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Abstract: An outer independent double Roman dominating function (OIDRDF) on a graph G is
a function f : V(G) → {0, 1, 2, 3} having the property that (i) if f (v) = 0, then the vertex v must
have at least two neighbors assigned 2 under f or one neighbor w with f (w) = 3, and if f (v) = 1,
then the vertex v must have at least one neighbor w with f (w) ≥ 2 and (ii) the subgraph induced by
the vertices assigned 0 under f is edgeless. The weight of an OIDRDF is the sum of its function
values over all vertices, and the outer independent double Roman domination number γoidR(G) is
the minimum weight of an OIDRDF on G. The γoidR-stability (γ−oidR-stability, γ+oidR-stability) of G,
denoted by stγoidR(G) (st−γoidR

(G), st+γoidR
(G)), is defined as the minimum size of a set of vertices whose

removal changes (decreases, increases) the outer independent double Roman domination number. In
this paper, we determine the exact values on the γoidR-stability of some special classes of graphs, and
present some bounds on stγoidR(G). In addition, for a tree T with maximum degree ∆, we show that
stγoidR(T ) = 1 and st−γoidR

(T ) ≤ ∆, and characterize the trees that achieve the upper bound.
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1. Introduction

All graphs considered in this article are finite, undirected and simple. Let G = (V, E) be a graph of
order |V(G)| = n. For any vertex v ∈ V(G), the open neighborhood of v is the set N(v) = {u ∈ V(G) |
uv ∈ E(G)} and the closed neighborhood of v is the set N[v] = N(v) ∪ {v}. We denote the degree of
a vertex v in a graph G by degG(v), or simply by deg(v) if the graph G is clear from the context. Let
δ(G) and ∆(G) denote the minimum and maximum degrees, respectively, of vertices in G. We call a
vertex of degree one a leaf, and its (unique) neighbor a support vertex. A support vertex is said to be
strong if it has at least two leaf neighbors, otherwise is said to be weak.

A complete graph on n vertices is denoted by Kn, while a complete bipartite graph with partite
sets of size p and q is denoted by Kp,q. We write Pn for the path of order n, Cn for the cycle of order n
and Kn for the graph with n vertices and no edges. The distance dG(u, v) between two vertices u and v
in a connected graph G is the length of a shortest (u, v)-path in G while the diameter, diam(G), of G is
the maximum distance among all pairs of vertices in G. A tree is an acyclic connected graph. A star
is the graph K1,m, where m ≥ 1, the vertex of degree m is called the center of the star. A double star
S r,s is formed from two disjoint stars K1,r and K1,s by adding an edge joining their center vertices. A
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rooted tree T distinguishes one vertex r called the root.
Let k ≥ 1 be an integer and let f be a function that assigns labels from the set {0, 1, . . . , k + 1}

to the vertices of a graph G. The active neighborhood AN(v) of a vertex v ∈ V(G) with respect to
f is the set of all vertices w ∈ N(v) such that f (w) ≥ 1. Let AN[v] = {v} ∪ AN(v). A [k]-Roman
dominating function, abbreviated [k]RDF, is a function f : V(G) −→ {0, 1, . . . , k + 1} satisfying the
condition that for any vertex v ∈ V(G) with f (v) < k,

∑
u∈N[v]

f (u) ≥ |AN(v)| + k. The weight of a

[k]RDF is ω( f ) = Σv∈V(G) f (v), and the [k]-Roman domination number γ[kR](G) of G is the minimum
weight of a [k]RDF on G. A γ[kR](G)-function is a [k]RDF of weight γ[kR](G). For a [k]RDF f on G,
let V f

i = {v ∈ V | f (v) = i} for all i ∈ {0, 1, . . . , k + 1}. Consequently, any [k]RDF f can be represented
by f = (V f

0 ,V
f

1 , . . . ,V
f

k+1), where the superscript f can be deleted in V f
i when no confusion arises.

