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1. Introduction

Recently, a very nice connection between the varieties of the first and the second row of the
Freudenthal-Tits Magic Square was exhibited in [1] by De Schepper & Victoor. In the proof, they
use the classification of geometric hyperplanes of the exceptional minuscule geometry of type E6

(see [2]), which is the variety in the fourth cell of the second row. For the second and third cells,
they exhibit properties of a certain geometric hyperplane that allows to make direct conclusions in
the case of the third cell (where one deals with a line Grassmannian of projective 5-space). In case
of the second cell, where one deals with a Segre variety, one has to work a little harder to arrive at
the wanted conclusion. The reason for this extra work is the non-availability of a list of all geometric
hyperplanes of that Segre variety. Reading the paper [1] for Mathematical Reviews, I realised that it
might be possible to classify the geometric hyperplanes of the Segre variety in question. The result is
written in the current paper. We do not restrict to the specific Segre variety of the second cell of the
second row of the Freudenthal-Tits Magic Square, but we consider all Segre geometries obtained as
the direct product of two projective spaces.

What we do is, we reduce the classification to the more combinatorial question of classifying
generalised dualities between two projective spaces, a (to the best of our knowledge, new) notion
that extends the notion of generalised polarity, which was introduced by Jacques Tits in [3] in order
to describe embedded polar spaces. Remarkably, the geometric hyperplanes of line Grassmannian
geometries, which correspond to the geometries in the third cell of the second row of the Freudenthal-
Tits Magic square, are classified by generalised symplectic polarities of an appropriate projective
space [4]. It makes one wonder whether something similar is true for the (three kinds of) hyperplanes
of the exceptional geometry of type E6 of the fourth cell of the second row.
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So, we classify generalised dualities and then interpret the results back in the Segre geometries.
We define the grayscale index of a geometric hyperplane and show that this notion naturally divides
the hyperplanes in c classes, where c is one more than the (projective) dimension of the smallest gen-
erators of the Segre geometry. Moreover, we prove that there is a bijective correspondence between
the grayscale indices and the orbits of hyperplanes under the automorphism group of a Segre variety.
This is done by considering the dual Segre variety, which can be defined using the white geometric
hyperplanes, that is, those with grayscale index 1.

It is worth noting that, in the special case of the Segre geometries of the second cell of the second
row of the Freudenthal-Tits Magic Square, grayscale 0 hyperplanes correspond to black hyperplanes
in the sense of Cooperstein & Shult [5], those with grayscale index 1

2 with grey hyperplanes, and
those with grayscale index 1 to the white hyperplanes, explaining and motivating the terminology of
grayscale index.

Not all Segre geometries admit geometric hyperplanes of arbitrary admissible grayscale index. A
sufficient and necessary condition is deduced, which is always satisfied for Segre varieties. Roughly,
our main result reads as follows (see 3 for a more detailed version).

1.1. Main Result

Let H be a geometric hyperplane of the direct product geometry Π1 × Π2 of two projective spaces
of dimension d1 and d2, respectively. Then there exist complementary subspaces Bi and Wi of Πi,
i ∈ {1, 2}, with dim B1 = dim B2 such that H contains H1 := W1 × Π2 ∪ Π1 × W2, H contains a
hyperplane H2 of B1 × B2 determined by a (proper) duality from B1 to B2 (and hence B1 and B2 are
dual to each other), and H contains lines having a point in each of H1 and H2.

We also explain te connection with the dual Segre geometry, and with the dual Segre variety.
Finally, we restrict to the finite case and recover the embedded flag geometries of projective planes
classified in [6]. We show that in the small cases q = 2, 3, all geometric hyperplanes of Segre varieties
over Fq are induced by hyperplanes of the ambient projective spaces. Moreover, we also count the
number of geometric hyperplanes with fixed grayscale index.

2. Background and Definitions

2.1. Point-line Geometries

A point-line geometry ∆ = (X,L) consist of a points set X and a line set L, for our purposes
containing subsets of X. We now present the essentials for the current paper. More background may
be found in the books [7] and [8].

All point-line geometries that we will encounter are partial linear spaces, that is, two distinct
points are contained at most one common line—and points that are contained in a common line are
called collinear; a point on a line is sometimes also called incident with that line. We will also always
assume that each line has at least three points. In a general point-line geometry ∆ = (X,L), one
defines a subspace as a set of points with the property that it contains all points of each line having
at least two points with it in common. It is called singular if each pair of points of it is collinear. It
is called a (geometric) hyperplane if every line intersects it in at least one point—and then the line is
either contained in it, or intersects it in exactly one point. We allow a hyperplane to coincide with the
whole point set itself, but we call it proper if it doesn’t.

Given a subset S ⊆ X of points of a point-line geometry ∆ = (X,L), we denote the intersection of
all subspaces containing S by ⟨S ⟩ and call it the subspace generated by S . A minimal generating set
of a subspace will sometimes be called a basis of that subspaces (especially if the point-line geometry
is a projective space, see Section 2.2 below).

We will sometimes view a subspace S of the point-line geometry ∆ = (X,L) as a point-line
geometry in the obvious way: the point set is S ⊆ X and the lines are those of L entirely contained in
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S . In this sense, S is a full subgeometry of ∆. In general, full subgeometries are defined as follows.
Let ∆′ = (X′,L′) be a point-line geometry with X′ ⊆ X and L′ ⊆ L. Then we say that ∆′ is a full

subgeometry of ∆.

2.2. Segre Geometries

LetL be a skew field and V a right vector space overL of dimension at least 3. The corresponding
projective geometry, with point set the set of 1-spaces of V , and lie set the 2-spaces, will be denoted
by PG(V), or PG(d,L), if dimV = d + 1.

