◦ Kn.

Proof. Consider the graph G ◦ Kn = (H4 ⊕ H4 ⊕· · ·⊕ H4) ◦ Kn = H4 ◦ Kn ⊕ H4 ◦ Kn ⊕ . . . ⊕ H4 ◦ Kn.

We need to prove that H4 |H4 ◦ Kn. Let (L, ∗) be a quasigroup of order n,where L = {0, 1, 2, . . . , n−1}.
Let the vertices of H4 be as shown in Figure 2 and let the vertex set of Kn be {0, 1, 2, . . . , n − 1}. Let
{(a, j); 0 ≤ j ≤ n − 1} be the layer of H4 ◦ Kn corresponding to the vertex a in V(H4). Then the
graphs in

{(
((a, ℓ), (b, k), (c, ℓ), (d, k)); (d, k)(e, ℓ ∗ k)

)
| ∀ ℓ, k ∈ L

}
, each one of them is isomorphic to

H4, decompose the graph H4 ◦ Kn. □

Lemma 3. K4 \ {e} |K4(5), where e is an edge of K4.

Proof. Let V(K4) = {a, b, c, d}. A K4 \ {e} decomposition of K4(5) is given by the edge
induced subgraphs ⟨bc, cd, da, ac, bd⟩, ⟨ab, cd, da, ac, bd⟩, ⟨ab, bc, da, ac, bd⟩, ⟨ab, bc, cd, ac, bd⟩,
⟨ab, bc, cd, da, bd⟩, ⟨ab, bc, cd, da, ac⟩. □

Lemma 4. For i ∈ {1, 3, 4}, Hi decomposes the graph (K4 ◦ Kn)(5).

Proof. Let V(K4) = {a, b, c, d} and let V(Kn) = {0, 1, 2, . . . , n − 1}. By Lemma 3, K4 \ {e} |K4(5);
hence it is enough to prove that for i ∈ {1, 3, 4}, Hi | (K4 \ {e}) ◦ Kn. Let the edge e = ad. Let
(L, ∗) be a quasigroup of order n, where L = {0, 1, 2, . . . , n − 1}. We have V((K4 \ {e}) ◦ Kn) =
n−1⋃
j=0

{(a, j), (b, j), (c, j), (d, j)}. Then the graphs in
{(

((a, ℓ), (b, k), (c, ℓ ∗ k)); (b, k)(d, ℓ), (c, ℓ ∗ k)(d, ℓ +

1)
)
| ∀ ℓ, k ∈ L

}
, each one of them is isomorphic to H1, decompose the graph (K4 \ {e}) ◦ Kn, the graphs

in
{(

((a, ℓ), (b, k), (c, ℓ∗k)); (c, ℓ∗k)(d, ℓ), (d, ℓ)(b, k+1)
)
| ∀ ℓ, k ∈ L

}
, each one of them is isomorphic to

H3, decompose the graph (K4 \ {e}) ◦ Kn and the graphs in
{(

((a, ℓ), (b, k), (d, ℓ∗k), (c, k)); (c, k)(b, k+
1)
)
| ∀ ℓ, k ∈ L

}
, each one of them is isomorphic to H4, decompose the graph (K4 \ {e}) ◦ Kn. □

For the rest of the paper, we fix the layers of the graph G ◦ Km as follows: let V(G) =
{a, b, c, d, . . . ,w, x} and let V(Km) = {0, 1, 2, . . . ,m − 1}. Then V(G ◦ Km) = V(G) × V(Km) =
{a × V(Km)} ∪ {b × V(Km)} ∪ {c × V(Km)} ∪ · · · ∪ {x × V(Km)}. For convenience, we write A =
a × V(Km) = {(a, 0), (a, 1), (a, 2), . . . , (a,m − 1)} = {a0, a1, a2, . . . , am−1}, where for all i such that
0 ≤ i ≤ m − 1, ai, denotes the vertex (a, i). Similarly, B,C, . . . , X are defined. A, B,C, . . . , X are the
layers of G ◦ Km, see Figure 1.

Lemma 5. For n ≥ 2, the graph (K4 ◦ Kn)(5) has an H2-decomposition.
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Proof. We complete the proof in two cases.
Case 1. n is odd.