The [k]-Roman domination was introduced by Abdollahzadeh Ahangar et al. [1] and has been studied
in [2, 3]. Clearly, when k = 1, γ[1R](G) matches with the usual Roman domination number γR(G)
which has been surveyed and detailed in two book chapters and survey papers [4–8]. Moreover, if
k = 2, then we deal with double Roman domination introduced by Beeler et al. [9], while if k = 3,
then we deal with triple Roman domination investigated in [1, 10, 11].

An outer independent [k]-Roman dominating function abbreviated OI[k]RDF, defined as an
[k]RDF f such that V f

0 is an independent set. The minimum weight of an OI[k]RDF of G is the outer
independent [k]-Roman domination number γoi[kR](G), which we will shorten by OI[k]RD-number. It
is worth noting that some studies have already been done on the OI[k]RD-number for k = 1 (see for
example, [12–14] ) and for k = 2 (see for example, [15–17]).

In this paper, we study the outer independent double Roman domination stability (OIDRD-
stability) of graphs. The outer independent double Roman domination stability, or just γoidR-stability,
of a graph G is the minimum size of a set of vertices whose removal changes the outer independent
double Roman domination number. We denote the γoidR-stability of G by stγoidR(G). The γ−oidR-stability
of G, denoted by st−γoidR

(G), is defined as the minimum size of a set of vertices whose removal de-
creases the outer independent double Roman domination number, and the γ+oidR-stability of G, denoted
by st+γoidR

(G), is defined as the minimum size of a set of vertices whose removal increases the outer
independent double Roman domination number, if such a set exists. If there is no a set of vertices of
G whose removal increases the outer independent double Roman domination number, then we define
st+γoidR

= ∞. Clearly, stγoidR(G) = min{st−γoidR
(G), st+γoidR

(G)}.
In this paper, we determine the exact values on the γoidR-stability of some special classes of graphs,

and present some bounds on stγoidR(G). We also characterize all graphs G with large stγoidR(G). In
addition, for a tree T with maximum degree ∆, we show that stγoidR(T ) = 1 and st−γoidR

(T ) ≤ ∆, and
characterize the trees that achieve the upper bound.

2. Exact Value and Bounds

In this section, we determine the outer independent double Roman domination stability for some
classes of graphs and present various bounds for this parameters. Ahangar et al. [17] observed that:

Proposition 1 ( [17]). For n ≥ 1, γoidR(Pn) =
{

n if n = 3
n + 1 otherwise.

Proposition 2 ( [17]). For n ≥ 3, γoidR(Cn) =
{

n if n ≡ 0 (mod 2)
n + 1 otherwise.

Next corollaries are immediate consequence of above propositions.

Corollary 1. For n ≥ 2, st−γoidR
(Pn) =

{
2 if n = 3
1 otherwise.
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Corollary 2. For n ≥ 2, st+γoidR
(Pn) =

{
1 if n = 3
∞ otherwise.

Corollary 3. For n ≥ 2, stγoidR(Pn) = 1.

Corollary 4. For n ≥ 3, st−γoidR
(Cn) =

{
2 if n ≡ 0 (mod 2) and n , 4
1 otherwise.

Corollary 5. For n ≥ 3, st+γoidR
(Cn) = ∞.

Corollary 6. For n ≥ 3,

stγoidR(Cn) =
{

2 if n ≡ 0 (mod 2) and n , 4
1 otherwise.

It is observed in [15] that for p ≥ 1, γoidR(Kp) = p + 1 and for p ≥ q ≥ 1,

γoidR(Kp,q) =


3 if q = 1
2q if q ∈ {2, 3}
q + 4 if q ≥ 4.

From the above results, we can easily obtain the following conclusion.

Corollary 7. For n ≥ 2, st−γoidR
(Kn) = st+γoidR

(K1,n−1) = 1, st−γoidR
(K1,n−1) = n − 1 and stγoidR(Kn) =

stγoidR(K1,n−1) = 1.