Recall also that an axiomatic projective plane is a point-line geometry satisfying the following
axioms.
(PP1) Each pair of distinct points is incident with exactly one line.
(PP2) Each pair of distinct lines is incident with exactly one point.
(PP3) There are four different points, no three of which are incident with the same line.

In this paper, a projective space of dimension d is one of the following.
• For d ≥ 3, we have PG(d,L) for a certain skew field L.
• For d = 2, it is an axiomatic projective plane.
• For d = 1, it is a set of at least three elements (a projective line).
• For d = 0, it is a singleton (a point).
• For d = −1, it is the empty set.
Let Π1 and Π2 be two projective spaces of non-negative dimension with respective points sets X1

and X2 and line sets L1 and L2. Then the direct product space Π1 × Π2 is the point line geometry
with point set X1 × X2 and line set {{x1} × L2 | x1 ∈ X1, L2 ∈ L2} ∪ {L1 × {x2} | L1 ∈ L1, x2 ∈ X2}. It
is called a Segre geometry (of type (dimΠ1, dimΠ2)). It is called proper if both the dimensions dimΠ1

and dimΠ2 are positive. For convenience, we will in this paper always assume that dimΠ1 ≤ dimΠ2.
If dimΠ1 = dimΠ2 = 1, then we call the Segre geometry a grid. It is easily seen that subsets of type
{x1} × Π2 and Π1 × {x2}, with x1 ∈ Π1 and x2 ∈ Π2, are maximal singular subspaces and we call them
generators.

The definition immediately makes clear that a Segre geometry of type (d1, d2) contains subspaces
isomorphic to Segre geometries of type (ℓ1, ℓ2), for every ℓ1 ≤ d1 and ℓ2 ≤ d2.

Definition 1. A point-line geometry isomorphic to a full subgeometry of some projective space is
called embeddable.

2.3. Segre Varieties

Since every proper Segre geometry contains a grid as a subspace, we deduce that Segre geometries
are never full subgeometries of projective spaces over non-commutative skew fields. This in turn
implies that a necessary condition for a Segre geometry Π1 ×Π2 to be embeddable is that Πi, i = 1, 2,
is defined over a commutative field whenever dimΠi ≥ 2. Naturally, another necessary condition is
that the planes of Π1 and Π2 are isomorphic, and if dimΠ1 = 1, then the number of points of Π1 is
equal to the number of points on any line of Π2.

That the above mentioned necessary conditions are also sufficient is proved by the existence of
Segre varieties, which we now introduce.

In short, a Segre variety is the set of projective points corresponding to the pure tensors of a tensor
product of two vector spaces over a common field K. A more concrete definition is the following.

Definition 2. • Let (d1, d2) be a pair of natural numbers (hence nonzero) and set N = (d1+1)(d2+

1) − 1 = d1d2 + d1 + d2. Let K be a field. We consider a standard coordinatization of PG(di,K),
i = 1, 2, and introduce the Segre map

σd1,d2 : PG(d1,K) × PG(d2,K)→ PG(N,K)
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: ((x0, x1, . . . , xd1), (y0, y1, . . . , yd2)) 7→ (xiy j)0≤i≤d1,0≤ j≤d2 .

• The image of σd1,...,dn is called a Segre variety (of type (d1, d2)) and denoted by S)d1,d2(K).

Denoting the coordinates of a generic point of PG(N,K) with (xi j)0≤i≤d1,0≤ j≤d2 , the Segre variety
S)d1,d2(K) consists precisely of the points (xi j)0≤i≤d1,0≤ j≤d2 such that, considered as a matrix, the rank
of (xi j) is equal to 1. For further reference, we call these the matrix coordinates.

This is all well known, see for instance [9]. We add here the following lemma. It is also well
known, but we include a quick proof for convenience.

Lemma 1. A Segre variety S)d1,d2(K) is determined by d1 + 1 generators Ai := {pi} × PG(d2,K),
0 ≤ i ≤ d1, with {p0, p1, . . . , pd1} generating PG(d1,K), d2 + 1 generators B j := PG(d1,K) × {q j},
0 ≤ j ≤ d2, with {q0, q1, . . . , qd2} generating PG(d2,K), and a point x of S)d1,d2(K) such that, if we
write x as (p, q) ∈ PG(d1,K) × PG(d2, K), then p is not contained in any hyperplane determined by
d1 points of {p0, p1, . . . , pd1}, and likewise for q.

Proof. We claim that the generators through p are determined by the given generators and p itself.
Indeed, our assumptions imply that Ak is complementary to Ak := ⟨Ai | i ∈ {0, 1, . . . , k − 1, k +
1, . . . , d1}⟩ (using a standard dimension argument). Hence ⟨p, Ak⟩ intersects Ak in a unique point
xk. Now xk is contained in the unique generator A through p intersecting all B j. But the set of xk,
0 ≤ k ≤ d1, generates A; hence A is determined. Likewise, the other generator B through p is
determined.

Now the same argument, interchanging the roles of A with A0, implies that each generator in-
tersecting each Ak, 1 ≤ k ≤ d1 and A, is determined . But the union of all these generators is
S)d1,d2(K). □

Remark 1. The counterpart of 1 for Segre geometries is perhaps the following statement: Let Gi be a
basis of the projective space Πi, i = 1, 2. Then G1×G2 generates the Segre geometry Π1×Π2. Indeed,
It is clear that ⟨G1 ×G2⟩ contains G1 × Π2. Now every generator Π1 × {x2}, with x2 ∈ Π2, intersects
G1 ×Π2 in the set G1 × {x2}, which is a basis of Π1 × {x2}. Hence the latter is contained in ⟨G1 ×G2⟩.
The assertion follows. In fact, we conjecture that G1 × G2 is a basis of Π1 × Π2 (which is certainly
true if Π1 × Π2 is embeddable).