Let V(K4) = {a, b, c, d} and let V(Kn) = {0, 1, 2, . . . , n−1}. By Lemma 3, K4 \ {e} |K4(5) and hence
it is enough to to prove that H2 | (K4 \ {e}) ◦ Kn. Let the edge e = ad. Let σ be the cyclic permutation
(0, 1, 2, 3, . . . , n − 1) on {0, 1, 2, . . . , n − 1}.
Subcase 1.1. n = 3.

Let H1
2 = ((a0, b0, c0); c0a2, c0d1), H2

2 = ((a0, b1, c2); b1a2, b1d0) and H3
2 = ((b0, c2, d1); d1c1, d1b1)

be three edge-disjoint copies of H2 in (K4 \ {e}) ◦ K3. Then the graphs in
{
σ0(H j

2) =
H j

2, σ
1(H j

2), σ2(H j
2) | 1 ≤ j ≤ 3

}
, each one of them is isomorphic to H2, decompose the graph

(K4 \ {e}) ◦ K3, where σi acts on the subscripts of the vertices of H j
2.

Subcase 1.2. n ≥ 5.
For all i such that 0 ≤ i ≤ (n − 3)/2, let Hi

2 = ((a0, bi, c2i); c2ian−1, c2id3i+1); for i = (n − 1)/2, let
Hi

2 = ((a0, b n−1
2
, cn−1); b n−1

2
a n+1

2
, b n−1

2
d n−3

2
); for i = (n + 1)/2, let Hi

2 = ((b0, c n+1
2
, d1); d1c1, d1b1) and for

all i such that (n + 3)/2 ≤ i ≤ n − 1, let Hi
2 = ((b0, ci, d2i); b0ai− n−1

2
, b0d2i−n−1), where the subscripts

are taken modulo n, see Figure 3. Then the graphs in
{
σi(H j

2) | 0 ≤ i, j ≤ n − 1
}
, each one of them is

isomorphic to H2, decompose the graph (K4 \ {e}) ◦ Kn. The ( base ) graphs Hi
2, 0 ≤ i ≤ n − 1 are

described in Figure 3.

Figure 3. The Labels on the Edges of the Graphs Denote the Distances of the Respective
Edges in the Bipartite Subgraphs ⟨A ∪ B⟩, ⟨B ∪ C⟩, ⟨A ∪ C⟩, ⟨B ∪ D⟩ and ⟨C ∪ D⟩ of
(K4 \ {e}) ◦ Kn; in Each of the Graphs, the Distances Are Computed from A to B, B to C,
A to C, B to D and C to D. From the Union of These Graphs, It Is Clear That the Edges of
Distance i, 0 ≤ i ≤ n − 1, from A to B, B to C, A to C, B to D and C to D are all Present
Exactly Once. Consequently, When We Apply the Permutation σi, to the Above Bipartite
Graphs Yield a Required Decomposition

Case 2. n is even.
The graph (K4 ◦ Kn)(5) =

(
(K4 ◦ K2) ◦ K n

2

)
(5) � (K4 ◦ K2)(5) ◦ K n

2
. We shall prove

that H2 | (K4 ◦ K2)(5) and apply Lemma 1. Let V(K4) = {a, b, c, d} and let V(K2) = {0, 1}. Let
σ = (0, 1) be a permutation on {0, 1}. Let H1

2 = ((a0, b0, c1); b0c0, b0d1), H2
2 = ((b0, c0, d1); b0a0, b0a1),

H3
2 = ((a1, c0, d0); d0a0, d0b1), H4

2 = ((a0, b1, d0); a0c1, a0d1), H5
2 = ((a0, c0, d1); d1a1, d1b1),

H6
2 = ((a1, b0, d0); a1c0, a1d1), H7

2 = ((a1, b0, c1); c1a0, c1d0), H8
2 = ((b0, c1, d0); c1a1, c1d1), H9

2 =

((b1, c0, d1); b1a1, b1c1), H10
2 = ((b0, c0, d0); d0a1, d0b1), H11

2 = ((a0, b0, c0); c0b1, c0d0) and H12
2 =
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((a0, c0, d0); a0b0, a0b1) be twelve edge-disjoint copies of H2 in (K4 ◦ K2)(5). Then the graphs in{
σ0(H j

2) = H j
2, σ

1(H j
2) | 1 ≤ j ≤ 12

}
, each one of them is isomorphic to H2, decompose the graph

(K4 ◦ K2)(5). □

Lemma 6. For n ≥ 2, the graph (K3 ◦ Kn)(5) has an H1-decomposition.