Corollary 8. For p ≥ q ≥ 1, stγoidR(Kp,q) = 1.

In the sequel we present several bounds and characterizations for the OIDRD-stability of a graph.
Since for any graph G of order n ≥ 2, γoidR(G) ≥ 3 with equality if and only if G = K1,n−1, the proof
of the first observation is trivial.

Observation 1. If G is a connected graph of order n ≥ 2, then st−γoidR
(G) ≤ n − 1 with equality if and

only if G = K1,n−1.

Proof. The bound follows from the fact that for any graph of order at least two, γoidR(G) ≥ 3 and that
γoidR(K1) = 2.

The sufficiency is clear. Assume now that st−γoidR
(G) = n − 1. If γoidR(G) ≥ 4, then for any two

adjacent vertices u, v of G we have γoidR(G[u, v]) = 3 and this leads to the contradiction st−γoidR
(G) ≤

n − 2. Thus γoidR(G) = 3 and so G = K1,n−1. □

Proposition 3. Let G be a graph of order n ≥ 2. Then

stγoidR(G) ≤ δ(G) + 1.

This bound is sharp for graphs with isolated vertices.

Proof. Let u be a vertex of G with minimum degree δ(G), G1 = G − N(u) and G2 = G − N[u].
Suppose that f is a γoidR(G)-function. If u is an isolated vertex, then f (u) = 2 and we have γoidR(G2) =
γoidR(G) − 2. Thus stγoidR(G) ≤ δ(G) + 1. So we assume that u is not an isolated vertex. If γoidR(G1) ,
γoidR(G), then stγoidR(G) ≤ δ(G) < δ(G) + 1. Let γoidR(G1) = γoidR(G) and let g be a γoidR(G1)-
function. Since u is an isolated vertex in G1, g(u) = 2 and we have γoidR(G1) = γoidR(G2) + 2. That is,
γoidR(G2) = γoidR(G) − 2 and so stγoidR(G) ≤ δ(G) + 1. □

Proposition 4. Let G be a connected graph of order n with γoidR(G) ≥ 4, then

stγoidR(G) ≤ max{1, n − ∆(G) − 1}.
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Proof. If ∆(G) = 2, then G is the path Pn or a cycle Cn and by Corollary 3 or Corollary 6 we are done.
Let ∆(G) ≥ 3 and f = (V0,V1,V2,V3) be a γoidR(G)-function. If V1 , ∅ and v ∈ V1, then the restriction
of f on G−v is an OI[2]RDF of G−v with weight ω( f )−1 and so stγoidR(G) = 1. Assume that V1 = ∅.
Let u be a vertex with maximum degree ∆(G) and X = V(G) − N[u]. We consider some cases based
on the value of f (u).
Case 1. Assume that f (u) = 3.

If
∑
x∈X

f (x) > 0, then the restriction of f on G − X is an OI[2]RDF of G − X with weight less than

ω( f ) and we have stγoidR(G) ≤ st−γoidR
(G) ≤ |X| = n − ∆(G) − 1. Assume that

∑
x∈X

f (x) = 0. If X , ∅,

then there is a vertex v ∈ N(u) such that f (v) ≥ 2. Then the function g defined on G − X by g(v) = 1
and g(x) = f (x) for the remaining vertices, is an OI[2]RDF of G − X with weight at most ω( f ) − 1
and again stγoidR(G) ≤ n−∆(G)− 1. Assume that X = ∅. Since γoidR(G) ≥ 4, there is a vertex v ∈ N(u)
such that f (v) ≥ 1. Then the restriction of f on G − v is an OI[2]RDF of G − v with weight at most
ω( f ) − 1 and so stγoidR(G) = 1.
Case 2. Assume that f (u) = 2.

