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1. Introduction

Graphs consist of vertices and edges joining pairs of distinct vertices such that neither loops nor
multiple edges are allowed. If X is a graph, its vertex set is denoted V(X) and its edge set is denoted
E(X). The order of a graph X is |V(X)| and the size is |E(X)|. The number of edges incident with a
given vertex v is its valency and is denoted val(v). All graphs throughout this paper are connected and
finite.

An edge joining vertices u and v is denoted [u, v]. Continuing in this manner, a path of length t
from u0 to ut is a connected subgraph of order t + 1 all of whose vertices have valency 2 other than
u0 and ut which have valency 1. The path is denoted [u0, u1, ..., ut], where [ui, ui+1] is an edge for
0 ≤ i ≤ t − 1. If we start with a path of length t from u0 to ut and add the edge [u0, ut], we obtain a
cycle of length t + 1 and use the notation [u0, u1, ..., ut, u0].

A 2-factor in a graph X is a spanning subgraph of X such that every vertex has valency 2. A 2-
factor F of X separates a set A of k vertices in V(X) if F is composed of k cycles and A intersects the
vertex set of each cycle in F in a single vertex.

Definition 1. A graph X is k-spanning cyclable if for every A ⊆ V(X) such that |A| = k there is a
2-factor of X separating A.

The preceding concept has been studied because of the general problem of embedding cycles in
graphs. Lin et al. [1] considered k-spanning cyclability for n-cubes. Yang et al. [2] considered 2-
spanning cyclability for generalized Petersen graphs. In a recent paper, Qiao, Sabir and Meng studied
k-spanning cyclability of Cayley graphs on symmetric groups whose connection sets are transposition
trees [3]. The authors of this paper have examined the k-spanning cyclability of honeycomb toroidal
graphs [4].

We now consider the k-spanning cyclability of 4-valent Cayley graphs on Abelian groups. It is
easy to see that a regular graph of valency 4 cannot be k-spanning cyclable for k ≥ 4 since a cycle
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passing through any vertex v must contain two of its adjacent vertices. Hence, 4-valent graphs are at
most 3-spanning cyclable. Of course, a graph is Hamiltonian if and only if it is 1-spanning cyclable. It
is also well known that all Cayley graphs on a finite Abelian group of order at least 3 are Hamiltonian,
and hence all 4-valent Cayley graphs on Abelian groups are 1-spanning cyclable. This leaves us with
the 2-spanning and 3-spanning cyclability cases.

2. The 3-Valent Case

For a preliminary understanding of the general approach in examining the 4-valent graphs, and
for more completness, we look at the 2-spanning cyclability of 3-valent Cayley graphs on Abelian
groups.

Theorem 1. If X is a connected 3-valent Cayley graph on an Abelian group, then X is 2-spanning
cyclable if and only if it is isomorphic to Q3 or K22Cn, where n ≥ 4.

Proof. We consider two cases of the connection set S . The first is when S contains three involutions
and the other is when it contains exactly one. Let the connection set be S = {a, b, c} where all three
elements are involutions. In this case there are two possible graphs. The first is when one of the
involutions in S is equal to the sum of the other two involutions. In this case the Cayley graph is
isomorphic to K4. However, in order to separate two vertices we must have two cycles each of length
at least 3, and hence at least 6 vertices in the graph. Hence K4 is not 2-spanning cyclable. When none
of the involutions in S are the sum of the other two we have the the 3-dimensional cube Q3. It is also
easy to see that it is 2-spanning cyclable.

We now consider the second case when S = {a,±s} contains a single involution a. By considering
the subgraph generated by ±s, we have that X is isomorphic to either the circulant graph (defined in
Section 3) with connection set {±1, n/2}, n even, or the graph K22Cn, where n = ord(s). To see this,
note that when the order of s is less than the order of the graph, s generates the two disjoint cycles
containing the vertices sk and ask, where 1 ≤ k ≤ ord(s). Furthermore, a generates an edge between
each of the vertices sk and ask, hence forming a 3-valent graph. When the order of s is equal to the
order of the graph s generates a Hamiltonian cycle. Finally, a generates an edge between any element
sk1 and ask1 = sk2 for some k2. However note that the second equality implies that a = sk2−k1 , which
can only be an involution if k2 − k1 is equal to half the order of the graph.

First consider the circulant graph of even order n with connection set {±1, n/2}. If there is a 2-
factor with two cycles separating 0 and n/2, then one cycle must contain the path [n − 1, 0, 1] and the
other cycle must contain the path [n/2 − 1, n/2, n/2 + 1]. We see immediately that the 2-factor can
contain no diameter edges. Hence, there is no 2-factor separating 0 and n/2.

