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Abstract: Let G be a group, and let c ∈ Z+ ∪ {∞}. We let σc(G) be the maximal size of a subset X of
G such that, for any distinct x1, x2 ∈ X, the group ⟨x1, x2⟩ is not c-nilpotent; similarly we let Σc(G) be
the smallest number of c-nilpotent subgroups of G whose union is equal to G. In this note we study
D2k, the dihedral group of order 2k. We calculate σc(D2k) and Σc(D2k), and we show that these two
numbers coincide for any given c and k.
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1. Introduction

In this paper we are interested in how best to cover a group with nilpotent subgroups. In order to
make this precise, we need a definition. Note, first, that throughout this paper G is a finite group, and
c is either a positive integer or the symbol ∞. We will say that a finite group N is c-nilpotent if it is
nilpotent with nilpotency class at most c; in particular any nilpotent group is ∞-nilpotent. Now the
definition that we want is as follows.

Definition 1. Let c be a positive integer. A c-nilpotent cover of G is a family M of c-nilpotent
subgroups of G whose union equals G. A c-nilpotent cover is called minimal if it is a c-nilpotent
cover of minimal size.

Note that a 1-nilpotent cover is nothing more than an abelian cover of G; similarly an∞-nilpotent
cover is a nilpotent cover of G. In what follows we write Σc(G) for the size of a minimal c-nilpotent
cover of G.

It turns out that there is a nice connection between c-nilpotent covers and “non-c-nilpotent sub-
sets”; let us define this latter concept:

Definition 2. A non-c-nilpotent subset is a subset X of G such that for any two distinct elements
x, y ∈ X the subgroup ⟨x, y⟩ they generate is not c-nilpotent.

Note that a non-1-nilpotent subset is nothing more than a non-commuting subset of G; similarly a
non-∞-nilpotent subset is a non-nilpotent subset of G. In what follows we write σc(G) for the size of
a maximal non-c-nilpotent subset of G. Now let us state the nice connection that we alluded to above.

Lemma 1. σc(G) ≤ Σc(G).
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Proof. Let A be a c-nilpotent cover of G of size Σc(G), and let X be a non-c-nilpotent subset of G.
The result follows by observing that every element of X lies in an element ofA, and no element ofA
contains more than one element of X. □

In this note we are interested in the situation where G = D2k, the dihedral group of order 2k. For
c ∈ Z+ ∪ {∞} and k ∈ Z+ with k ≥ 2, we are interested in calculating σc(G), Σc(G), and ascertaining
for which values of c and k these two values coincide.

1.1. Main results

Our main result is the following.

Theorem 1. Let G = D2k with k ≥ 2, and let c be a positive integer.

σc(G) = Σc(G) =

 k
gcd(k,2c) + 1, if k < {21, 22, . . . , 2c}.

1, if k ∈ {21, 22, . . . , 2c}.
(1)

In particular, writing |k|2′ for the largest odd factor dividing k, we have

σ∞(G) = Σ∞(G) =

|k|2′ + 1, if k is not a power of 2.
1, if k is a power of 2 , i.e G is nilpotent.

Note that Theorem 1 implies that σc(D2k) = Σc(D2k) for all c ∈ Z+∪{∞} and all k ∈ Z+ with k ≥ 2.

1.2. Connection to the literature

The value of Σ∞(G) has been studied for various groups; it has usually been denoted ω(NG).
Endimioni has proved that if a finite group G satisfies Σ∞(G) ≤ 3 then G is nilpotent, while if Σ∞(G) ≤
20 then G is solvable; furthermore these bounds cannot be improved [1]. Tomkinson has shown that
if G is a finitely generated solvable group such that Σ∞(G) = n, then |G/Z∗(G)| ≤ nn4

, where Z∗(G) is
the hypercentre of G [2].

The computation of σ∞(G) for particular classes of groups G has recently started to garner atten-
tion. For instance, lower bounds for σ∞(G) [3] when G = GLn(q). The second author, along with
Azad and Britnell, extended this result to deal with finite simple groups of Lie type – they showed
that in such a group G, the size of a non-c-nilpotent subset (for any c) is approximately equal to the
number of maximal tori in G [4].

The particular statistics σ1(G) and Σ1(G), have attracted considerable recent attention over many
years, and have been calculated for various groups G; much of this work has concentrated on the case
of almost simple groups G [5–10].

2. Background on Dihedral Groups

The set of symmetries of a regular k-gon form a group, the dihedral group of order 2k, which we
shall denote D2k. We shall allow k = 2 here, in which case, D2k is just the Klein 4-group.