2.4. Generalised Dualities

Let againΠ1 andΠ2 be two projective spaces of non-negative dimension with respective points sets
X1 and X2. We denote by Ωi, i = 1, 2, the set of subspaces of Πi, including the empty set and Xi itself.
Extending the notion of a (generalised) polarity as defined by Tits [3, 8.3.2], a generalised duality
between Π1 and Π2 is a relation 1 between X1 and X2, such that, for each x1 ∈ X1, and each x2 ∈ X2,
the sets x11 := {x2 ∈ X2 | x11x2} and x12 := {x1 ∈ X1 | x11x2} are (not necessarily proper) hyperplanes
of Π1 and Π2, respectively. Set {i, j} = {1, 2}. We can extend 1 to Ωi by defining S 1

i = {x j ∈ X j |

x j ∈ x1i ,∀xi ∈ S i}. Then S 1
i is an intersection of hyperplanes and hence a subspace. One now sees

that 1 defines a mapping from Ωi to Ω j reversing the inclusion relation. The radical Rad(1) of 1 is
by definition the pair (X1

2 , X
1
1 ). The generalised duality is called nontrivial if Rad(1) , (X1, X2). An

ordinary duality is the mapping from Ω1 to Ω2 defined by 1 in the case Rad(1) = (∅,∅). With these
definitions we have the following lemma.

Lemma 2. If 1 is a nontrivial generalised duality between the projective spaces Π1 and Π2 with
respective point sets X1 and X2, then

1 ≤ dimΠ1 − dimX1
2 = dimΠ2 − dimX1

1 ≤ min{dimΠ1, dimΠ2} + 1.

Proof. Set dimΠi = di and dimX1
i = ℓi, i = 1, 2. Let {p0, . . . , pℓ2} be a basis of X1

2 , and extend it to a
basis {p0, . . . , pd1} ofΠ1. We claim that X1

1 = {pℓ2+1, . . . , pd1}
1. Indeed, clearly X1

1 ⊆ {pℓ2+1, . . . , pd1}
1,
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so it remains to prove the reverse inclusion. Note that, if x2 ∈ X2 belongs to x11 ∩ y11 , with x1, y1 ∈ X1,
then ⟨x1, y1⟩ ⊆ x12 , and hence x2 belongs to z11 , for each z1 ∈ ⟨x1, y1⟩. It follows that, if x2 ∈ X2

belongs to {pℓ2+1, . . . , pd1}
1, then, since it is also trivially contained in {p0, . . . , pℓ2⟩

1, we conclude
x2 ∈ ⟨p0, . . . , pd1⟩

1 = X1
1 . The claim is proved.

Next we claim that the set {x11 | x1 ∈ ⟨pℓ2+1, . . . , pℓ2+e⟩} is a dual subspace ofΠ2, for 1 ≤ e ≤ d1−ℓ2.
Indeed, it suffices to prove that, given two point y1, z1 ∈ X1 \ X1

2 , whenever y11 , z11 , then {x11 | x1 ∈

⟨y1, z1⟩} is a dual line. From the arguments in the previous paragraph it follows that it is contained
in a dual line. Now let H2 be any hyperplane of Π2 containing G2 := y11 ∩ z11 . Select x2 ∈ H2 \ G2.
We may assume that H2 < {y11 , z

1
1 }. Then x12 ∩ ⟨y1, z1⟩ is a unique point u1. It is now easy to see that

u1
1 = H2. The claim follows.

Next we claim that, for 1 ≤ e ≤ d1 − ℓ2 − 1, the hyperplane p1
ℓ2+e+1 does not belong to the dual

subspace {x11 | x1 ∈ ⟨pℓ2+1, . . . , pℓ2+e⟩}. Indeed, otherwise there exists u1 ∈ ⟨pℓ2+1, . . . , pℓ2+e⟩ with
u1

1 = p1
ℓ2+e+1. Considering u1

2 for a point u2 ∈ X2 \ u1
1 , we see that some point of ⟨u1, pℓ2+e+1⟩ belongs

to X1
2 , a contradiction. The claim is proved.

It now follows from the previous claim that the dimension of {pℓ2+1, . . . , pd1}
1, and hence of X1

1 by
our first claim, is equal to d2 − (d1 − ℓ2).

The lemma is proved. □

By 2 the following definition makes sense. The grayscale index of a nontrivial generalised duality
between the projective space Π1 and Π2 both of dimension at least 1, is the fractional number

min{dimΠ1, dimΠ2} + 1 − dimΠ1 + dimX1
2

min{dimΠ1, dimΠ2}
,

which lies in the unit interval [0, 1], and which is 1 if, and only if, X1
2 is a hyperplane of Π1 (or,

equivalently, X1
1 is a hyperplane of Π2); it is 0 if, and only if, at least one of X1

1 or X1
2 is empty.

Generalised dualities with grayscale index 0 are called black, those with grayscale index 1 white,
and those with grayscale index

1 −
1

min{dimΠ1, dimΠ2}

are called silver. Note that black and silver coincide when min{dimΠ1, dimΠ2} = 1.

3. The Basic Observation

We observe the following connection between geometric hyperplanes of Segre geometries and
generalised dualities.

Observation 1. Let Π1 and Π2 be two projective spaces of positive dimension with respective points
sets X1 and X2. Let H ⊆ X1×X2 be a set of points of the Segre geometry Π1×Π2. Then H is a (proper)
geometric hyperplane if, and only if, the relation 1 between X1 and X2 defined by p11p2, pi ∈ Xi,
i = 1, 2, if (p1, p2) ∈ H, is a nontrivial generalised duality.