Now consider K22Cn. This graph has order 6 when n = 3 and the only 3-cycles in the graph are
the two vertex-disjoint 3-cycles T1 and T2 forming the product. Thus, there is no 2-factor separating
two vertices of T1 because there are only six vertices available. On the other hand, when n ≥ 4, it is
trivial to establish that K22Cn is 2-spanning cyclable.

□

As reflected in the above proof the approach taken to examine the 4-valent Cayley graphs on
Abelian groups is to first look at the possible structures of the graph, determined by different cases
of the connection set, and then to examine the k-spanning cyclability of each of these structures. We
begin by looking at the possible graph structures in the next section.

3. Graph Structure

In this section we describe the possible structures of the Cayley graphs in question. We will then
examine the spanning cyclability of these structures in the subsequent sections.
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We first define two classes of graphs which will help describe the structures of the Cayley graphs
in question. Let Pm denote the path of order m and length m − 1 and let Cn denote the cycle of order
n. The pseudo-Cartesian product of Cm and Cn, m, n ≥ 3, with jump ℓ is obtained by starting with the
Cartesian product Pm2Cn and adding the edges from um−1, j to u0, j+ℓ, where the second coordinates
are computed modulo n. The latter edges are said to have jump ℓ. The notation for this product is
Cm2ℓCn. Of course, when ℓ = 0, the pseudo-Cartesian product is just the ordinary Cartesian product.
An example of the product’s use can be found in [5]. The second class of graphs are called circulant
graphs and are defined to be Cayley graphs on a cyclic group.

There are four cases for the connection set S of a 4-valent Cayley graph on an Abelian group G.
The first is when S contains four involutions. The second is when S consists of two involutions and
one element of order greater than 2 and its inverse. The third case is when S has no involutions and
contains at least one element whose order is greater than 2 but less than |G|. Finally, the fourth case
is when S contains two elements of order |G| and their inverses. We now examine the structure of the
Cayley graphs in each of these cases.

When S contains four involutions, there are only two possible orders, 8 and 16. It is easy to verify
that all such graphs are 2-spanning cyclable. The first type is a Cayley graph of order 8 but since
a 3-spanning cyclable graph requires there to be three disjoint cycles with each cycle containing at
least three vertices, the graph must necessarily contain at least nine vertices and so a Cayley graph
of order 8 is not 3-spanning cyclable. The other case is when the Cayley graph is isomorphic to the
4-dimensional cube Q4 and it is easily verifiable that the graph is 3-spanning cyclable [1].

For the second case the connection set is S = {a, b,±s}, where a and b are involutions and s has
order r > 2, for which there are a couple of possibilities based on the fact a cyclic group has no
elements of order 2 when it has odd order and a unique element of order 2 when it has even order.
Let H be the cyclic subgroup of order r generated by s. If H has odd order, then the graph is C42Cr.
Similarly, if none of a, b or a + b belongs to H, then the graph is again C42Cr. If a + b belongs to
H, then the graph is isomorphic to the pseudo-Cartesian product C r

2
22C4. Note that when r = 4 it is

easy to verify that the graph is 2-spanning cyclable and not 3-spanning cyclable. Finally, if either a
or b belong to H, then the graph is not a pseudo-Cartesian product and is isomorphic to Y2K2, where
Y is the circulant graph of order r with connection set {±1, r/2}. This graph needs to be checked
separately.

The third case is similar to the second. Assume that the connection set is S = {±a,±b : a ,
−a, b , −b}. Without loss of generality we may assume that ord(a) < |G|. The orbit of e under the
cyclic group generated by a forms an ord(a)-cycle. Similar to the reasoning of the second case we
can use b to connect the vertices in this cycle to other cycles of length ord(a). We can see that the
resulting graph is a pseudo-Cartesian product of cycles.

Finally, for the final case we have S = {±a,±b : ord(a) = ord(b) = |G|}. We can see that every
element of G can be represented as the power of the element a, and hence G is a cyclic group. Since
b also generates G, and is not equal to a, we have that b = ka where gcd(k, |G|) = 1. Such a graph is
a circulant graph and is isomorphic to the Cayley graph on the additive group Z/nZ with connection
set S = {±1,±s}, which is denoted by circ(n;±1,±s), where gcd(s, n) = 1.

In summary the three classes of graphs that remain to be examined are the pseudo-Cartesian prod-
uct of cycles, Y2K2, where Y is the circulant graph of even order n with connection set {±1, n/2}, and
circ(n;±1,±s), where gcd(n, s) = 1. These graphs are examined in the following three subsequent
sections.

4. The Product of Cycles Case

We first note that there are three cases for the 3-spanning cyclability of the pseudo-Cartesian
product of two cycles. The first is when all three vertices are in distinct columns, the second is
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when two vertices are in the same column and the other is in some other column, and finally the third
case is when all three vertices are in the same column. Using the automorphism which maps a vertex
to the next column we may assume that one of the three vertices belongs to the first column in the
first case. We may also assume that the two vertices that are in the same column belong to the first
column for the second case. Finally, all three vertices can be in the first column for the third case.
The 2-spanning cyclability is similar to and simpler than the above.