Proof. We complete the proof in two cases.
Case 1. n is odd.

Let V(K3) = {a, b, c} and let V(Kn) = {0, 1, 2, 3, . . . , n − 1}. Let σ = (0, 1, 2, 3, . . . , n − 1) be
a permutation on {0, 1, 2, 3, . . . , n − 1}. For 0 ≤ i ≤ n − 1, let Hi

1 = ((a0, bi, c2i); a0bi+1, bian−2);
for 0 ≤ i ≤ n − 1, let Hn+i

1 = ((a0, bi, c2i); bic2i+1, c2ib(n+i)−2) and for 0 ≤ i ≤ n − 1, let H2n+i
1 =

((a0, bi, c2i); a0c2i+2, c2ian−1), where the subscripts are taken modulo n, see Figure 4. Then the graphs
in
{
σi(H j

1) | 0 ≤ i ≤ n−1, 0 ≤ j ≤ 3n−1
}
, each one of them is isomorphic to H1, decompose the graph

(K3 ◦ Kn)(5), where σi acts on the subscripts of the vertices of H j
1. The ( base ) graphs Hi

1, totally 3n
in number, with the distances of their edges are shown in the graph of Figure 4.

Figure 4. In the Union of the Above Graphs Each Edge of Distance i, 0 ≤ i ≤ n − 1, from
A to B, B to C and A to C Occurs Exactly Five Times

Case 2. n is even.
The graph (K3 ◦ Kn)(5) =

(
(K3 ◦ K2) ◦ K n

2

)
(5) � (K3 ◦ K2)(5) ◦ K n

2
. We shall prove

that H1 | (K3 ◦ K2)(5) and apply Lemma 1. Let V(K3) = {a, b, c} and let V(K2) = {0, 1}. Let
σ = (0, 1) be a permutation on {0, 1}. Let H1

1 = ((a0, b0, c1); b0c0, a0b1), H2
1 = ((a1, b0, c0); c0a0, b0c1),

H3
1 = ((a0, b1, c0); a0c1, b1a1), H4

1 = ((a0, b0, c0); b0a1, a0b1), H5
1 = ((a0, b0, c0); c0b1, b0c1) and

H6
1 = ((a0, b0, c0); a0c1, c0a1) be six edge-disjoint copies of H1 in (K3 ◦ K2)(5). Then the graphs

in
{
σi(H j

1) | 0 ≤ i ≤ 1, 1 ≤ j ≤ 6
}
, each one of them is isomorphic to H1, decompose the graph

(K3 ◦ K2)(5). □

Lemma 7. For n ≥ 2, the graph (K3 ◦ Kn)(5) has an H2-decomposition.

Proof. We complete the proof in two cases.
Case 1. n is odd.

Let V(K3) = {a, b, c} and let V(Kn) = {0, 1, 2, 3, . . . , n − 1}. Let σ = (0, 1, 2, 3, . . . , n − 1) be a
permutation on {0, 1, 2, 3, . . . , n − 1}. For 0 ≤ i ≤ n − 1, let Hi

2 = ((a0, bi, c2i); a0bi+1, a0bi+2); for
0 ≤ i ≤ n − 1, let Hn+i

2 = ((a0, bi, c2i); bic2i+1, bic2i+2) and for 0 ≤ i ≤ n − 1, let H2n+i
2 = ((a0, bi,

c2i); c2ian−2, c2ian−1), where the subscripts are taken modulo n, see Figure 5. Then the graphs in{
σi(H j

2) | 0 ≤ i ≤ n − 1, 0 ≤ j ≤ 3n − 1
}
, each one of them is isomorphic to H2, decompose the

graph (K3 ◦ Kn)(5), where σi acts on the subscripts of the vertices of H j
2. The ( base ) graphs Hi

2,

totally 3n in number, with the distances of their edges are shown in the graph of Figure 5.
Case 2. n is even.

