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Abstract: We introduce a two-player game where the goal is to illuminate all edges of a graph.
At each step the first player, called Illuminator, taps a vertex. The second player, called Adversary,
reveals the edges incident with that vertex (consistent with the edges incident with the already tapped
vertices). Illuminator tries to minimize the taps needed, and the value of the game is the number
of taps needed with optimal play. We provide bounds on the value in trees and general graphs. In
particular we show that the value for the path on n vertices is 2

3n +O(1), and there is a constant ε > 0
such that for every caterpillar on n vertices the value is at most (1 − ε)n + 1.
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1. Introduction

We consider a game with two players: Illuminator and Adversary. There is a graph, and the goal
of Illuminator is to illuminate all the edges of the graph. At each step Illuminator taps one vertex, and
Adversary responds by illuminating the edges incident with the tapped vertex. Though Illuminator
knows in advance (the isomorphism class of) the graph, Illuminator always sees only the spanning
subgraph induced by the illuminated edges, with no labels on the vertices except which have been
tapped and which have not. So at the beginning Illuminator sees a collection of isolates (vertices of
degree 0). The goal of Illuminator is to minimize the number of taps. The value of the game on graph
G, denoted ill(G), is the number of taps taken if both players play optimally.

Consider for example the case that the graph is the tree on 5 vertices of diameter three. At the
beginning, Illuminator sees five isolates and the only option is to tap one of the isolates. There are
three possible results: Adversary reveals the tapped vertex v to be either (i) the vertex of degree 3, (ii)
the vertex of degree 2, or (iii) an end-vertex. Here are the three possibilities for what Illuminator sees:

v

(i)

v

(ii)

v

(iii)
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In scenario (i), Illuminator can finish in one tap by tapping the isolated vertex. In scenario (ii), Il-
luminator can finish in two taps, by for example tapping the two isolates. In scenario (iii), Illuminator
can finish in two taps by first tapping the neighbor w of v: then if w is revealed to be the vertex of
degree 3, tapping the remaining isolate, while if w is revealed to be the vertex of degree 2, tapping
w’s other neighbor. Thus Adversary should respond with either (ii) or (iii), and the value of the game
is 3.

Essentially, at each step Illuminator chooses an orbit of the automorphism group of the current
graph (where the vertices are colored as to whether they have been tapped or not), and Adversary
reveals the connections of some vertex in this orbit. Thus such a game fits into the framework where
decisions have to be made with incomplete information and past choices cannot be undone. The
most common version is an online algorithm, where the graph is revealed one vertex at a time. This
genre includes online graph coloring [1], independent sets [2] and online vertex covering [3]. Online
algorithms are sometimes analyzed by competitive ratio: that is, how well they do compared to an
algorithm with complete information. In our case, the natural analog would be to compare it to the
vertex cover number. But it is immediate that the graph with n vertices and exactly one edge has
vertex cover number 1 while the value of the game is n−1. This observation parallels the linear lower
bound of performance ratios for online algorithms for vertex cover.

In this paper we consider the Illumination problem. We provide some general bounds and elemen-
tary facts. We show that the path and cycle need approximately 2

3 of their vertices. We further show
that for caterpillars that the value is at most 83

88n + 1, where n is the order.

2. Observations and the Path

We start with some elementary general observations

Lemma 1. For a graph G of order n ≥ 3 with at least one edge, it holds that 2 ≤ ill(G) ≤ n − 1.

Proof. For the upper bound, tapping any n−1 vertices is guaranteed to reveal all edges. For the lower
bound, Adversary can ensure that there is an edge that remains not illuminated after the first tap. □

Equality in the lower bound in Lemma 1 is attained for the star (and some other small graphs such
as K3 or 2K2). Equality in the upper bound is attained for the complete graph, and indeed the union of
the complete graph with some isolates. (There are many more examples; see the discussion of joins
below.)