We use a constructive technique throughout this section which we now describe in detail for one
example. We then leave it to the reader to apply the technique in all other situations. The basic idea
is the following. We start with a given 2-factor composed of two or three cycles for small values of m
and n. We then insert a certain number of rows and/or columns obtaining a 2-factor composed of the
same number of cycles for other values of m and n.

We use Figure 1 for the description. The Figure shows a 2-factor in the graph P32C4. Note that
this 2-factor separates both u0,0 and u1,0 from any vertex of the form ui,1, that is, any vertex in the
1-row. If you now subdivide each horizontal edge from the 0-column to the 1-column r times, we
obtain a 2-factor with two cycles in Pr+32C4 separating every vertex of the 0-row, except ur+2,0, from
every vertex of the 1-row. We refer to this as the ability to insert an arbitrary number of columns.

Note that all three columns have an edge from the 0-row to the 3-row. These edges may be
be subdivided to insert an arbitrary number of rows without increasing the number of cycles in the
resulting 2-factor. This is what we refer to as inserting an arbitrary number of rows.

There are occasions when we cannot insert an arbitrary number of rows or columns, but we may
always insert any even number of rows or columns. For example, consider the edge [u0,1, u0,2]. Sub-
divide this edge into the 3-path [u0,1, u0,a, u0,b, u0,2]. Then replace the edge [u0,a, u0,b] with the path
[u0,a, u1,a, u2,a, u2,b, u1,b, u0,b], where the obvious new vertices have been created. Then relabel the
rows with subscripts from 0 to 5. It is clear that we may repeat this an arbitrary number of times, and
that we may do it to produce an even number of rows.

We conclude with a particular example. Suppose we want a 2-factor in P92C7 separating u0,0 and
u0,4. Start with Figure 1 and subdivide each edge from the 0-row to the 3-row once. Let the second
subscript of each of these new vertices be 4. Now insert two new rows between u0,1 and u0,2. Also
insert six new columns between the 0-column and 1-column. The resulting 2-factor separates u0,0 and
u0,4 as required.

tt
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Figure 1.

Lemma 1. Two vertices in the same column of Pm2Cn, m ≥ 3 and n ≥ 4 even, have a 2-factor
separating them.

Proof. Consider Figure 1. We may rotate the graph vertically so that the vertices are either in the top
two rows or the top row and the row two below it. Then inserting columns allows us to have the two
vertices in any of the columns 0, 1, ...,m − 2. It is straightforward to see that we can add any even
number of rows between any two rows and extend the 2-factor appropriately. Doing so will give a
2-factor separating any two vertices in all but the last column. To separate vertices in the last column
we simply flip our extended 2-factor front to back. This completes the proof. □

The next result extends Lemma 1 to n odd.
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Figure 2.

Lemma 2. Two vertices in the same column of Pm2Cn, m ≥ 3 and odd n ≥ 5, can be separated by a
2-factor.

Proof. Consider Figure 2. Similar to the proof of Lemma 1 we may assume that the two vertices to
separate are in the top two rows or the top row and the row two below it. We may insert an arbitrary
number of even columns between the 0-column and the 1-column in both figures. This gives us 2-
factors that separate vertices of the top row from vertices in either of the next two rows below for
columns 0, 1, 2, . . . ,m− 3. We then may insert an arbitrary even number of rows between the top row
and the next row below to separate a vertex from the top row and a vertex an arbitrary distance below
it. (Note that we may restrict this distance to at most n/2.) Finally, we may insert an arbitrary even
number of rows between the bottom two rows to achieve the desired value of n. The preceding works
for columns 0, 1, . . . ,m − 3. To cover columns m − 2 and m − 1, we interchange left and right. This
completes the proof. □

Lemma 3. Pm2Cn is Hamiltonian for all m ≥ 1 and n ≥ 3.

Proof. Easy to see. □

Theorem 2. Pm2Cn is 2-spanning cyclable for all m ≥ 3 and n ≥ 4.

Proof. Lemmas 1 and 2 cover the case when the two vertices are in the same column. If the two
vertices are in columns i and j, where i < j, then we do the following. Look at the subgraph induced
on columns 0, 1, ..., i and the subgraph induced on columns i + 1, i + 2, ...,m − 1. The former is
isomorphic to Pi+12Cn and the latter is isomorphic to Pm−i−12Cn. Both of them are Hamiltonian by
Lemma 3 yielding a 2-factor separating the two vertices. □

Corollary 1. Cm2ℓCn is 2-spanning cyclable for all m ≥ 3 and n ≥ 3.