If
∑
x∈X

f (x) ≥ 2, then the function g defined on G−X by g(u) = 3 and g(x) = f (x) for the remaining

vertices, is an OI[2]RDF of G − X with weight at most ω( f ) − 1 and so stγoidR(G) ≤ n − ∆(G) − 1.
Assume that

∑
x∈X

f (x) = 0 (note that V1 = ∅). If X = ∅, then it follows from γoidR(G) ≥ 4 and V1 = ∅

that there is a vertex v ∈ N(u) such that f (v) ≥ 2. Then the function g defined on G − v by g(u) = 3
and g(x) = f (x) for the remaining vertices, is an OI[2]RDF of G− v with weight at most ω( f )− 1 and
we have stγoidR(G) = 1. Let X , ∅. Then there is a vertex v ∈ N(u) such that f (v) = 3 or there are two
vertices v,w in N(u) such that f (v) ≥ 2 and f (w) ≥ 2. Define the function g on G − X by g(u) = 3,
g(x) = 1 for x ∈ N(u) ∩ (V2 ∪ V3) and g(x) = 0 for the remaining vertices. Clearly g is an OI[2]RDF
of G − X with weight at most ω( f ) − 1 and so stγoidR(G) ≤ n − ∆(G) − 1.
Case 3. Assume that f (u) = 0.

Since f is an OI[2]RDF of G with V1 = ∅, certainly we have f (x) ≥ 2 for each x ∈ N(u). Then the
function g defined on G − X by g(u) = 2 and g(x) = 1 for the remaining vertices, is an OI[2]RDF of
G − X with weight at most ω( f ) − 1 and so stγoidR(G) ≤ n − ∆(G) − 1. This completes the proof. □

3. Graphs G with Large γoidR-Stability

In this section we characterize graphs G with stγoidR(G) ∈ {n − 1, n − 2, n − 3, n − 4}.

Proposition 5. Let G be a connected graph of order n ≥ 2. Then stγoidR(G) = n − 1 if and only if
G = K2.

Proof. If G = K2, then clearly stγoidR(G) = 1 = n − 1. Now we prove the necessity. Let G be a
connected graph with stγoidR(G) = n − 1. Using Proposition 3 we have n − 1 = stγoidR(G) ≤ δ(G) + 1,
that is δ(G) ≥ n − 2. If δ(G) = n − 1, then G is the complete graph Kn and Corollary 7 leads to
G = K2, as desired. Assume that δ(G) = n − 2. If γoidR(G) ≥ 4, then by Proposition 4 we obtain
n− 1 = stγoidR(G) ≤ 1. That is n = 2 and so γoidR(G) = 3, a contradiction. If γoidR(G) = 3, then G is the
star K1,n−1 and Corollary 7 leads to n − 1 = stγoidR(G) = 1. It follows that n = 2 and thus G = K2. □

Proposition 6. Let G be a connected graph of order n ≥ 3. Then stγoidR(G) = n − 2 if and only if
G ∈ {P3,K3}.

Proof. If G ∈ {P3,K3}, then clearly stγoidR(G) = 1 = n − 2. Now we prove the necessity. Let G be a
connected graph of order n ≥ 3 with stγoidR(G) = n − 2. Then obviously ∆(G) ≥ 2. If stγoidR(G) = 1,
then n = 3 and we have G ∈ {P3,K3} as desired. Hence we assume that stγoidR(G) ≥ 2. If γoidR(G) ≥ 4,
then Proposition 4 leads to ∆(G) ≤ 1 which is a contradiction. So γoidR(G) = 3 and G is the star K1,n−1

which contradicts the fact that stγoidR(K1,n−1) = 1. □
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Proposition 7. Let G be a connected graph of order n ≥ 4. Then stγoidR(G) = n − 3 if and only if
G ∈ {P4,C4,K4,K1,3 + e,K4 − e}.