The graph (K3 ◦ Kn)(5) =
(
(K3 ◦ K2) ◦ K n

2

)
(5) � (K3 ◦ K2)(5) ◦ K n

2
. We shall prove

that H2 | (K3 ◦ K2)(5) and apply Lemma 1. Let V(K3) = {a, b, c} and let V(K2) = {0, 1}. Let
σ = (0, 1) be a permutation on {0, 1}. Let H1

2 = ((a0, b0, c1); a0c0, a0b1), H2
2 = ((a1, b0, c0); b0a0, b0c1),

H3
2 = ((a0, b1, c0); c0b0, c0a1), H4

2 = ((a0, b0, c0); a0b1, a0c1), H5
2 = ((a0, b0, c0); b0a1, b0c1) and
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Figure 5. In the Union of the Above Graphs Each Edge of Distance i, 0 ≤ i ≤ n − 1, from
A to B, B to C and A to C Occurs Exactly Five Times

H6
2 = ((a0, b0, c0); c0a1, c0b1) be six edge-disjoint copies of H2 in (K3 ◦ K2)(5). Then the graphs

in
{
σi(H j

2) | 0 ≤ i ≤ 1, 1 ≤ j ≤ 6
}
, each one of them is isomorphic to H2, decompose the graph

(K3 ◦ K2)(5). □

Lemma 8. For n ≥ 2, the graph (K3 ◦ Kn)(5) has an H3-decomposition.

Proof. We complete the proof in two cases.
Case 1. n is odd.

Let V(K3) = {a, b, c} and let V(Kn) = {0, 1, 2, 3, . . . , n − 1}. Let σ = (0, 1, 2, 3, . . . , n − 1) be
a permutation on {0, 1, 2, 3, . . . , n − 1}. For 0 ≤ i ≤ n − 1, let Hi

3 = ((a0, bi, c2i); a0bi+1, bi+1an−1);
for 0 ≤ i ≤ n − 1, let Hn+i

3 = ((a0, bi, c2i); bic2i+1, c2i+1bi−1) and for 0 ≤ i ≤ n − 1, let H2n+i
3 =

((a0, bi, c2i); c2ian−1, an−1c2i+1), where the subscripts are taken modulo n, see Figure 6. Then the graphs
in
{
σi(H j

3) | 0 ≤ i ≤ n−1, 0 ≤ j ≤ 3n−1
}
, each one of them is isomorphic to H3, decompose the graph

(K3 ◦ Kn)(5), where σi acts on the subscripts of the vertices of H j
3. The ( base ) graphs Hi

3, totally 3n
in number, with the distances of their edges are shown in the graph of Figure 6.

Figure 6. In the Union of the Above Graphs Each Edge of Distance i, 0 ≤ i ≤ n − 1, from
A to B, B to C and A to C Occurs Exactly Five Times

Case 2. n is even.
The graph (K3 ◦ Kn)(5) =

(
(K3 ◦ K2) ◦ K n

2

)
(5) � (K3 ◦ K2)(5) ◦ K n

2
.

We shall prove that H3 | (K3 ◦ K2)(5) and apply Lemma 1. Let V(K3) = {a, b, c}
and let V(K2) = {0, 1}. Let σ = (0, 1) be a permutation on {0, 1}. Let H1

3 =

((a0, b0, c1); a0b1, b1c0), H2
3 = ((a1, b0, c0); b0c1, c1a0), H3

3 = ((a0, b1, c0); c0a1, a1b0), H4
3 =

((a0, b0, c0); a0b1, b1a1), H5
3 = ((a0, b0, c0); b0c1, c1b1) and H4

3 = ((a0, b0, c0); c0a1, a1c1) be six
edge-disjoint copies of H3 in (K3 ◦ K2)(5). Then the graphs in

{
σi(H j

3) | 0 ≤ i ≤ 1,
1 ≤ j ≤ 6

}
, each one of them is isomorphic to H3, decompose the graph (K3 ◦ K2)(5). □

Lemma 9. For n ≥ 2, the graph (K3 ◦ Kn)(5) has an H4-decomposition.
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Proof. We complete the proof in two cases.
Case 1. n is odd.

Let V(K3) = {a, b, c} and let V(Kn) = {0, 1, 2, 3, . . . , n − 1}.
Let σ = (0, 1, 2, 3, . . . , n − 1) be a permutation on {0, 1, 2, 3, . . . , n − 1}.