We will refer to elements of D2k in the usual way, as rotations and reflections; let us collect some
basic facts that are all well-known.

Lemma 2. 1. The group D2k has presentation {x, y : xk = y2 = 1, y−1xy = x−1}.

2. The set of rotations forms a cyclic subgroup, Ck, of order k; all elements in D2k\Ck are reflections
and so, in particular, have order 2.

3. Let x1 be a rotation, y1 a reflection; then y−1
1 x1y1 = x−1

1 .
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4. Every subgroup of D2k is either dihedral or cyclic.

5. Let y1, y2 be reflections in G with lines of reflection ℓ1 and ℓ2, respectively. Let θ be the angle
between ℓ1 and ℓ2 and write θ = πab where a and b are co-prime integers. Then y1y2 is a rotation
by 2θ and ⟨y1, y2⟩ � D2b.

6. If ℓ > 1 is a divisor of k, then D2k contains exactly k/ℓ subgroups isomorphic to D2ℓ. Every
reflection of D2k lies in a unique subgroup isomorphic to D2ℓ, and if ℓ1, ℓ2 are lines of reflection
for two reflections in such a group, then the angle between ℓ1 and ℓ2 is an integer multiple of
π/ℓ.

Note that in (2) we implicitly took the identity element to be a rotation; we shall do this throughout.

Proof. Items (1) and (2) are standard facts about dihedral groups; see, for instance, [11]. Throughout
this proof we shall fix x to be the anti-clockwise rotation by 2π/k so, in particular, x has order k.

Let us consider (3): Since the set of rotations forms a normal subgroup of D2k, it is clear that
y−1

1 x1y1 is a rotation and hence so is the element y−1
1 x1y1x1. Now let P be a point on the edge of the

k-gon that lies on the mirror line of y1: one can check directly that the element y−1
1 x1y1x1 fixes the

point P. Since the only point fixed by a non-identity rotations is the center of the k-gon, we conclude
that x−1

1 y−1
1 x−1

1 y1 = 1. Thus x−1
1 = y1x1y−1

1 as required.
For (4), let H ≤ D2k and let Ck be the group of rotations in D2k. There are two possibilities for

H ∩Ck. Suppose H = H ∩Ck: in this case H ≤ Ck and so H is cyclic. Suppose |H : H ∩Ck| = 2: then
H ∩Ck is cyclic, and so H ∩Ck = ⟨x1⟩ for some rotation x1. Now let y be an element of H \ (H ∩Ck);
so y is a reflection. From (3) we have that y−1x1y = x−1

1 . Therefore H = ⟨x1, y⟩ is a group of order 2ℓ
such that xℓ1 = y2 = 1 and y−1x1y = x−1

1 . If ℓ > 1, (1) implies that H is dihedral. If ℓ = 1 then |H| = 2
and H is cyclic.

For (5), notice that y1y2 = x1 is a rotation. Let P be a point on ℓ2 on the edge of the k-gon. Let
P′ = y1y2(P) = y1(P)and observe that ∠POP′ = 2θ. Hence y1y2 is a rotation by 2θ = 2πa

b . Clearly y1y2

is a rotation of order b. Furthermore ⟨y1, y2⟩ = ⟨x1, y2⟩. But now (3) implies that y−1
2 x1y2 = x−1

1 and
(1) implies that ⟨x1, y2⟩ = D2b as required.

Finally, the second part of (6) follows directly from (5). For the first part, write ℓ = k/t and observe
that xt is of order ℓ. Then (1) implies that, for each i = 0, . . . , t− 1, the group Hi = ⟨xt, xiy⟩ is dihedral
of order 2(k/t) = 2l. Direct calculation implies that the reflections in Hi consist of the set

{xiy, xi+ty, xi+2ty, . . . , xi+(ℓ−1)ty}.

We conclude, first, that the groups are all distinct and every reflection is contained in such a group.
Next observe that, if two reflections are in distinct groups Hi and H j, then the angle between their
mirror lines is not a multiple of π/ℓ, and so (5) implies that they do not lie together in a dihedral
subgroup isomorphic to D2ℓ. In particular, H0, . . . ,Ht−1 are all of the subgroups isomorphic to D2ℓ,
and every reflection lies in a unique one of these groups. □

The next three lemmas concern the nilpotency, or otherwise, of the dihedral group D2k.