Lemma 2. If T is a tree of order n and maximum degree ∆, then ill(T ) ≤ n − ∆ + 1.

Proof. Consider the following strategy for Illuminator. After the first tap there is one nontrivial com-
ponent. Then repeatedly tap any of the untapped vertices in the nontrivial component, until a vertex v
of the maximum degree is tapped. Then tap every other vertex in the graph. At the end all edges are
illuminated, but at least ∆ − 1 neighbors of v are never tapped. □

The bound of Lemma 2 is sharp for the star. It is also sharp for the star with one edge subdivided
(which for n ≥ 6 is the unique tree that needs 3 taps).

Here is another simple upper bound. Recall that a support vertex is one that has an end-vertex
neighbor.

Lemma 3. If G is a graph such that every vertex is either an end-vertex or support vertex, then
ill(G) ≤ 2s where s is the number of support vertices.

Proof. Illuminator starts by tapping an isolate. If this is revealed to be an end-vertex, Illuminator
immediately taps its neighbor. In either case, the next step is to tap an isolate and repeat. All support
vertices are tapped and at most one end-vertex neighbor for each support vertex. □
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It can be shown that the bound of Lemma 3 is sharp if G is a tree where every support vertex has
sufficiently many end-vertex neighbors. In particular:

Lemma 4. Let T be the tree formed by taking the path S = v1, . . . , vs on s vertices and attaching to
each vertex vi a set Li of at least two vertices. Then ill(T ) = 2s.

Proof. By Lemma 3 the value 2s is an upper bound. Observe that for each vertex vi of S , if vi is not
tapped then all of Li is tapped.

So consider the following strategy for Adversary. Adversary responds to the tap of an isolate by
revealing the next available vertex in the sequence all of L1, then all of L2, and so on. If Illuminator
taps a vertex of degree one, it is revealed to be the next vi. If Illuminator taps a neighbor of tapped vi,
then this is revealed to be part of Li if possible.

Now, the only way for one tap in {vi} ∪ Li combined is that Illuminator is able to force Adversary
to reveal vi without having tapped any of Li. By the Adversary strategy, this means that vi−1 has been
tapped along with all of Li−1. So while there is only one tap on {vi} ∪ Li, there are at least three taps
on {vi−1} ∪ Li−1. Hence the average number of taps per {vi} ∪ Li is at least two. □

We next consider the cycle.

Theorem 1. For the cycle ill(Cn) = ⌊2n/3⌋.

Proof. A tap of an isolate illuminates two edges, and a tap of a degree-1 vertex illuminates one edge.
So the goal of Illuminator is to tap as many isolates as possible, and for Adversary the reverse. Thus
Illuminator should tap an isolate if there is one, and Adversary should expend as many isolates as
possible. Hence with optimal play there will be ⌈n/3⌉ isolate-taps, and the value of the game is
n − ⌈n/3⌉. □

We next consider the path. We use the term “end” to mean an end-vertex of the path.

Theorem 2. For the path on n ≥ 3 vertices, it holds that ill(Pn) = ⌊(2n + 1)/3⌋.

Proof. We prove first that this value is an upper bound. A strategy for Illuminator is: tap an isolate if
there is one; otherwise tap an (untapped) vertex of degree 1, choosing one in a component containing
a tapped end if there is such a component.

At each stage, letΦ denote the sum of the number of edges that are not illuminated plus the number
of ends that have not been tapped. Initially Φ = n + 1. Every time Illuminator taps an isolate, Φ goes
down by 2 (either two edges are illuminated or one edge is illuminated and one end becomes tapped);
every time Illuminator taps a degree-1 vertex, Φ goes down by 1. When Φ = 0 we are guaranteed to
be done. Indeed, if the isolates are depleted before both ends are tapped, then Illuminator can ensure
that at least one end is never tapped and so the game finishes with Φ ≥ 1.