Subcase 1.1. n ≡ 3 (mod 4).
For all i such that 2 ≤ i ≤ (n − 1)/2, let H6(i−2)

4 = ((bi, c0, bn−i, a0); a0bx), H6(i−2)+1
4 =

((bi, c0, bn−i, a0); a0by), H
6(i−2)+2
4 = ((cn−i, a0, ci, b0); b0cx), H

6(i−2)+3
4 = ((cn−i, a0, ci, b0); b0cy), H

6(i−2)+4
4 =

((an−i, b0, ai, c0); c0ax) and H6(i−2)+5
4 = ((an−i, b0, ai, c0); c0ay), where

x =

i + 1 if i , (n − 1)/2,
2 if i = (n − 1)/2.

, y =

n − i − 1 if i , (n − 1)/2,
n − 2 if i = (n − 1)/2.

and the subscripts are taken modulo n; let H3n−9
4 = ((a0, b1, a1, b0); b0c1), H3n−8

4 =

((a0, b1, a1, b0); b0cn−1), H3n−7
4 = ((b0, c1, b1, c0); c0a1), H3n−6

4 = ((b0, c1, b1, c0); c0an−1), H3n−5
4 =

((c0, a1, c1, a0); a0b1), H3n−4
4 = ((c0, a1, c1, a0); a0bn−1), H3n−3

4 = ((b1, a0, bn−1, c0); c0b0), H3n−2
4 =

((b0, cn−1, a0, c1); c1a1) and H3n−1
4 = ((a1, c0, an−1, b0); b0a0). Then the graphs in

{
σi(H j

4) | 0 ≤ i ≤
n − 1, 0 ≤ j ≤ 3n − 1

}
, each one of them is isomorphic to H4, decompose the graph (K3 ◦ Kn)(5),

where σi acts on the subscripts of the vertices of H j
4.

The ( base ) graphs Hi
4, totally 3n in number, with the distances of their edges are shown in the

graphs of Figure 7 and Figure 8 of the appendix. In the union of the graphs of Figure 8, the edges
with distances in {2, 3, 4, . . . , n − 3, n − 2} from A to B, B to C and A to C appear exactly five times.
In the union of the graphs of Figure 7, the edges with distances 0, 1 and n− 1 from A to B, B to C and
A to C appear exactly five times.
Subcase 1.2. n ≡ 1 (mod 4).

For all i such that 3 ≤ i ≤ (n − 1)/2, let H6(i−3)
4 = ((bi, c0, bn−i, a0); a0bx), H6(i−3)+1

4 =

((bi, c0, bn−i, a0); a0by), H
6(i−3)+2
4 = ((cn−i, a0, ci, b0); b0cx), H

6(i−3)+3
4 = ((cn−i, a0, ci, b0); b0cy), H

6(i−3)+4
4 =

((an−i, b0, ai, c0); c0ax) and H6(i−3)+5
4 = ((an−i, b0, ai, c0); c0ay), where

x =

i + 1 if i , (n − 1)/2,
3 if i = (n − 1)/2.

, y =

n − i − 1 if i , (n − 1)/2,
n − 3 if i = (n − 1)/2.

and the subscripts are taken modulo n; let H3n−15
4 = ((b0, a1, b1, a0); a0b2), H3n−14

4 =

((b0, a1, b1, a0); a0bn−2), H3n−13
4 = ((c0, b1, c1, b0); b0c2), H3n−12

4 = ((c0, b1, c1, b0); b0cn−2), H3n−11
4 =

((a0, c0, a1, c1); c1an−1), H3n−10
4 = ((a0, c0, a1, c1); c1a3), H3n−9

4 = ((b1, a0, bn−1, c0); c0b0), H3n−8
4 =

((b0, cn−1, a0, c1); c1a1), H3n−7
4 = ((a1, c0, an−1, b0); b0a0), H3n−6

4 = ((b2, c0, bn−2, a0); a0b1), H3n−5
4 =

((b2, c0, bn−2, a0); a0bn−1), H3n−4
4 = ((cn−2, a0, c2, b0); b0c1), H3n−3

4 = ((cn−2, a0, c2, b0); b0cn−1), H3n−2
4 =

((an−2, b0, a2, c0); c0a1) and H3n−1
4 = ((an−2, b0, a2, c0); c0an−1). Then the graphs in

{
σi(H j

4) | 0 ≤ i ≤
n − 1, 0 ≤ j ≤ 3n − 1

}
, each one of them is isomorphic to H4, decompose the graph (K3 ◦ Kn)(5).