Proof. It is easy to see that Cm2ℓCn is 2-spanning cyclable for m = n = 3 and is left to the reader to
verify. The remaining cases are covered by Theorem 2. □

Lemma 4. If Cm2Cn has a 2-factor using no edges between column m − 2 and column m − 1 which
separates three vertices x, y and z in Cm2Cn, then Cm2ℓCn has a 2-factor separating x, y and z unless
some of the vertices lie in column m − 1. In the latter case the vertices in column m − 1 are shifted by
−ℓ to obtain the set of separated vertices.

Proof. Let F be the 2-factor of Cm2Cn separating x, y and z. Because there are no edges of F joining
vertices of column m − 2 to vertices of column m − 1, if we shift the vertices of column m − 1 by −ℓ,
F is transformed into a 2-factor F

′

in Cm2ℓCn. Any vertex of x, y, z not lying in column m − 1 does
not change position and any vertex in column m − 1 changes by −ℓ. The conclusion follows. □

Lemma 5. The pseudo-Cartesian product Cm2ℓC3 is 3-spanning cyclable if and only if m ≥ 4 and
ℓ = 0.
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Proof. We first consider m = 3. Because |C32ℓC3| = 9, the only possible 2-factors which may be used
to separate three vertices consist of three 3-cycles. Choose the three vertices u0,0, u0,1 and u1,0. If there
are three 3-cycles separating the preceding vertices, then the 3-cycle containing u0,0 must contain the
edge [u0,0, u0,2] and a vertex from the 2-column. This is not possible as ℓ is unique. Thus, C32ℓC3 is
not 3-spanning cyclable for all ℓ.

The next step is to show that Cm2C3 is 3-spanning cyclable for all m ≥ 4. It is clear that if
we choose three vertices lying in distinct rows or distinct columns, we easily may find a 2-factor
separating the three vertices. Hence, we may assume two of the vertices are u0,0 and u0,1 and the third
vertex is ui,0 or ui,1 for some i , 0. We assume that the third vertex is ui,0. Use the cycle formed by the
1-row and it contains u0,1. To obtain a cycle containing u0,0, take the edges [u0,0, u0,2] and [ui−1,0, ui−1,2],
and join them with the respective paths along the 0-row and the 2-row from left to right. Finally, to
get the cycle containing ui,0 which completes a 2-factor, use the edges [ui,0, ui,2] and [um−1,0, um−1,2]
and the respective paths along the 0-row and the 2-row from left to right.

We may do the obvious analogous construction when the third vertex is ui,1. This shows that
Cm2C3 is 3-spanning cyclable for m ≥ 4. To complete the proof we need to show that neither
Cm21C3 nor Cm22C3 are 3-spanning cyclable.

Choose the three vertices from the 0-column and consider ℓ = 1. Because three cycles separating
u0,0, u0,1 and u0,2 may not contain any edge in the 0-column, they must contain the respective 2-paths

[u1,0, u0,0, um−1,2], [u1,1, u0,1, um−1,0] and [u1,2, u0,2, um−1,1].

The cycles can use no edge of the (m − 1)-column which implies that the 2-path ending at um−1, j

must use the edge to um−2, j. It is easy to see this must continue as we extend the paths from right to
left. When we reach the 2-column, the paths may not be extended and the graph is not 3-spanning
extendable. Essentially the same argument works for ℓ = 2 and the proof is complete. □

Lemma 6. The pseudo-Cartesian product C32ℓCn is 3-spanning cyclable if and only if n ≥ 5 or,
n = 4 and ℓ , 2.

Proof. The case when n = 3 is settled in Lemma 5 above. In the following proof, we find 2-factors
not using edges between the last two columns. Lemma 4 allows us to assume ℓ = 0 throughout the
proof.

The first case is when all three vertices are in different columns. In this case we simply take the
three cycle columns to be our 2-factor.

The second case is when two vertices are in the same column and the other is not. Without loss of
generality we may assume that two of the vertices are u0,0 and u0, j, where j , 0 and the other vertex is
u2,k. We can take the last column cycle to be the cycle containing u2,k. The next cycle can be formed
by starting at u0,0 and moving one up or one down depending on where u0, j is, and then moving one
to the right, then one vertex up or down back to the vertex in the same row as u0,0 and then back to
u0,0. We can then make a cycle using the remaining vertices in a similar manner.

The final case is when all three vertices are in the same column. Again we may assume that all
three vertices are in the first column. There are three subcases to consider. When no two vertices
are adjacent, exactly two are adjacent, and when the three are consecutive to each other. For the first
subcase we may assume that the three vertices are u0,0, u0, j and u0,k, where 1 < j < k − 1 < n− 2. The
2-factor for this case is

[u0,0, u1,0, u1,n−1, ..., u1,k+1, u0,k+1, ..., u0,n−1, u0,0],

[u0,1, ..., u0,k−2, u1,k−2, ..., u1,1, u0,1]

and
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[u0,k−1, u1,k−1, u1,k, u0,k, u2,k, u2,k+1, ..., u2,k−1, u0,k−1].