If Adversary does not reveal both ends during the isolate-tapping phase, then the best they can do
is to minimize the number of tapped isolates, namely ⌈n/3⌉ taps. Hence in this case the total number
of taps is at most n − ⌈n/3⌉ = ⌊2n/3⌋. If Adversary does reveal both ends during the isolate-tapping
phase, then again the best they can do is to minimize the number of tapped isolates, but now this is at
least 2+⌈(n−4)/3⌉ taps, since revealing a tapped isolate to be an end reduces the number of isolates by
at most 2. Hence in this case the total number of taps is at most n+1− (2+ ⌈(n−4)/3⌉) = ⌊(2n+1)/3⌋.
This proves the upper bound.

There is a corresponding strategy for Adversary: If possible, reveal the tapped vertex to be an end;
in any case, have as many isolates as possible be neighbors of the tapped vertex. If Illuminator only
ever taps one isolate, then the total number of taps is n − 1. Otherwise, Adversary’s strategy ensures
that the game ends with Ψ = 0, and the number of taps that decrease Ψ by 2 is at most 2+ ⌈(n− 4)/3⌉;
thus the bound follows. □
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Finally in this section, we make some observations about the join and disjoint union. Let G ∪ H
denote the disjoint union of graphs G and H, and G ∨ H their join.

Lemma 5. If G is a graph of order nG and H a graph of order nH, then

(a) ill(G ∪ K1) = ill(G ∨ K1) = ill(G) + 1.

(b) ill(G ∪ H) ≥ ill(G) + ill(H).

(c) ill(G ∨ H) ≥ min (ill(G) + nH, ill(H) + nG).

Proof. (a) The stated value is a lower bound, since Adversary can respond to the first tap by declar-
ing that the tapped vertex is the K1, so that what remains is the game on G. The stated value is
also an upper bound. Illuminator plays the game as if they are in G; the first time a candidate for
the K1 is revealed, they assign it as such and continue.

(b),(c) Even if the vertices come with labels as to whether they are in G or H, the game takes at least
this long.

□

In particular, Lemma 5 implies that if both G and H have the property that the value of the game
is their order minus 1, then this is also true about their join.

Perhaps surprisingly, there are cases where ill(G ∪ H) is much larger than ill(G) + ill(H). For
example, let G be the graph obtained from the star S n on n vertices by adding one edge. Let H be
the disjoint union rS n. Then ill(G) = n − 1 and ill(H) = 2r. But ill(G ∪ H) = r(n − 1): Illuminator
has to find the component with the extra edge, and it takes n− 1 taps of each component to determine
whether it has the extra edge or not.

3. Illuminating Caterpillars

Recall that a caterpillar is a graph such that when one removes all end-vertices, what remains is a
path, known as the spine (such as the trees discussed in Lemma 4).

Theorem 3. For a caterpillar on n vertices, one can illuminate all edges in at most 83
88n + 1 taps.

The proof is an immediate consequence of two strategies, depending on how the order d of the
spine compares with 5n/22.

Lemma 6. For a caterpillar G with n vertices and d vertices on the spine, ill(G) ≤ n − ⌊d/4⌋.

Lemma 7. For a caterpillar G with n vertices and d vertices on the spine, ill(G) ≤ 43
48n + 5

24d.

The two lemmas are proved below. Note that in several place the constants can be improved by
a more careful argument. But since we do not how to achieve an optimal bound for caterpillars, we
stick to the basic argument.

3.1. Proof of Lemma 6

To prove Lemma 6, consider the following strategy for Illuminator:

Phase 1: While there is an edge joining two vertices of degree 1 or an isolate: If there is
an edge joining two vertices of degree 1 then tap the untapped end; else tap an isolate.
Phase 2: Repeatedly tap an untapped spinal vertex that does not already have two spinal
edges illuminated.

Claim 1. Under the above strategy,
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(i) All edges become illuminated.

(ii) On the spine there cannot be four tapped vertices in a row.

