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Abstract: The hub cover pebbling number, h∗(G), of a graph G, is the least non-negative integer such
that from all distributions of h∗(G) pebbles over the vertices of G, it is possible to place at least one
pebble each on every vertex of a set of vertices of a hub set for G using a sequence of pebbling move
operations, each pebbling move operation removes two pebbles from a vertex and places one pebble
on an adjacent vertex. Here we compute the hub cover pebbling number for wheel related graphs.
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1. Introduction

Pebbling was introduced in the field of graph theory by Chung [1]. Hulbert published details of
graph pebbling in his survey paper [2]. At this stage there are many papers in this area contributed
by many authors. Over the vertices of a graph G we distribute non negative number of pebbles. So a
distribution of pebbles is a function from V(G) to N ∪ {0}. Here we consider simple connected graphs
for our discussion. All basic concepts in graph are taken from the book entitled Graph Theory by
Harary [3]. A pebbling move operation removes two pebbles from a vertex and the places one pebble
on an adjacent vertex. For pebbling related concepts the readers can refer [1].

In cover pebbling it is require to put at least one pebble on every vertex of the vertex cover at the
end of the pebbling move operation. The least number of pebbles having the property that from all
distributions of γ(G) pebbles, it is possible to move a pebble to every vertex simultaneously using
a sequence of pebbling moves is called the cover pebbling number. In [4] Crull et al., studied the
cover pebbling number for complete graphs, paths and trees. Covering cover pebbling number [5]
and domination cover pebbling number [6] are few other variations which come from the definition
of cover pebbling. We introduce a new variation in the next section, named as ‘Hub cover pebbling
number’, by combining the two concepts hub set and cover pebbling number, like they did in [5]
and [6].
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2. Hub Cover Pebbling Number

A hub set in a graph G is a set U of vertices in G such that any two vertices outside U are connected
by a path whose internal vertices lie in U. It was introduced by Walsh [7]. Adjacent vertices are joined
by a path with no internal vertices, so the condition holds vacuously for them. The hub number of
G, denoted h(G), is the minimum size of a hub set in G. Placing transmitters at the vertices of a hub
set would facilitate communication among all vertices outside the set; Hence we seek a small hub set
from which we introduce hub cover pebbling number (HCPN) of a graph G.

Definition 1. The hub cover pebbling number, h∗(G), of a graph G, is the least non-negative integer
such that from all distributions of h∗(G) pebbles over the vertices of G, it is possible to place at least
one pebble each on every vertex of a set of vertices of a hub set for G using a sequence of pebbling
move operations, each pebbling move operation removes two pebbles from a vertex and places one
pebble on an adjacent vertex.

Let G1 and G2 be two graphs of order n1 and n2 and size m1 and m2 respectively. The Union of G1

and G2 is the graph denoted by G1 ∪ G2 [3] having the vertex set V1 ∪ V2 and the edge set E1 ∪ E2.
The join G1 +G2 of G1 and G2 is the graph obtained from G1 ∪G2 by joining each vertex of G1 with
every vertex of G2 by an edge.

Definition 2. [8] The fan graph Fn for n ≥ 4 is defined as the join of K1 and Pn−1, a path graph on
n − 1 vertices.

Definition 3. [8] The wheel graph Wn = K1 + Cn−1 is a graph where the vertex of degree n − 1 is
called the central vertex and all other vertices on the cycle graph Cn−1 are called rim vertices.

Definition 4. [8] The helm graph Hn is the graph obtained from a wheel Wn by attaching pendant
edge to each rim vertex of the wheel graph.

Definition 5. [8] The flower Fln is the graph obtained from a helm Hn by joining each pendant vertex
to the central vertex of the helm graph.

Definition 6. [8] The friendship graph FRn is a collection of n triangles, all having a common vertex.

Remark 1. p(v) denotes the number of pebbles on the vertex v of G and p(G) denotes the total number
of pebbles placed on the vertices of the graph G. In a distribution of pebbles over the vertices of a
graph G, if p(v) ≥ 1 then the vertex v is called occupied vertex. Otherwise v is an unoccupied vertex.

Theorem 1. For a fan graph Fn (n ≥ 4), h∗(Fn) = n − 3.

Proof. Consider the following labeling for Fn (n ≥ 4): label the vertices of Pn−1 as a1, a2, . . . , an−1,
and label the vertex of K1 as an.