The ( base ) graphs Hi
4, totally 3n in number, with the distances of their edges are shown in the

graphs of Figure 9 and Figure 10 of the appendix. In the union of the graphs of Figure 9, the edges
with distances in {3, 4, . . . , n − 4, n − 3} from A to B, B to C and A to C appear exactly five times. In
the union of the graphs of Figure 10, the edges with distances 0, 1, 2, n − 1 and n − 2 from A to B, B
to C and A to C appear exactly five times.
Case 2. n is even.

The graph (K3 ◦ Kn)(5) =
(
(K3 ◦ K2) ◦ K n

2

)
(5) � (K3 ◦ K2)(5) ◦ K n

2
.We shall prove that H4 | (K3 ◦

K2)(5) and apply Lemma 2. Let V(K3) = {a, b, c} and let V(K2) = {0, 1}. Let σ = (0, 1) be a permuta-
tion on {0, 1}. Let H1

4 = ((b0, a1, b1, a0); a0c0), H2
4 = ((b0, a0, b1, a1); a1c0), H3

4 = ((c0, b1, c1, b0); b0a0),
H4

4 = ((c0, b0, c1, b1); b1a0), H5
4 = ((a0, c1, a1, c0); c0b0) and H6

4 = ((a1, c0, a0, c1); c1b0) be six edge-
disjoint copies of H4 in (K3 ◦ K2)(5). Then the graphs in

{
σi(H j

4) | 0 ≤ i ≤ 1, 1 ≤ j ≤ 6
}
, each one

of them is isomorphic to H4, decompose the graph (K3 ◦ K2)(5). □

We use the following two theorems and a lemma in the proof of Theorem 1.

Ars Combinatoria Volume 160, 73–83



T. Sivakaran 78

Theorem 2. (see [2]). For n ≥ 3, Kn can be decomposed into K3,K4,K5,K6 and K8.

Theorem 3. [16]. If m and n are at least 3, then for 1 ≤ i ≤ 4, Hi |Km ◦ Kn if and only if 5 |mn(m−1).

Lemma 10. [17] For 1 ≤ i ≤ 4, Hi |K8(5).

Observation 4. It is clear that if λ1 | λ and G(λ1) has an H-decomposition, then G(λ) also has an
H-decomposition.

Proof of Theorem 1. The proof of the necessity is obvious and we prove the sufficiency in two cases.
Case 1. g.c.d(λ, 5) = 1.

The result follows by Theorem 3 and Observation 4.
Case 2. g.c.d(λ, 5) = 5.

First we prove this case for λ = 5. By Theorem 2 and the tensor product is distributive
over edge-disjoint union of subgraphs, it is enough to prove that for m ∈ {3, 4, 5, 6, 8} and
for 1 ≤ i ≤ 4, Hi | (Km ◦ Kn)(5). If m ∈ {3, 4}, then the result follows by Lemmas 4, 5,
6, 7, 8 and 9 and if m ∈ {5, 6}, then the result follows by Theorem 3. If m = 8, then
(K8 ◦ Kn)(5) = K8(5) ◦ Kn = Hi ◦ Kn ⊕ Hi ◦ Kn ⊕ . . . ⊕ Hi ◦ Kn, by Lemma 10 and for
1 ≤ i ≤ 4, Hi |Hi ◦ Kn, by Lemmas 1 and 2. If λ > 5, the result follows by Observation 4.

□

Theorem 5. [12]. If m and n are at least 3, then C5 | (Km ◦ Kn)(λ) if and only if λ(m − 1)n is even
and 5 | λm(m − 1)n.

Combining Theorems 1 and 5, we obtain a complete solution to the decomposition of the λ-fold
complete equipartite graphs into any simple connected unicyclic graph of order five.
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Appendix

Figure 7. In the Union of the Above Graphs Each Edge of Distance in {0, 1, n − 1} from A
to B, B to C and A to C Occurs Exactly Five Times
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Figure 8. In the Union of the Above Graphs Each Edge of Distance in {2, 3, 4, . . . , n − 3,
n − 2} from A to B, B to C and A to C Occurs Exactly Five Times
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Figure 9. In the Union of the Above Graphs Each Edge of Distance in {3, 4, . . . , n−4, n−3}
from A to B, B to C and A to C Occurs Exactly Five Times
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Figure 10. In the Union of the Above Graphs Each Edge of Distance in {0, 1, 2, n−1, n−2}
from A to B, B to C and A to C Occurs Exactly Five Times
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