Proof. (i) Let F be the spanning subgraph of the illuminated edges when Phase 1 finishes. Then F
has no isolate, and so every leaf-edge of G has been illuminated. Furthermore, for every leaf-
edge Illuminator knows which end is the end-vertex in G. In particular, in F Illuminator knows
which vertices are on the spine. The only missing edges join vertices of the spine, and so Phase
2 ensures that all remaining edges of G become illuminated.

(ii) Consider the situation after all edges have been illuminated. Assume the spine is v1, . . . , vd

and consider two consecutive vertices on the spine that have been tapped, say vi and vi+1, with
1 < i < d − 1. Assume vertex vi was tapped before vertex vi+1. Then vi+1 was tapped in Phase 2.
So at that moment, the edge vi+1vi+2 was not illuminated. On the other hand, edge vi+2vi+3 was
illuminated, since otherwise vi+2 would have been tapped in Phase 1. It follows that after vi+1 is
tapped, vertex vi+2 has two spinal neighbors and so is never tapped. Similarly, if vi−1 is tapped,
it must have been tapped after vi, and thus vi−2 was never tapped.

□

The bound of Lemma 6 follows, as the number of untapped spinal vertices is at least ⌊d/4⌋.

3.2. Weighted Paths and Proof of Lemma 7

For the analysis of the strategy on short spines, we need a result that can be viewed as the weighted
version of the game on path. Consider the illumination problem on a path, but with the vertices having
nonnegative integer weights (visible at all times). Again the goal is to illuminate all the edges, but the
cost of a tap is the weight of that vertex.

Theorem 4. One can illuminate a weighted path at cost at most 43
48W where W is the total weight.

Theorem 4 follows immediately from Lemma 8 below, as the worst case is WE =
7
12W and WI =

W −WE.
We prove by induction a bound for the path where some of the edges have already been illuminated,

and thus some vertices are isolated and some are not. We do not assume Illuminator knows anything
about how the weights are ordered in the overall path, except that they know the weights of the two
ends. Let α = 1

2 and β = 3
4 . Define

Ψ = αWN + βWI +min(WE, zW)

where WN is the total weight of degree-1 vertices other than the ends, WI the total weight of isolates
other than the ends, WE is the total weight of the untapped end(s), W = WN +WI +WE, and z is 0 if
no untapped end, 1

3 if one untapped end, and 7
12 if two untapped ends.

Lemma 8. The partially illuminated path can be fully illuminated at a cost of at most Ψ.

Proof. The proof is by induction on the number of components, and subject to this, on the number of
tapped ends. (The base case is one component, i.e., all edges are illuminated.) At each stage let F be
the spanning subgraph of the illuminated edges. Let x be the smallest weight of an untapped vertex
of degree 1 (if it exists), say of vertex u. Let y be the smallest weight of an isolate (if it exists); say of
vertex v.

Note that at least one of u or v exists, else we are done. We choose a candidate vertex C as follows.
If only one of u or v exists, then that vertex is C. Otherwise C is vertex u if y > 2x and vertex v
otherwise. Let wC denote its weight.

Case 1: It is possible for C to be an end of the path, and wC >
1
4W if there are two untapped ends

or wC >
1
3W if there is one untapped end.
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Then since C is a candidate, each component of F has untapped weight at least wC except possibly
the one containing the tapped end (if there is such a component) which has weight at least wC/2. Thus
there are at most three components.

Now, the strategy for Illuminator is to tap all vertices in all components except the component with
maximum weight. Say this costs X. Then X ≤ min(2

3W,W − wC). Assume there is one untapped end.
Then Ψ ≥ 1

2 (W − wC) + 1
3W > X since WE = wC >

1
3W. Assume there are two untapped ends. Then

WE >
3
2wC and Ψ ≥ 1

2 (W − wE) + min(WE,
7
12W). Again it can be checked that Ψ ≥ X. The bound is

established in this case.
Case 2: Otherwise. Then tap C. Assume first that C is revealed to be an end of the path. Then we

can induct: If there was only one untapped end, then C has weight at most 1
3W and z decreases by 1

3 ,
while if there were two untapped vertices, then C has weight at most 1

4W and z decreases by 1
4 .