Lemma 3. Let G = D2k = {x, y : xk = y2 = 1, y−1xy = x−1}. Then

Z(D2k) =


{1}, if k odd;

{1, x
k
2 }, if k is even and k > 2;

D2k, if k = 2.

In the case where k is even and k > 2, D2k/Z(D2k) � Dk.
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Proof. If k = 2, the result is obvious. Assume, then, that k > 2. Lemma 2 (3) says that if x1 is
a rotation and y is a reflection, then x1y = yx−1

1 . This implies, first, that since k > 2, no reflection
lies in Z(G); it implies, second, that a rotation lies in Z(G) if and only if it is of order 2. The result
follows. □

Lemma 4. The group G = D2k is nilpotent if and only if k is a power of 2.

Proof. If k is a power of 2, then |G| is a power of 2, and hence G is nilpotent. If k is not a power of 2,
then there exists a non-trivial rotation, x, of odd order. But now, if y is a reflection (and hence of even
order), then Lemma 2 (3) implies that x and y do not commute. Thus G is not nilpotent. □

We investigate the situation where k is a power of 2 in more detail: We know that G is nilpotent,
but what is its nilpotency class?

Lemma 5. Let G = D2c+1 with c ≥ 1. Then the nilpotency class of G is equal to c.

Proof. If c = 1, then G is abelian and therefore has nilpotency class equal to 1, and the result holds.
Now assume that the result is true for c and prove that it is true for c + 1. So let G = D2(2c+1). The
upper central series of G is, by definition,

1 � Z(G) · · ·� G.

In particular, the number of terms between Z(G) and G in the upper central series for G is equal to
the number of terms in the upper central series for G/Z(G). But Lemma 3 implies that Z(D2k) � C2

and G/Z(G) � D2(2c). By assumption D2(2c) has nilpotency class equal to c. Therefore the nilpotency
class of G is c + 1, as required. □

3. Main Results

Our aim in this section is to prove Theorem 1. We will prove Theorem 1 with two lemmas.

Lemma 6. Let G = D2k with k ≥ 2 and let c be a positive integer. Then there exists a c-nilpotent
cover of G of size t where

t =

 k
gcd(k,2c) + 1, if k < {21, 22, . . . , 2c}.

1, if k ∈ {21, 22, . . . , 2c}.

Proof. If k ∈ {21, 22, . . . , 2c}, then Lemma 5 implies that G is nilpotent of class ≤ c, and so {G} is a
c-nilpotent cover of G, and the result holds. Assume, then, that k < {21, 22, . . . , 2c}.

Write ℓ = gcd(k, 2c). Observe, first, that there is a cyclic subgroup containing all rotations. We
need to show, therefore, that we can find k

ℓ
c-nilpotent subgroups containing all reflections. But now

Lemma 2(6) implies that every reflection lies in one of k
ℓ

subgroups isomoprhic to D2ℓ. Lemma 5 says
that D2ℓ is nilpotent of class ≤ c and we are done. □

Lemma 7. Let G = D2k with k ≥ 2 and let c be a positive integer. Then there exists a non-c-nilpotent
subset of G of size t where

t =

 k
gcd(k,2c) + 1, if k < {21, 22, . . . , 2c}.

1, if k ∈ {21, 22, . . . , 2c}.

Proof. If k ∈ {21, 22, . . . , 2c}, then we can take any element x ∈ G and {x} will be (vacuously) a
non-c-nilpotent subset of G, and the result holds. Assume, then, that k < {21, 22, . . . , 2c}.
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Write ℓ = gcd(k, 2c). Let x be a rotation of order k, and y any reflection. Since k does not divide
2c, x does not lie in a nilpotent dihedral subgroup of nilpotency class ≤ c. We need to show, therefore,
that we can find k

ℓ
reflections, any pair of which does not generate a c-nilpotent subgroup.

Consider the set y, xy, x2y, . . . , xk/ℓ−1y. Any pair of these reflections have mirror lines that differ
by an angle strictly less than π/ℓ. Lemma 2 (5) implies that they generate a dihedral group of order
strictly greater than ℓ. Then, Lemma 5 implies that this group is not nilpotent of class at most c. The
result follows. □

We have all the components that we need to prove our main result.

Proof of Theorem 1. Write t for the quantity on the right hand side of (1). Lemma 6 implies that
Σc(G) ≤ t; Lemma 7 implies that t ≤ σc(G); finally Lemma 1 implies that σc(G) ≤ Σc(G). We
conclude that

t ≤ σc(G) ≤ Σc(G) ≤ t.

We conclude immediately that σc(G) = Σc(G) = t, as required. □
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