Proof. If H is a proper hyperplane, then it is clear that, for i ∈ {1, 2}, and for each pi ∈ Xi, the set
p1

i is either a hyperplane, or the whole set X j, where {i, j} = {1, 2}, and at least once it is a (proper)
hyperplane. Hence 1 is a generalised duality.

Conversely, suppose 1 is a generalised duality between Π1 and Π2. Set H = {(p1, p2) | p11p2}.
Then clearly every generator intersects H in a hyperplane of the full generator, and at least once
it is a proper hyperplane. Since every line is contained in some generator, H is hence a proper
hyperplane. □

Geometric hyperplanes of Segre geometries corresponding to white, silver and black generalised
dualities will be called white, silver and black themselves, respectively.
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4. Classification and Description of all Generalised Dualities

In this section we prove the following classification result.

Theorem 2. Let Π1 and Π2 be two projective spaces of nonnegative dimensions d1, d2, with d1 ≤ d2

and with point sets X1, X2, respectively. Let 1 be a nontrivial generalised duality between Π1 and Π2.
Then it arises from one of the following constructions.

(i) The generalised duality is white, there exist hyperplanes H1 ⊆ X1 and H2 ⊆ X2 such that x11x2

if, and only if, either x1 ∈ H1 or x2 ∈ H2 (or both).
(ii) There are subspaces S 1 ⊆ X1 and S 2 ⊆ X2 of dimensions d1 − 2 and d2 − 2, respectively, and

an arbitrary bijection β from the set of proper hyperplanes of X1 containing S 1 to the set of
hyperplanes of X2 containing S 2 such that, for arbitrary x1 ∈ X1 and x2 ∈ X2, we have x11x2

if, and only if, either x1 ∈ S 1, or x2 ∈ S 2, or x1 < S 1, x2 < S 2 and β(⟨x1, S 1⟩) = ⟨x2, S 2⟩. This
generalised duality is silver.

(iii) There exist subspaces S 1 ⊆ X1 and S 2 ⊆ X2 of dimensions d1 − d and d2 − d, respectively,
with 3 ≤ d ≤ d1 + 1, also subspaces T1,T2 complementary to S 1, S 2, respectively (hence both
of dimension d − 1), and an arbitrary ordinary duality β : T1 → T2. such that, for arbitrary
x1 ∈ X1 and x2 ∈ X2, we have x1 1 x2 if, and only if, either x1 ∈ S 1, or x1 < S 1 and x2 ∈

⟨S 2, β(⟨x1, S 1⟩ ∩ T1)⟩. If d = d1 + 1, then the generalised duality is black.

Proof. We first check that the given constructions indeed yield nontrivial generalised dualities. For (i)
this is trivial. For (ii), this follows from the observation that x11 = X2 if x1 ∈ S 1, and x11 = β(⟨x1, S 1⟩)
if x1 ∈ X1 \ S 1; likewise for x12 with x2 ∈ X2. Finally, a similar argument in case (iii) is valid for
x1 ∈ X1. Now let x2 ∈ X2. Since S 2 appears to be contained in x11 , for each x1 ∈ X1, we have x12 = X1,
for each x2 ∈ S 2. Now let x2 ∈ X2 \ S 2. Then the definition in (iii) implies that (only) all points
x1 of ⟨S 1, β

−1(⟨S 2, x2⟩ ∩ T2⟩ satisfy x11x2, and these form a hyperplane of X1. So, we indeed have
generalised dualities.

Now let 1 be a nontrivial generalised duality between Π1 and Π2. By 2, we have

1 ≤ d := dimΠ1 − dimX1
2 = dimΠ2 − dimX1

1 ≤ d1 + 1.

First suppose d = 1. Setting H1 = X1
2 and H2 = X1

1 , we see that we are in case (i).
Now suppose d ≥ 2. Then choose subspaces T1 and T2 in Π1 and Π2, respectively, complementary

to S 1 := X1
2 and S 2 := X1

1 , respectively. Then dimT1 = dimT2 = d − 1. The mapping β : T1 → T ∗2 ,
with T ∗2 the dual of T2 (hence, T ∗2 consists of the hyperplanes of T2), mapping each point x1 ∈ T1 to
the hyperplane x11 ∩ T2 (which is indeed a hyperplane, as x1 < X1

2 and S 1 = X1
1 ⊆ x11 ). Now if d = 2,

then β is bijective since each point x2 ∈ T2 is the image under β of the point T1 ∩ x12 . Considering β
as a bijection from the set of proper hyperplanes of Π1 containing S 1 to the set of proper hyperplanes
of Π2 containing S 2 mapping ⟨S 1, x1⟩ to ⟨S 2, β(x1)⟩, x1 ∈ T1, we obtain the situation as in case (ii).

Now let d ≥ 3. Then the argument in the second paragraph (the second claim) of the proof of 2
shows that the image under β of a subspace U1 of T1 is a subspace of T ∗2 (a dual subspace of T2),
properly containing the image under β of a proper subspace of U1. The Fundamental Theorem of
Projective Geometry now implies that β is an isomorphism from T1 to T ∗2 , hence an ordinary duality
from T1 to T2. □

There are some interesting consequences.

Corollary 1. (i) Every Segre geometry contains white geometric hyperplanes.
(ii) A (proper) Segre geometry Π1 × Π2, with dimΠ1 ≤ dimΠ2, admits silver geometric hyperplanes

if, and only if, the cardinalities of the line(s) of Π1 and Π2 are the same.
(iii) A (proper) Segre geometry Π1×Π2, with dimΠ1 ≤ dimΠ2, admits a geometric hyperplane which

is neither white nor silver if, and only if, dimΠ1 ≥ 2 and Π1 × Π2 admits a black geometric
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hyperplane if, and only if, dimΠ1 ≥ 2 and every plane of Π1 is isomorphic to the dual of every
plane of Π2 (the latter is equivalent to Π1 being isomorphic to the dual of a subspace of Π2).