For the second subcase we may assume that the three vertices are u0,0, u0,1 and u0,k, where 2 < k < n−1.
If k ≥ 4, then we can use the same 2-factor as above. If k = 3, we use the 2-factor

[u0,0, u1,0, u1,n−1, ..., u1,5, u0,5, ..., u0,n−1, u0,0],

[u0,1, u0,2, u1,2, u1,1, u0,1]

and

[u0,3, u1,3, u1,4, u0,4, u2,4, u2,5, ..., u2,3, u0,3].

Finally, for the last subcase we may assume the three vertices are u0,0, u0,1 and u0,2. The 2-factor for
this will be

[u0,0, u1,0, u1,n−1, ..., u1,5, u0,5, ..., u0,n−1, u0,0],

[u0,1, u1,1, u1,2, u1,3, u1,4, u0,4, u2,4, u2,5, ..., u2,1, u0,1]

and
[u0,2, u0,3, u2,3, u2,2, u0,2].

We now verify the cases when n = 4 and n = 5. Note that proofs for n ≥ 6 remain valid whenever
the three vertices are not in the same column. Hence, the case when three vertices are in the same
column remains. We start with n = 5. Without loss of generality the only subcases to check are when
the vertices are {u0,0, u0,1, u0,3} and {u0,0, u0,1, u0,2}. The 2-factors for the first subcase, for ℓ = 0, ..., 4
are, respectively,

{[u0,0, u0,4, u1,4, u2,4, u2,0, u1,0, u0,0], [u0,1, u0,2, u1,2, u2,2, u2,1, u1,1, u0,1], [u0,3, u1,3, u2,3, u0,3]},

{[u0,0, u0,4, u1,4, u1,0, u0,0], [u0,1, u0,2, u1,2, u1,1, u0,1], [u0,3, u1,3, u2,3, u2,4, ..., u2,2, u0,3]},

{[u0,0, u0,4, u1,4, u2,4, u2,0, u1,0, u0,0], [u0,1, u0,2, u1,2, u1,1, u0,1], [u0,3, u1,3, u2,3, u2,2, u2,1, u0,3]},

{[u0,0, u0,4, u1,4, u1,0, u0,0], [u0,1, u0,2, u1,2, u2,2, u2,1, u1,1, u0,1], [u0,3, u1,3, u2,3, u2,4, u2,0, u0,3]}

and

{[u0,0, u0,4, u1,4, u1,0, u0,0], [u0,1, u0,2, u1,2, u1,1, u0,1], [u0,3, u1,3, u2,3, u2,2, ..., u2,4, u0,3]}.

The 2-factors for the second subcase, for ℓ = 0, ..., 4 are, respectively,

{[u0,0, u0,4, u1,4, u2,4, u2,0, u1,0, u0,0], [u0,1, u1,1, u2,1, u0,1], [u0,2, u0,3, u1,3, u2,3, u2,2, u1,2, u0,2]},

{[u0,0, u0,4, u1,4, u1,0, u0,0], [u0,1, u1,1, u1,2, u1,3, u2,3, u2,4, u2,0, u0,1], [u0,2, u0,3, u2,2, u2,1, u0,2]},

{[u0,0, u0,4, u1,4, u1,3, u2,3, u0,0], [u0,1, u1,1, u1,0, u2,0, u2,4, u0,1], [u0,2, u0,3, u2,1, u2,2, u1,2, u0,2]},

{[u0,0, u0,4, u1,4, u2,4, u2,0, u1,0, u0,0], [u0,1, u1,1, u2,1, u2,2, u2,3, u0,1], [u0,2, u0,3, u1,3, u1,2, u0,2]}
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and
{[u0,0, u0,4, u1,4, u1,0, u0,0], [u0,1, u1,1, u2,1, u2,0, ..., u2,2, u0,1], [u0,2, u0,3, u1,3, u1,2, u0,2]}.

This completes the proof for n = 5. We now look at n = 4. Without loss of generality we need
only to separate the vertices u0,0, u0,1 and u0,2. The 2-factor which separates these for ℓ = 0, 1, 3 are,
respectively,

{[u0,0, u0,3, u1,3, u2,3, u2,0, u1,0, u0,0], [u0,1, u1,1, u2,1, u0,1], [u0,2, u1,2, u2,2, u0,2]}.

{[u0,0, u0,3, u1,3, u2,3, u0,0], [u0,1, u1,1, u1,0, u2,0, u0,1], [u0,2, u1,2, u2,2, u2,1, u0,2]}

and
{[u0,0, u0,3, u2,0, u1,0, u0,0], [u0,1, u1,1, u2,1, u2,2, u0,1], [u0,2, u1,2, u1,3, u2,3, u0,2]}.