Proof. The sufficiency is straightforward to check. To prove the necessity, let G be a connected graph
of order n ≥ 4 with stγoidR(G) = n − 3. Obviously ∆(G) ≥ 2. If stγoidR(G) = 1, then n = 4 and it is
easy to verify that G ∈ {P4,C4,K4,K1,3 + e,K4 − e} as desired. Hence we assume that stγoidR(G) ≥ 2
and so n ≥ 5. If γoidR(G) = 3, then G is the star K1,n−1 and Corollary 7 leads to the contradiction
1 = stγoidR(K1,n−1) ≥ 2. Thus γoidR(G) ≥ 4. Then Proposition 4 leads to ∆(G) ≤ 2, thus ∆(G) = 2.
Combining this with the condition that G is connected, we have that G is a path or a cycle. Since
stγoidR(Pn) = 1, it follows from stγoidR(G) ≥ 2 that G is a cycle. Combining Corollary 6 and the
condition stγoidR(G) = n − 3, we obtain that n = 5 which is a contradiction. This completes the
proof. □

x

y

Figure 1. A Graph of Order 6 with stγoidR(G) = 2.

Proposition 8. Let G be a connected graph of order n ≥ 6. Then stγoidR(G) = n − 4 if and only if G is
the graph illustrated in Figure 1.

Proof. The sufficiency is straightforward to check. To prove the necessity, let G be a connected graph
of order n ≥ 6 with stγoidR(G) = n − 4. Clearly ∆(G) ≥ 2 and stγoidR(G) ≥ 2. So γoidR(G) ≥ 4. Note
that if γoidR(G) = 3, then G is a star K1,n−1 and we have stγoidR(G) = 1 by Corollary 7. It follows from
Proposition 3 that n − 4 = stγoidR(G) ≤ δ + 1 and so δ ≥ n − 5. Combining this with Proposition 4, we
obtain

n − 5 ≤ δ ≤ ∆ ≤ 3. (1)

If ∆(G) = 2, then n ∈ {6, 7} and G is a path or cycle of order n. It follows from Corollaries 3 and 6
that G = C6. Henceforth we assume that ∆(G) = 3. By (1) we obtain n ∈ {6, 7, 8}. Let v ∈ V(G)
be a vertex with maximum degree 3 with N(v) = {v1, v2, v3} and let f = (V0,V1,V2,V3) be a γoidR(G)-
function. If V1 , ∅ and z ∈ V1, then the function f restricted to G − z is an OI[2]RDF of G − z of
weight ω( f ) − 1 and so n − 4 = stγoidR(G) ≤ 1 which is a contradiction. Hence we may assume that
V1 = ∅. Since G is a connected graph of order n ≥ 6 with maximum degree 3, we assume, without
loss of generality, that u ∈ N(v1) − N[v]. If γoidR(G) ≥ 7, then the function g defined on G[N[v] ∪ {u}]
with f (v) = f (u) = 2, f (v2) = f (v3) = 1 and f (v1) = 0 is an OI[2]RDF of weight less that ω( f ) and
so n − 4 = stγoidR(G) ≤ n − ∆(G) − 2 which leads to the contradiction ∆(G) ≤ 2. Thus we may assume
that γoidR(G) ≤ 6. We distinguish three cases.
Case 1. Assume that n = 8.

By (1) we conclude that G is a 3-regular graph. So G has 12 edges. If |V2| + |V3| ≤ 3, then
V2 ∪ V3 can cover at most 9 edges of G and so there are at least three edge between the vertices of
V0, a contradiction with definition. Thus |V2| + |V3| ≥ 4 and so γoidR(G) ≥ 8 contradicting the fact
γoidR(G) ≤ 6.
Case 2. Assume that n = 7.