5. The Structure of Hyperplanes of Segre Geometries

5.1. Black Hyperplanes of Symmetric Segre Geomeries

A Segre geometry Π1 × Π2 is called symmetric if Π1 is isomorphic to the dual Π∗2 of Π2 (the dual
of a projective line being the same projective line).

A point-line geometry ∆ = (X,L) is called a long root subgroup geometry of type An if there
is a projective space Π of dimension n such that X can be identified with the set of incident point-
hyperplane pairs of Π, and a typical member of L is given by the set of point-hyperplane pairs such
that the point runs through all points of a given line, or the hyperplane runs through all hyperplanes
containing a common subspace of dimension n − 2.

Lemma 3. Each black geometric hyperplane of a symmetric Segre geometry Π × Π∗ carries the
structure of a long root subgroup geometry of type Ad, where 2 ≤ d = dimΠ. Conversely, each
full subgeometry of Π × Π∗ abstractly isomorphic to a long root subgroup geometry of type Ad is a
geometric hyperplane of Π × Π∗.

Proof. A black geometric hyperplane H of Π × Π∗ is determined by an ordinary duality β between Π
and Π∗. Identifying the hyperplanes of Π with their image under β, we see that H precisely consists
of all incident point-hyperplane pairs of Π. The fact that lines of H correspond to lines of the long
root subgroup geometry of type Ad follows from β being defined on all subspaces of Π (in particular
on lines), and its inverse on all subspaces of Π∗.

Now suppose that X is the point set of a full subgeometry of Π × Π∗ isomorphic to a long root
subgroup geometry ∆ of type Ad. First we assume d ≥ 3.

Notice the following properties of ∆. We may assume that X is the set of incident point-hyperplane
pairs of the projective space PG(d,L), for some skew field L.

(i) There are two natural families of maximal singular subspaces (and they both have dimension d−
1). One family corresponds to the set of incident point-hyperplane pairs of PG(d,L) with fixed
hyperplane, and the other with fixed point. Hence all subspaces of one family are isomorphic to
each other, and two such subspaces of distinct systems are dual to each other.

(ii) Every point is contained in exactly two singular subspaces of dimension d − 1, one of each
natural type, and those two subspaces intersect exactly in that given point.

(iii) Given two singular subspaces M and M′ of dimension d − 1 and of different natural systems.
Then for each point x ∈ M there exists at least one point x′ ∈ M′ such that x and x′ are collinear
to a (unique) common point.

Let x = (x1, x2) ∈ X. Let M and M′ be the two singular subspaces of ∆ containing x (see (ii) above).
Since M∩M′ = {x} (by (i) above), the subspaces M and M′ are contained in distinct maximal singular
subspaces of Π ×Π∗. Without loss of generality we may assume that M is contained in {x1} ×Π

∗ and
M′ in Π × {x2}. By connectivity, it follows that every maximal singular subspace of ∆ in the same
system as M is contained in a singular subspace of the form {z1} × Π

∗, with z1 ∈ Π1, and likewise
for the other system. We claim that every subspace Π × {y2}, y2 ∈ Π

∗, contains a maximal singular
subspace of ∆. Indeed, consider an arbitrary maximal singular subspace M′′ of ∆ disjoint from M and
belonging to the same natural system as M′. Then there exists x′2 ∈ Π

∗ such that Π × {x′2} contains
M′′. Let If x′2 = y2, then we are done, so assume x′2 , y2. Then the line L joining (x1, x′2) and (x1, y2)
intersects M in some point (x1, z2). By (iii) above, there exist points (x′1, z2) ∈ X and (x′1, x

′
2) ∈ M′′.

Then the line L′ joining (x′1, z2) and (x′1, x
′
2) is contained in X and contains the point (x′1, y2). Hence

there is some maximal singular subspace of ∆ containing (x′1, y2) in Π × {y2} and the claim follows.
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Similarly, one shows that every subspace {y1} ×Π
∗ contains a subspace of dimension d − 1 of ∆. It

now follows that X is a geometric hyperplane of Π × Π∗.
There remains the case d = 2. If we can show that, for each point x ∈ X, the lines of ∆ through x

are contained in different generators of Π×Π∗, then the rest of the proof above is valid and the lemma
would follow.

First suppose that two disjoint lines L, L′ of ∆ from different systems are contained in disjoint
planes π, π′, respectively, of Π × Π∗. Call lines of ∆ contained in planes disjoint from, or equal to,
π horizontal, and the others vertical (then L and L′ are horizontal; this means that lines of the form
{∗}×L∗, with L∗ a line ofΠ∗, are horizontal and those of the form L×{∗}, with L a line ofΠ vertical, or
vice versa). Now, either (1) there are unique points p ∈ L and p′ ∈ L′ collinear in Π × Π∗, or (2) each
point of L is collinear to some point of L′. Suppose first the former. For each point q ∈ L there exists
a unique point q′ ∈ L′ and a unique point pq ∈ X collinear to both q and q′. The lines qpq and q′pq can
only both be vertical if q = p and q′ = p′, and they are never both horizontal. Hence, without loss of
generality, for at least

⌈
|mathbbK|

2

⌉
points q, the line qpq is horizontal. But two such distinct lines never

meet in ∆, hence they should never meet in Π × Π∗ either. Consequently
⌈
|mathbbK|

2

⌉
≤ 1, implying

|mathbbK| = 2. In that case, we similarly see that the points p and p′ correspond to each other, that
is, there is a point p′′ ∈ X with pp′′ and p′p′′ lines of ∆ (and they are vertical). We set L = {p, q, r},
and then we may assume qpq and r′pr are vertical. Let s be the “third” point on the vertical line qpq,
and s′ the third point on the vertical line p′p′′. Then there is a point s′′ ∈ X such that ss′′ and s′s′′ are
lines of ∆. Let t be the third point on the line r′pr. Since the points q and pr are collinear in Π × Π∗,
and the same holds for pq and r′, the points s and t are also collinear in Π × Π∗. So, the line ss′′ is
horizontal, as well as the line, say M, joining t with the third point on the line ss′′. Now, since p′p′′

and pp′′ are both vertical, the line s′s′′ is horizontal (as otherwise pp′′ and s′s′′ would intersect). But
now ss′′, s′s′′ and M are horizontal, implying that M and s′s′′ intersect, a contradiction.