For F4, if we place one pebble on any vertex that would suffice to form a hub set and hence
h∗(F4) = 1. Assume that n ≥ 5.

Consider the distribution: p(ai) = 1 for 1 ≤ i ≤ n − 4 and p(a j) = 0 for all j , i. Let S = {ai : 1 ≤
i ≤ n − 4}. We can not find a path between the vertices an−3 and an−1 such that every internal vertex is
a member of S and hence S is not a hub set for Fn. Thus h∗(Fn) ≥ n − 3.

Let p(Fn) = n − 3. If p(an) ≥ 1 then for any two unoccupied vertices ak and al, we can find the
path akanal. Thus {an} forms a hub set for Fn. If p(ai) ≥ 2 for some i where 1 ≤ i ≤ n − 1 then we
move a pebble to an and then for any two unoccupied vertices ak and al, we can find the path akanal as
{an} forms a hub set for Fn. So p(an) = 0 and p(ai) ≤ 1 for all 1 ≤ i ≤ n − 1. Since p(Fn) = n − 3 and
p(an) = 0, we have two more unoccupied vertices ak and al where k < l. Let T = V(Fn) − {ak, al, an}.
As both ak and al are adjacent to an, it is enough to find a path between ak and al such that every
internal vertex is a member of T . If ak and al are adjacent then we are done. Otherwise, there exists a
path akak+1 . . . al−1al and hence T is a hub set of Fn. Thus h∗(Fn) ≤ n − 3. □
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Theorem 2. For a wheel graph Wn (n ≥ 5), h∗(Wn) = n − 4.

Proof. For W5, if we place one pebble on any vertex that would suffice to form a hub set and hence
h∗(W5) = 1. Assume that n ≥ 6.

Consider the distribution: p(ai) = 1 for 1 ≤ i ≤ n − 5 and p(a j) = 0 for all j , i. Let S = {ai : 1 ≤
i ≤ n − 5}. We can not find a path between the vertices an−3 and an−1 such that every internal vertex is
a member of S and hence S is not a hub set for Wn. Thus h∗(Wn) ≥ n − 4.

Let p(Wn) = n − 4. If p(an) ≥ 1 then for any two unoccupied vertices ak and al, we can find
the path akanal. Thus {an} forms a hub set for Wn. If p(ai) ≥ 2 for some i (1 ≤ i ≤ n − 1) then
we move one pebble to an and then for any two unoccupied vertices ak and al, we can find the path
akanal so that {an} forms a hub set for Wn. So p(an) = 0 and p(ai) ≤ 1 for 1 ≤ i ≤ n − 1. Since
p(Wn) = n − 4 and p(an) = 0, we have three more unoccupied vertices ak, al and am where k < l < m.
Let T = V(Wn) − {ak, al, am, an}. As ak, al and am are adjacent to an, it is enough to find a path
between ak & al, ak & am and al & am such that every internal vertex is a member of T for each
path. If they are not adjacent to each other, then there exist following paths: the path akak+1 . . . al−1al

between the vertices ak & al, the path alal+1 . . . am−1am between the vertices al & am and the path
amam+1 . . . an−1a1 . . . ak between the vertices am & ak. Hence T forms a hub set for Wn and therefore
h∗(Wn) ≤ n − 4. □

Theorem 3. For a flower graph Fln (n ≥ 4), h∗(Fln) = 2n − 4.

Proof. Consider the following labeling for Fln (n ≥ 4): label the vertices of the wheel graph as:
a1, a2, . . . , an−1, an, where an is the center vertex and is of degree 2(n − 1) and label the vertex of
degree two which is adjacent to ai (1 ≤ i ≤ n − 1) as xi.

For Fln (n ≥ 4), let S = V(Fln) − {xn−1, an, an−1, an−2}. We place one pebble each on every vertex
of S . Then we can not find a path between the vertices xn−1 and an−2 such that every internal vertex is
a member of S and hence S is not a hub set for Fln. Thus h∗(Fln) ≥ 2n − 4.