It remains to show that the vertices cannot be separated when ℓ = 2. If they can be separated,
then the separating 2-factor must consist of three 4-cycles because C322C4 has girth 4. The cycle
C containing u0,1 must contain the 2-path [u1,1, u0,1, u2,3]. This 2-path does not belong to a 4-cycle
because u1,1 and u2,3 have no common neighbour. Hence, there is no separating 2-factor.

□

Theorem 3. The pseudo-Cartesian product Cm2ℓCn is 3-spanning cyclable if and only if

• m ≥ 4, n = 3 and ℓ = 0,
• m = 3, n ≥ 5,
• m = 3, n = 4 and ℓ , 2,
• m, n ≥ 4.

Proof. Lemmas 5 and 6 cover the cases n = 3 and m = 3, respectively. We now look at m ≥ 4 and
n ≥ 4. Let x, y and z be three vertices to be separated by a 2-factor. We consider three cases depending
on the number of columns in which x, y and z appear.
Case 1. Three columns. At least one column does not contain one of the three vertices and so we may
assume that x lies in some column i, y lies in column j, and z in column k, where 0 ≤ i < j < k ≤ m−2.
Let the graph be Cm2Cn. The subgraph induced by columns m−1, 0, 1, ..., i is isomorphic to Pi+22Cn.
The subgraph induced by columns i + 1, i + 2, ..., j is isomorphic to P j−i2Cn. Finally, the subgraph
induced by columns j+1, j+2, ...,m−2 is isomorphic to Pm−2− j2Cn. Each of these three subgraphs is
Hamiltonian by Lemma 3 and this yields a 2-factor separating x, y and z. This 2-factor uses no edges
between columns m − 2 and m − 1 and none of the three vertices lie in column m − 1. Lemma 4 then
implies there is a 2-factor separating any three vertices in distinct columns in Cm2ℓCn.
Case 2. Two columns. We may assume x and y both lie in column 0 and z lies in some other column.
The 2-factor can be formed as follows. We take the column containing z as one cycle. The subgraph
induced on the remaining vertices is isomorphic to Pm−12Cn no matter the value of ℓ. It is 2-spanning
cyclable by Theorem 2. Thus there is a 2-factor of this subgraph separating x, y and z.
Case 3. One column. Without loss of generality we may assume that x, y and z lie in column 0 and
that x is the upper left vertex of the vertex array, that is, position (0, n − 1). There are some subcases
to consider.

We first assume that no two of x, y, z are successive in the column. So let z and y be in the respective
positions (0, i) and (0, j), where 0 < i < j − 1 < n − 3. Note that n ≥ 6 in this subcase.

Consider Figure 3. In both graphs we may subdivide the vertical edges between the top row and the
row below, and between the row containing y and the row below it so that we may achieve an arbitrary
gap between x and y and an arbitrary gap between y and z. We may insert an arbitrary number of rows
between the two bottom rows in the rightmost graph so that we have an arbitrary gap between z and x
of two or more. We may insert an arbitrary number of columns between the third and fourth column
without using any edges between vertices of the two rightmost columns. Thus, Lemma 4 takes care
of this case.
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Figure 3.

The next subcase is when x and y are successive and z has a gap on both sides in the column. Note
that this implies n ≥ 5. The case n = 5 is special and we handle it separately.
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Figure 4.

Figure 4 shows 2-factors separating x, y and z for C42ℓC5 for ℓ = 0, 1 and 2. We can flip the right
and middle graph to obtain covers for the cases ℓ = 3 and 4, respectively. It is easy to see that we can
add any number of columns to each of the initial figures so that Cm2ℓC5 has a 2-factor separating x, y
and z for all m ≥ 4.
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Figure 5.

Now let n ≥ 6. This means there is a gap with at least two vertices. Figure 5 shows a typical
situation but note that z also could be in row 1 instead of row 2 as shown. We may subdivide the
vertical edges between the row containing y and the row below to obtain an arbitrary gap between y
and z. Similarly, we may add an arbitrary number of rows between the two bottom rows to obtain
an arbitrary gap between z and x. It is easy to see that we can add any number of columns between
the last two columns without using any edges between the last two columns. This completes the case
that two of the vertices are successive.
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We now consider the case that the three vertices are successive. Figure 6 provides a solution for
C42ℓC4 for all ℓ. We can easily add any number of columns giving us a solution for Cm2ℓC4 for all
m ≥ 4.
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Figure 7.

Figure 7 produces solutions for three successive vertices and n = 5. An arbitrary number of
columns may be added to any of the graphs so that we have solutions for Cm2ℓC5 for all m ≥ 4.

It remains to look at the subcase when m ≥ 4 and n ≥ 6.
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Figure 8.