Hence we may assume (2) that each point q of L is collinear to some point q′′ of L′ in Π ×Π∗. We
also use the same notation for q′ and pq as in the previous paragraph. If q′ , q′′, then either pq ∈ L
or pq ∈ L′, both contradictions. Hence q = q′ and all lines qpq and q′pq are vertical. For two distinct
choices of q, say q and r, we now see that qpq and r′pr are vertical and the same reasoning as in (1),
interchanging vertical with horizontal, yields again a contradiction.

Now suppose for a contradiction that for some point x ∈ X the two lines L, L′ of ∆ through x are
contained in the same generator. Then for arbitrary points p ∈ L \ {x} and p′ ∈ L′ \ {x}, the lines M
and M′ of ∆ through p and p′, respectively, distinct from L and L′, respectively, are both vertical and
belong to a different natural system. This contradicts the previous paragraphs. □

In the case dimΠ = dimΠ∗ = 1, things are much easier. Recall that an ovoid of a grid is a
set of points intersecting every generator in exactly one point. Obviously, an ovoid is a geometric
hyperplane of a grid. Hence we have the following lemma, the proof of which is trivial.

Lemma 4. If dimΠ = dimΠ∗ = 1, then a black geometric hyperplane H of Π ×′ Π∗ is equivalent to
an ovoid. Also H defines a bijection β : Π → Π∗ such that H = {(x, β(x)) | x ∈ Π} and every such
bijection defines a black geometric hyperplane of Π × Π∗. □

5.2. The General Case

We can now describe all geometric hyperplanes of an arbitrary Segre geometry. We may restrict
ourselves to the proper case.

Theorem 3. Let Π1 × Π2 be a proper Segre geometry with dimΠ1 = d1 ≤ d2 = dimΠ2 and let H be a
proper geometric hyperplane.

(i) If H is white, then there exist hyperplanes W1 and W2 of Π1 and Π2, respectively, such that
H = W1 × Π2 ∪ Π1 ×W2. Conversely, every such set is a white hyperplane.
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(ii) If H is silver, then there exist subhyperplanes W1 and W2 and complementary lines L1, L2 of
Π1 and Π2, respectively, and a bijection β : L1 → L2, such that H is the union over all point
p ∈ L of ⟨W1, p⟩ × ⟨W2, β(p)⟩. Conversely, every such bijection defines via this expression a
silver geometric hyperplane of Π1 × Π2.

(iii) If H has grayscale index 1 − k
d1

, with 2 ≤ k ≤ d1, then it arises from the following construction.
There are subspaces W1 and W2 of Π1 and Π2, respectively, of dimension d1−k−1 and d2−k−1,
respectively. There are also subspaces B1 and B2 of Π1 × Π2, respectively, complementary to
W1,W2, respectively, hence of dimension k, with B2 dual to B1. We set B1 = PG(Lk) and
B2 = PG(Lk)∗ (and use coordinate tuples to describe the points of both projective spaces).
There is a skew field isomorphism θ : L → L, and H is the union over all points (x0, . . . , xk) of
B1 of

⟨W1, (x0, . . . , xk)⟩ × ⟨W2, (a0, . . . , ak)⟩, aθ0x0 + · · · + aθkxk = 0.

Conversely, every such set defines a hyperplane of Π1 × Π2 of grayscale index 1 − k
d1

. Geomet-
rically, H is the union of all full subgrids having a point in the Segre subgeometry W1 ×W2 and
one in a full long root subgroup subgeometry of type Ad in B1 × B2.

Proof. This theorem follows from 1, 2, 3 and 4, taking into account that for every isomorphism be-
tween two projective spaces, coordinates can be chosen such that the isomorphism acts coordinatewise
as a (common) skew field isomorphism. □

The letters “W” and “B” stand for the “white” and the “black”, respectively. In particular, the
intersection of B1×B2 with H is a (maximal) black geometric hyperplane of a full Segre subgeometry,
which we call a black part of H. If H is silver, then a black part is given by the ovoid H ∩ L1 × L2,
with the notation of 3(ii). The black part of a white hyperplane is empty.

6. Dual Segre Geometries

Just like the hyperplanes of a projective space define the point set of the dual projective space,
the white hyperplanes of a Segre geometry Π1 × Π2 define the point set of a dual Segre geometry
Π∗1 × Π

∗
2 (with the obvious identification). Here we show that one can recognise the lines of the dual

Segre geometry from considering intersections of white hyperplanes. The reason why we do this will
become clear in 7.

Proposition 1. Let H and H′ be two white hyperplanes of the Segre geometry Π1 × Π2. Then H and
H′ define collinear points in the dual Segre geometry if, and only if, there exists a white geometric
hyperplane H′′ < {H,H′} of Π1 × Π2 containing H ∩ H′. In such a case, the dual line through H and
H′ consists of all white hyperplanes containing H ∩ H′.