Consider the distribution of 2n− 4 pebbles on the vertices of Fln. Clearly we are done if p(an) ≥ 1
or p(ai) ≥ 2 or p(xi) ≥ 2 for some i, where 1 ≤ i ≤ n − 1. So, we assume p(an) = 0, p(ai) ≤ 1
and p(xi) ≤ 1 for all i, where 1 ≤ i ≤ n − 1. Since p(Fln) = 2n − 4, we get two more unoccupied
vertices. Since an is adjacent to these unoccupied vertices, we look for adjacency between these two
unoccupied vertices. If both of these unoccupied vertices are adjacent, then we are done. Otherwise,
we consider the following cases:
Case 1. Let p(ak) = 0 and p(al) = 0 for some k and l (1 ≤ k < l ≤ n − 1).

Let T = V(Fln) − {ak, al, an}. We get the path akak+1 . . . al such that every internal vertex is a
member of T .
Case 2. Let p(xk) = 0 and p(xl) = 0 for some k and l (1 ≤ k < l ≤ n − 1).

Let T = V(Fln) − {xk, xl, an}. We get the path xkakak+1 . . . alxl such that every internal vertex is a
member of T .
Case 3. p(ak) = 0 and p(xl) = 0 for some k and l, where 1 ≤ k ≤ n − 1 and 1 ≤ l ≤ n − 1.

Let T = V(Fln) − {ak, xl, an}. We get the path akak+1 . . . alxl such that every internal vertex is a
member of T .

From the above cases, we can conclude that T is a hub set for Fln and hence h∗(Fln) ≤ 2n − 4 □

Theorem 4. For a friendship graph FRn (n ≥ 2), h∗FRn) = 2n − 1.

Proof. The vertices of a graphs are a1, a2, . . . , a2n−1, a2n such that only a2i−1 and a2i are adjacent (1 ≤
i ≤ n) and label the common vertex which is of degree 2n as a2n+1.

Let S = V(FRn) − {a2n−2, a2n, a2n+1}. Place one pebble each on the vertices of S . Clearly, we can
not find a path between the vertices a2n and a2n−2 such that every internal vertex is a member of S and
hence S is not a hub set for FRn. Thus h∗(FRn) ≥ 2n − 1.
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Consider the distribution of 2n−1 pebbles on the vertices of FRn. Clearly we are done if p(a2n+1) ≥
1 or p(ai) ≥ 2 for some i, where 1 ≤ i ≤ 2n. So, we assume p(a2n+1) = 0, p(ai) ≤ 1 for all i, where
1 ≤ i ≤ 2n. Since p(FRn) = 2n − 1, we get an additional unoccupied vertex, namely ak, for some k
(1 ≤ k ≤ 2n). But ak is adjacent to a2n+1. Thus, T = V(FRn) − {ak, a2n+1} forms a hub set for FRn and
hence h∗(FRn) ≤ 2n − 1. □

Theorem 5. For a helm graph Hn (n ≥ 4), h∗(Hn) = 8(n − 3) + 1.

Proof. Label the vertices of the wheel graph as: a1, a2, . . . , an−1, an, where an is the centre vertex and
is of degree n − 1 and label the vertex of degree one which is adjacent to ai (1 ≤ i ≤ n − 1) as xi.

Place 8n − 24 pebbles on x1. We have to move one pebble each to every ai so that we can form a
path between any two xi’s through ai’s. While doing so, we burn all the pebbles from the vertex x1

and place one pebble each to every ai except a1 and an. Clearly, every path between x1 and an should
go through a1 and there is no pebble on a1. Thus, h∗(Hn) ≥ 8(n − 3) + 1.

Let p(Hn) = 8n − 23. Let S = {ai : p(ai) ≥ 1(i , n)}, T = {a j : p(a j) = 0( j , n)} and assume
|S | = x ≥ 0. If p(an) ≥ 2(n − 1 − x) then clearly we are done by moving one pebble each to the set
of vertices of T . Let

∑n
i=1 p(ai) ≥ 4n − 11. Assume all the pebbles are placed on ai (i , n). From the

vertex ai, there are n − 3 vertices that are at distance two and two vertices are at distance one. To put
one pebble each on those vertices, we burn 4(n − 4) + 2(2) = 4n − 12 pebbles from the vertex ai and
then we have at least one pebble on ai. Hence, the set {ai : i , n} forms a hub set for Hn. If |S | ≥ 2,
then it is easy to move one pebble each to every vertex of T . To complete this process, we consider
the following cases:
Case 1. p(ak) ≥ 1 is odd, where ak ∈ S .