Consider Figure 8 above. It is easy to see that we can add any number of rows between the bottom
two rows. We can also add any number of columns between the last two columns. Since there are no
edges between the last two columns and using Lemma 4 we have that Cm2ℓCn separates x, y and z for
all m ≥ 4 and all n ≥ 6. This takes care of all cases and proves Theorem 3.

□

It is easy to see that the graph K22ℓCn, ℓ , 0, is 2-spanning cyclable. Using the methods from
above we can show that when ℓ = 1 or 2, the graph is not 3-spanning cyclable and when ℓ ≥ 3 and
n ≥ 2ℓ + 1, the graph is 3-spanning cyclable.
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5. The Special Case

In this section we examine the special case that the graph is isomorphic to Y2K2, where Y is the
circulant graph of even order n with connection set {±1, n/2}. For convenience and a more general
understanding we define a generalisation of the psuedo-Cartesian product of two cycles by Cm2τCn,
where τ ∈ S n denotes a permutation. The graph is obtained by starting with the Cartesian product
Pm2Cn and adding edges from um−1, j to u0,τ( j).

It is easily verifiable that the special case graph is isomorphic to Cm2τC4, where m ≥ 3 and
τ = (0 3)(1 2). Note that a convenient automorphism for this graph is ρ which maps ui, j to ui+1, j

for i < m − 1, and um−1, j to u0,τ( j). Another convenient automorphism for this special case graph is
α(ui, j) = ui,3− j.

Theorem 4. The graph Cm2τC4, where τ = (0 3)(1 2), is both 2-spanning and 3-spanning cyclable
for m ≥ 3.

Proof. Theorem 2 shows that the graph is 2-spanning cyclable for m ≥ 3. For the 3-spanning case
we have three cases. The first is when all three vertices lie in different columns and we leave the easy
verification that there is a 2-factor separating the three vertices to the reader.

The second case is when two vertices x, y are in the same column and the other vertex z is not.
When m = 3 it is easy to verify. Suppose that m ≥ 4. In this case we can use the automorphism ρ
repeatedly until z is mapped to column 0. We can then use the column 0 cycle to contain that vertex
and use Theorem 2 to separate the remaining vertices.

This then leaves us with the third case in which all three vertices are in the same column. This
of course means that all three vertices must be in different rows. Using the automorphism ρ we can
assume that all three vertices are located in column 0. Also, using the automorphism α we see that we
only need to separate the triplets {u0,0, u0,1, u0,2} and {u0,0, u0,1, u0,3}. It is easy to verify this for m = 3
and it is left to prove it for m ≥ 4.

We only need one 2-factor which consists of the cycles

[u0,0, u1,0, u1,3, ..., um−1,3, u0,0],

[u0,1, u1,1, u1,2, ..., um−1,2, u0,1]

and
[u0,3, um−1,0, ..., u2,0, u2,1, ..., um−1,1, u0,2, u0,3].

This 2-factor separates the triplets {u0,0, u0,1, u0,2} and {u0,0, u0,1, u0,3}. □

6. The Circulant Case

We will assume that the vertices on the graph circ(n;±1,±s) are cyclically labelled ui, where
0 ≤ i ≤ n − 1, and where the index i is computed modulo n. We also assume that n ≥ 2s. We define
the automorphism π by π(ui) = ui+1.

Let P[x, y] denote the path [ux, ux+1, ux+2, . . . , uy−1, uy]. Note that P[x, x + 1] is the edge [ux, ux+1],
whereas the path P[x + 1, x] is a Hamilton path whose terminal vertices are ux and ux+1. For x − y
even, we denote the path [ux, ux+2, ux+4, . . . , uy] by P2[x, y]. An important convention is that P[x, x]
and P2[x, x] both denote the single vertex ux.

Theorem 5. The graph circ(n;±1,±s), where s ≥ 2, gcd(n, s) = 1 and n ≥ 2s, is 2-spanning cyclable
if and only if n ≥ 6.

Proof. Since there must be at least 2 cycles both of length at least 3 we have that n ≥ 6.
We first consider s = 2. Note that in this case n must be odd. We show that we can always separate

u0 from any vertex ui where i , 0. In this case we consider the 2-factor consisting of the cycles
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[un−1, un−2, un−3, un−1] and P2[0, n − 5] ∪ P[n − 5, n − 4] ∪ P2[1, n − 4] ∪ P[0, 1]. Using this 2-factor
and the automorphism π we can separate u0 from all ui, where i , 0.

We now consider s ≥ 3. We start by constructing a 2-factor F consisting of the cycles [u0, us] ∪
P[s, n− s]∪ [un−s, u0] and P[1, s−1]∪ [us−1, un−1]∪P[n− s+1, n−1]∪ [un−s+1, u1]. This 2-factor will
separate u0 from the vertices in the second cycle. To separate u0 from all other vertices we consider
π(F) and π−1(F). □

We now move onto the 3-spanning cyclability of circulant graphs.