Proof. Let H = H1 × Π2 ∪ Π1 × H2 and H′ = H′1 × Π2 ∪ Π1 × H′2. If either H1 = H′1 or H2 = H′2, say
H1 = H′1, then it is obvious that a geometric hyperplane H′′1 × Π2 ∪ Π1 × H′′2 contains H ∩ H′ if, and
only if, H′′1 = H1. In this case we obtain a line of the dual Segre geometry, exactly as wanted by the
assertion.

Now assume H1 , H′1 and H2 , H′2. Let pi ∈ Hi \H′i and p′i ∈ H′i \Hi, i ∈ {1, 2}. Then both (p1, p′2)
and (p′1, p2) belong to H ∩ H′. Clearly, a white geometric hyperplane containing H ∩ H′ must be of
the form H′′ := H′′1 × Π2 ∪ Π1 × H′′2 , with Hi ∩ H′i ⊆ H′′i , i ∈ {1, 2}. Then (p1, p′2) ∈ H′′ if, and only
if, either p1 ∈ H′′1 (that is, H′′1 = H1) or p′2 ∈ H′′2 (that is, H′′2 = H′2). Similarly, using (p′1, p2) ∈ H′′

implies that either H′′1 = H′1 or H′′2 = H2. If follows that H′′ ∈ {H,H′}. □

7. Segre Varieties

The necessary conditions mentioned in the first paragraph of 2.3 show that Segre varieties of type
(d2, d2), with d1 ≤ d2, admit geometric hyperplanes of any grayscale index k

d1
, 0 ≤ k ≤ d1. We now

Ars Combinatoria Volume 160, 59–71



Hendrik Van Maldeghem 68

determine which geometric hyperplanes arise from hyperplanes of the ambient projective space.
It is clear from the description of the hyperplanes in 3 that, with the notation of 3(iii), H is gen-

erated, as a subspace, by W1 × Π1 ∪ Π1 × W2 and any black part B. In S)d1,d2(K), this generates a
subspace of dimension

((d1 − k)(d2 + 1) − 1 + (d2 − k)(d1 + 1) − 1 − (d1 − k)(d2 − k) + 1) + dim⟨B⟩ + 1.

Since dim⟨B⟩ ∈ {k2 + 2k, k2 + 2k − 1}, we calculate that

dim⟨H⟩ ∈ {d1d2 + d1 + d2 − 1, d1d2 + d1 + d2}.

We have shown:

Lemma 5. A geometric hyperplane of a Segre variety is induced by a hyperplane of the ambient
projective space if and only if any black part of it is induced by a hyperplane of the appropriate
ambient projective subspace. □

As in 3(iii), a black hyperplane H of S)k,k(K), k ≥ 2, can be represented in coordinates by the set of
points ((x0, . . . , xk), (a0, . . . , ak)), with aθ0x0+ · · ·+aθkxk = 0, where θ : K→ K is a field automorphism.
It is clear that, if θ is the identity, then the equations represents a hyperplane of PG(k2 + 2k,K);
if θ is not the identity, then the points with coordinates in the fixed field satisfying this equation
generate a hyperplane H′ of PG(k2 + 2k,K). Picking an element a ∈ K not fixed under θ, the point
((1,−aθ, 0, . . . , 0), (a, 1, 0, . . . , 0)) belongs to H but not to H′.

If k = 1, then the black hyperplane H can be chosen to contain the points ((1, 0), (1, 0)),
((0, 1), (0, 1)) and ((1, 1), (1, 1)), which span the hyperplane H′ of PG(3,K) with equation x12 = x21

(in matrix coordinates, see 2.3). Then

H = {((1, x), (1, β(x))) | x ∈ K} ∪ {((0, 1), (0, 1))},

with β : K → K a permutation of K fixing 0 and 1. Clearly the point ((1, x), (1, β(x))) belongs to H′

if and only if x = β(x), implying that H is induced by a hyperplane of PG(3,K) if and only if the
permutation β is the identity.

The last two paragraphs now easily imply the following proposition.

Proposition 2. A black geometric hyperplane of a Segre varietyS)k,k(K) is induced by a hyperplane of
the ambient projective space if, and only if, the involved duality of PG(k,K) (if k ≥ 2), or permutation
of PG(1,K) (if k = 1) stems from a linear transformation. □

Combining 5 and 2, we obtain a precise description of all hyperplanes of any Segre variety induced
by hyperplanes of the ambient projective space.

Now note that all white hyperplanes arise from hyperplanes of the ambient projective space. In
fact, these form the dual Segre variety.

Proposition 3. The hyperplanes of the ambient projective space PG(V) of a Segre variety S)d1,d2(K)
inducing a white geometric hyperplane in S)d1,d2(K) form the point set in the dual PG(V)∗ of PG(V)
of an isomorphic Segre variety S)d1,d2(K)∗. In dual matrix coordinates, that Segre variety is also given
by the rank 1 matrices.

Proof. We first claim that the intersection of two white hyperplanes of S)d1,d2(K) generates a subspace
of dimension N − 2 of PG(N,K), with N = d1d2 + d1 + d2. Indeed, choosing appropriate coordinates
we may assume that the two hyperplanes have respective equation a11 = 0 and ai j = 0 in matrix
coordinates. The claim follows now from the fact that every base point belongs to S)d1,d2(K). The first
assertion of proposition now follows from 1.

Now the second assertion. The hyperplanes with respective equations ai j = 0 and aℓk = 0 share the
same generators from one system if, and only if, either i− ℓ or j = k. That means that the hyperplanes
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with dual matrix coordinates all zero except for the elements in one particular row or column, belong
to the dual Segre variety. Now we claim that the hyperplane with dual coordinates all 1 induces a
white geometric hyperplane H in S)d1,d2(K). Indeed, let W1 be the hyperplane of ′PG(d1,K) with
equation x0 + · · · + xd1 = 0 and select arbitrarily a point p ∈ W1 and an arbitrary point q in PG(d2,K).
Then clearly the matrix coordinates of σd1,d2(p, q) have all rows identical (to the coordinates of q),
hence the matrix has rank 1. Hence W1 × PG(d2,K) belongs to H. Similarly, also PG(d1,K) × W2,
with W2 the hyperplane of ′PG(d2,K) with equation x0 + · · · + xd2 = 0, is contained in H. The claim
follows.