Let p(ak) ≥ 3. First, we retain one pebble on ak. If the adjacent vertices of ak are in S then we
move p(ak)−1

2 pebbles to an. If one of the adjacent vertices of ak is in T , then we move a pebble to that
vertex and then p(ak)−3

2 pebbles to an. If all the adjacent vertices of ak are in T and p(ak) ≥ 5, then we
move one pebble each to those vertices and then p(ak)−5

2 pebbles to an. If all the adjacent vertices of ak

are in T and p(ak) = 3, then we move one pebble to one of its adjacent vertex of ak in T . If p(ak) = 1
then we just retain that pebble on ak itself.
Case 2. p(al) ≥ 2 is even, where al ∈ S .

Let p(al) ≥ 4. First, we retain two pebbles on al. If the adjacent vertices of al is in S then we
move p(al)−2

2 pebbles to an. If one of its adjacent vertex of al is in T , then we move one pebble to that
vertex and then p(al)−4

2 pebbles to an. If all the adjacent vertices of al are in T and p(al) ≥ 6, then we
move one pebble each to those adjacent vertices and then p(al)−6

2 pebbles to an. If both the adjacent
vertices of al are in T and p(al) = 4, then we move a pebble to one of its adjacent vertices of al in T .
If p(al) = 2 then we just retain that pebble on al itself.

From the above cases, we note that certain number of vertices from T , (say y ≥ 0 vertices), are also
pebbled using pebbling moves and also we could have moved some amount of pebbles to the vertex
an. Thus we can place one pebble each to the remaining unpebbled vertices of T using the pebbles
from an, since the vertex an contains at least 2(n− 1− (x+ y)) pebbles. Hence we have pebbled all the
vertices of the set {ai : i , n} and hence we are done.

Assume
∑n−1

i=1 p(xi) ≥ 4n − 11. Let S = {ai : p(ai) ≥ 1(i , n)}, T = {a j : p(a j) = 0( j , n)},
U = {xi : p(xi) ≥ 1}, and V = {x j : p(x j) = 0}. Consider

∑
p(ai) + p(an) = pa where ai ∈ S and

pa ≥ 0. This implies that
∑

p(xi) ≥ 8n−23− pa where xi ∈ U. If |S | ≥ 1, we do the same procedure as
we discussed in the previous cases for the number of pebbles on ai. Suppose some of the vertices of
T , say z vertices, are not pebbled by these cases. To pebble those z vertices of T , we use the pebbles
on the vertices of U.
Case 3. p(xm) ≥ 1 is odd, where xm ∈ U.

We retain one pebble on xm and then we move p(xm)−1
2 pebbles to am. Now, we undertake the

operations as in Case 1 or Case 2 with the number of pebbles on the vertex am again, excluding the
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number of pebbles placed on the vertex am.
Case 4. p(xm) ≥ 2 is even, where xm ∈ U.

We do not retain any pebble on xm. We move p(xm)
2 pebbles to am. Now, we undertake the operations

as in Case 1 or Case 2 with the number of pebbles on the vertex am again, excluding the number of
pebbles placed on the vertex am.

So, the vertex an receives some amount of pebbles from the vertex xm through am, that is, the vertex
an receives at least 2z pebbles which is enough to put one pebble each to the z unpebbled vertices of
T . Hence we have pebbled all the vertices of the set {ai : i , n} and hence we are done.

Let |S | = 0. This implies that
∑

p(xi) = 8n − 23 where xi ∈ U. Assume |U | ≥ 3. Now, we
undertake the operations as in Case 3 and Case 4 with the number of pebbles on the vertex xi. We can
easily placed one pebble each on every vertex ai, i , n which is adjacent to an unpebbled vertex x j

and hence we are done. Assume |U | = 1 or 2. Now, we undertake the operations as in Case 3 and Case
4 with the number of pebbles on the vertex xi. We can easily placed one pebble each on every vertex
ai, i , n which is adjacent to an unpebbled vertex x j and hence we are done. There is an exception
case where we cannot place a pebble on the vertex ak of the set {ai}(i , n). This case exists only when
p(xk) = 1 and p(xl) = 8n − 24 or p(xk) = 8n − 23. But in this case also, we can find a path between
any two unpebbled vertices of Hn in which all the internal vertices are members of S − {ak} ∪ {xk} and
hence we are done. Thus h∗(Hn) ≤ 8n − 23. □
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