Theorem 6. The graph circ(n;±1,±2) is not 3-spanning cyclable.

Proof. Consider separating the vertices u0, u1 and u2. The vertex u1 is forced to be adjacent to u3 in its
cycle. The vertex u2 cannot be adjacent to any of u0, u1 and u3 and hence we have a contradiction. □

Theorem 7. The graph circ(n;±1,±s), where n = 2s + 1 or n = 2s + 2, is not 3-spanning cyclable.

Proof. We first look at the case n = 2s+1. Consider separating the vertices u0, us and un−s. The vertex
u0 is forced to be adjacent to u1 in its cycle. The vertex un−s is also forced to be adjacent to u1 in its
cycle and we reach a contradiction.

We now look at the case n = 2s + 2. Consider separating the vertices u0, u1 and us+1. The vertex
u1 can only be adjacent to u2 and un−s+1 in its cycle.

Suppose that vertex us+1 is adjacent to un−s in its cycle. From that vertex it cannot move to vertex
un−s+1, u0 or u2 and hence we reach a contradiction. So us+1 must only be adjacent to un−1 and us in its
cycle.

Finally, u0 can only be adjacent to un−s and we reach a contradiction. □

We now show that the graph circ(n;±1,±s), where s ≥ 3 is 3-spanning cyclable for sufficiently
large n.

Theorem 8. The graph circ(n;±1,±s), where s ≥ 3, is 3-spanning cyclable for n ≥ 4s + 3.

Proof. We assume s ≥ 3 because of Theorem 6. Let C[x] be the 4-cycle [ux, ux+1, ux+s+1, ux+s, ux].
We now show that any three distinct vertices can be separated when n ≥ 4s + 3. Without loss of
generality suppose that one of the three vertices is u0. Let the other two vertices be ui and u j, where
n − 1 ≥ j > i ≥ 1. Because of the automorphism interchanging the vertices uk and un−k, 0 ≤ k ≤ n/2,
we may assume that n− j ≥ i. Further, we may assume j− i ≥ i because we can cyclically relabel the
vertices by subtracting i from each subscript. There are three cases to consider.

The strategy in all the cases is the same. We choose two 4-cycles each of which contains one of
the target vertices and then we find a third cycle containing the remaining target vertex and the rest of
the vertices, thereby yielding a 2-factor separating the three vertices. We call this 2-factor completion
and provide details in the first case below.

The first case is i > s and we break this into two subcases. When i = s + 1 or i = s + 2, use the 4-
cycle C[1] containing ui and the 4-cycle C[ j−1] containing u j. To form the cycle containing u0 which
completes a 2-factor, use the paths P[3, s], P[s+ 3, j− 2], P[ j+ 1, j− 2+ s] and P[ j+ s+ 1, 0] joined
by the edges [u0, us],[u3, us+3],[u j−2, u j−2+s] and [u j+1, u j+s+1]. It is straightforward to verify that the
vertices required for the latter cycle are available. When i > s+ 2, use the 4-cycle C[n− s] containing
u0 and the 4-cycle C[i − s] containing ui. Complete to a 2-factor as in the preceding subcase.

The second case is i = s and we also break this into three subcases. When j ∈ {2s, 2s + 1}, we use
the 4-cycle C[2s] containing u j and the 4-cycle C[n − s] containing u0. The 2-factor completion is
straightforward. When 3s + 2 ≥ j ≥ 2s + 2, we use the 4-cycle C[s − 1] containing ui and the 4-cycle
C[ j] containing u j. The 2-factor completion again is straightforward. Finally, when j ≥ 3s+3, we use
the 4-cycle C[s− 1] as before and the 4-cycle C[ j− s] containing u j. Perform the 2-factor completion
as before.
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The last case is i < s and there are four subcases. If j ≥ 3s + 3, then use the 4-cycle C[ j − s − 1]
containing u j and the 4-cycle C[i] containing ui. Carry out the usual 2-factor completion to finish this
subcase. If 2s+2 ≤ j ≤ 3s+2, then use the 4-cycle C[i] containing ui. If j = 3s+2 we use the 4-cycle
C[ j − 1] to contain u j otherwise we use C[ j]. The 2-factor completion is straightforward. Note that
this subcase requires that n ≥ 4s + 3.

When j ∈ {2s, 2s + 1}, use the 4-cycle C[2s] containing u j. There are two subcases. When i = 1,
use the 4-cycle C[1] when s > 3, and C[n − s + 1] when s = 3, to contain ui, but when i > 1, use the
4-cycle C[n − s] containing u0. In both situations it is easy to carry out a 2-factor completion.

The final subcase is i < j < 2s. In this subcase we use the 4-cycle C[ j] containing u j and the
4-cycle C[n − s − 1] containing u0. The completion to a 2-factor is straightforward. This completes
the proof. □
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