Now the second assertion follows from 1. □

Corollary 2. All geometric hyperplanes of a Segre variety arising from hyperplanes of the ambient
projective space and with fixed grayscale index are projectively equivalent.

Proof. This follows from 5 and 2 by noticing that a linear bijective map between two vector spaces
can always be written with the identity matrix by choosing the bases appropriately. □

3 allows us to talk about black, silver and white points , and, more generally, about points with a
certain grayscale index. Indeed, the grayscale index of a point is the grayscale index of the geometric
hyperplane determined by that point in the dual Segre variety (in the dual projective space, that point
is a hyperplane).

Proposition 4. Let t be the grayscale index of a point p of PG(d1d2 + d1 + d2,K) with respect to
S)d1,d2(K), with d1 ≤ d2. Let r be the rank of the matrix coordinates of p. Then d1 + 1 = r + td1.

Proof. First notice that, since the rank of the matrix of the coordinates of a point is an invariant for
the automorphism group of the Segre variety, it suffices to show the given equality for one example
of each rank. Dualising, we consider the hyperplane H with equation x00 + x11 + · · · + xr−1,r−1 = 0.
If B1 and B2 are the subspaces of PG(d1,K) and PG(d2,K), respectively, generated by the first r base
points, and W1 and W2 those generated by the remaining base points, then we see that H contains in
W1 × PG(d2,K) ∪ PG(d1,K) ×W2 and intersects B1 × B2 in a black hyperplane. This implies, using
3, that the grayscale index t of H is equal to (and we apply the definition)

t =
d1 + 1 − r

d1
,

from which we derive td1 + r = d1 + 1. □

8. The Finite Case

In the finite case, following a well-established habit, we denote the Segre variety S)d1,d2(Fq) by
S)d1,d2(q). There is a beautiful connection between black geometric hyperplanes of S)2,2(q) and
embedded flag geometries of projective planes (the latter are the long root subgroup geometries of
PG(2, q)). Indeed, it follows from 3 that a black geometric hyperplane of S)2,2(q) can be presented as
the set of points (aix j)0≤i, j≤2, with aθ0x0+aθ1x1+aθ2x2 = 0, ai, x j ∈ Fq, with θ a field automorphism. This
is exactly the description of an arbitrary embedding of the long root subgroup geometry of PG(2, q)
in either PG(7, q) or PG(8, q). So, we have shown the following result.

Proposition 5. There is a bijective correspondence between the embedded long root subgroup ge-
ometries of PG(2, q) generating PG(7, q) or PG(8, q) and the point sets of PG(8, q) which are a black
geometric hyperplane of some Segre variety of type (2, 2) of PG(8, q).

Without any doubt, this proposition is also true for the long root subgroup geometries of PG(n, q),
but there are no results available in the literature that combine with the current paper into a proof. And
without any doubt, this proposition is wrong in the general case (over arbitrary fields), because there
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are fields K for which the hyperplane section of S)2,2(K) producing a black geometric hyperplane is
not relatively universal, which means that also some embedding in PG(8,K) exists projecting down
onto that hyperplane section. That embedding has very low probability of being contained in S)2,2(K)
(but we have no proof of that, it is speculation at this point).

Noticing that PGL2(q) is isomorphic to Sym(q + 1), the symmetric group on q + 1 letters, if, and
only if, q ∈ {2, 3}, and that AutFq = {id} if, and only if, q is a prime, we deduce from 3 the following
result.

Proposition 6. Every geometric hyperplane of S)d1,d2(q) is induced by a hyperplane of the ambient
projective space if, and only if, q ∈ {2, 3}.

Let
(

m
r

)
q

be the q-binomial coefficient, that is,(
m
r

)
q
=

(qm − 1)(qm−1 − 1) · · · (qm−r+1 − 1)
(qr − 1)(qr−1 − 1) · · · (q − 1)

is the number of subspaces of dimension r in a vector space of dimension m over Fq. Setting q = pe,
with p prime and e a natural number, the order of the automorphism group of Fq is e, and the next
result follows now directly from 3.

Proposition 7. Let 1 ≤ d1 ≤ d2 be natural numbers.
(i) The number of white hyperplanes of S)d1,d2(q) is equal to

qd1+1 − 1
q − 1

·
qd2+1 − 1

q − 1
.

(ii) The number of silver hyperplanes of S)d1,d2(q) is equal to

(q + 1)!
(
d1 + 1
d1 − 1

)
q

(
d2 + 1
d2 − 1

)
q
.

(iii) The number of geometric hyperplanes of S)d1,d2(q) of grayscale index 1 − k
d1

, k ≥ 2, is equal to

e ·
(
d1 + 1
d1 − k

)
q

(
d2 + 1
d2 − k

)
q
· |PGLk+1(q)|.

(iv) The number of geometric hyperplanes of S)d1,d2(q) of grayscale index 1− k
d1

, k ≥ 0, arising from
hyperplanes of the ambient projectie space, is equal to(

d1 + 1
d1 − k

)
q

(
d2 + 1
d2 − k

)
q
· |PGLk+1(q)|.

As an immediate consequence of 4 and 7, we have the following well-known result, due to Lands-
berg [10].

Corollary 3. The number of m × n matrices over Fq of rank r is equal to(
m
r

)
q

(
n
r

)
q
· |GLr(q)|.
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