So assume that C is revealed to be not an end. If C = u, there are two possibilities:

1. Vertex u links to a non-isolate u′, say of weight x′. (Note that x′ ≥ x.) In that case, the decrease
in Ψ is at least αx′ + α(x) ≥ x.

2. Vertex u links to an isolate, say with weight y′. (Note that y′ ≥ y > 2x.) In that case, the decrease
in Ψ is at least αx + (β − α)y′ ≥ x.

If C = v, there are three possibilities.

1. Vertex v links to two non-isolates. In that case, the decrease in Ψ is at least βy − α(2x) > y.

2. Vertex v links to one isolate, say of weight y′, and one non-isolate, say of weight x′. Then the
decrease in Ψ is βy + (β − α)y′ + αx′ ≥ y.

3. Vertex v links to two isolates. Then the decrease in Ψ is at least βy + 2(β − α)y ≥ y.

This completes the proof since we can induct in each case. □

We are now in a position to prove Lemma 7. We start with the following strategy for Illuminator:

Phase 1. Repeatedly: If there is an untapped vertex with a tapped end-vertex neighbor, then
tap it. Else tap an isolate. Else halt.

Let F be the spanning subgraph of the illuminated edges when Phase 1 halts. The lack of isolates
means each leaf-edge of G has been revealed. If a leaf-edge is revealed through the tap of the end-
vertex, then the other end of the edge is tapped next by the condition. Thus all spinal vertices of the
original caterpillar that have leaf-edges have been tapped. In particular, every missing edge joins two
vertices of the spine both of which have degree 2 in G.

Each component Fi of F is a caterpillar and thus has a sub-spine S i. Note that each vertex of S i is
on the spine of G, but end-vertices in Fi can be as well. Define a vertex as flailing if it is untapped, of
degree one, and adjacent to the end of its sub-spine.

Claim 2. One can complete the illumination of G in at most 43
48 f where f is the number of flailing

vertices.

Proof. Associated with F we build a weighted auxiliary graph A as follows. For each Fi where S i

is one vertex, there is one isolate in A with weight the number of flailing vertices in the component.
For each Fi where S i is more than one vertex, there is a K2 in A with weights the number of flailing
neighbors of each ends of the sub-spine. See the following figure.

becomes 3 4 2 3
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Then apply Theorem 4 to F. We claim that a strategy on the weighted A corresponds to a strategy
on F. For each vertex tapped on A, tap all the flailing neighbors of the corresponding sub-spine-end
in F. This will illuminate the un-illuminated edge(s) incident with that component. □

Now, if an untapped vertex has degree one but its neighbor is in the interior of its sub-spine, then
that vertex will never be tapped. So it follows that the illumination of G can be completed in at most
43
48 f ∗ taps where f ∗ is the number of untapped vertices of degree one. Observe that f ∗ ≥ n − 2d, since
for each spinal vertex at most one end-vertex neighbor is tapped in Phase 1. So the total number of
taps taken is at most n − (1 − 43

48 )(n − 2d) = 43
48n + 5

24d.

4. Future Work

The most obvious and critical question is whether there are trees where the number of taps needed
is n − o(n) where n is the order. Several attempts by one of the authors to build such a tree, carefully
negating a particular strategy of Illuminator, failed when the other author showed that another strategy
of Illuminator would work quickly. In another direction, one could hope for better bounds in other
family of trees, such as for example complete binary trees, or trees of maximum degree 3 in general.

There are also other possible goals for the game. We considered here the task of illuminating all
the edges, but one could also consider the task of illuminating a path between two specified vertices.
We also assumed the underlying graph was known to Illuminator; but maybe this assumption can be
relaxed.
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