Since there is no 3-regular graph of order 7, we have δ(G) = 2. By our earlier assumption we
have 2|V2| + 3|V3| = γoidR(G) ≤ 6. This implies |V2| + |V3| ≤ 3, |V2| ≤ 3 and |V3| ≤ 2. If |V3| = 2
and V3 = {w1,w2}, then |V0| = 5 and we may assume that three vertices in V0, say z1, z2, z3 are
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double Roman dominated by w1. Then the function g defined on G[{w1,w2, z1, z2, z3}] by g(w1) = 3,
g(w2) = 2, g(z1) = g(z2) = g(z3) = 0 is an OI[2]RDF of G[{w1,w2, z1, z2, z3}] of weight less than
γoidR(G). So stγoidR(G) ≤ 2 < n − 4, a contradiction. If |V3| = 1, then |V2| ≤ 1 (since 2|V2| + 3|V3| ≤ 6)
and all vertices in V0 must be adjacent to the vertex in V3 a contradiction with ∆(G) = 3. Thus
V3 = ∅. If |V2| = 2, then each vertex in V0 must be adjacent to every vertex in V2, a contradiction with
∆(G) = 3 again. Henceforth we assume that |V2| = 3. Let V2 = {x1, x2, x3} and V0 = {y1, y2, y3, y4}.
Since each vertex in V0 must be adjacent to at least two vertices in V2 and since ∆(G) = 3, we may
assume that each of x1 and x2 is adjacent to three vertices in V0. Then x1 and x2 have certainly two
common neighbor in V0, say y1, y2. Let x1y3 ∈ E(G). Then the function g defined on G − {x3, y4} by
g(x1) = g(x2) = 2, g(y3) = 1 and g(y1) = g(y2) = 0 is an OI[2]RDF of G − {x3, yy} of weight less than
γoidR(G). So stγoidR(G) ≤ 2 < n − 4, a contradiction.
Case 3. Assume that n = 6.

Let V(G) = {v, v1, v2, v3, u,w} where N(v) = {v1, v2, v3} and uv1 ∈ E(G). Consider the following
situations.

• f (v) = 3.
Since ω( f ) ≤ 6, for double Roman dominating the vertices u and w either f (vi) = 3 for some
1 ≤ i ≤ 3 or f (u) + f (w) = 3. If f (vi) = 3 for some 1 ≤ i ≤ 3, say i = 1, then f (u) = f (w) =
f (v2) = f (v3) = 0 and the function g defined on G − v3 by g(v2) = 2, g(v) = 0, g(v1) = 3 and
g(u) = g(w) = 0, is an OI[2]RDF of G − v3 of weight less than γoidR(G). So 2 = stγoidR(G) ≤ 1,
which is a contradiction. If f (u) + f (w) = 3, then f (v1) = f (v2) = f (v3) = 0, and the function g
defined on G − w by g(u) = 2, g(v) = 3, g(v1) = g(v2) = g(v3) = 0, is an OI[2]RDF of G − w of
weight less than γoidR(G), which leads to a contradiction.
• f (v) = 2.

Since ω( f ) ≤ 6, n = 6 and V1 = ∅, we deduce that V3 = ∅ and hence |V2| = 3. Assume that
V2 = {x1, x2, x3} and V0 = {y1, y2, y3}. If xi is adjacent to all vertices in V0 for some i, say i = 1,
then the function g defined on G − x3 by g(x1) = 3, g(x2) = 2 and g(y1) = g(y2) = g(y3) = 0
is an OI[2]RDF of G − x3 with weight less than ω( f ), leading to a contradiction. Thus each xi

is adjacent to at most two vertices in V0. On the other hand, since each vertex in V0 must be
adjacent to at least two vertices in V2, we conclude that each xi has exactly two neighbors in V0.
Without loss of generality we may assume that the C6-cycle C = x1y1x2y2x3y3x1 is a subgraph of
G. Note that V0 is independent. Since ∆(G) = 3, we have deg(xi) = 3 or deg(yi) = 3 for some i.
If deg(yi) = 3 for some i, then there exists a vertex x j which is adjacent to all vertices in V0, and
we have seen above that this is not possible. Hence we assume that deg(yi) = 2 for each i. This
implies deg(xi) = 2 for some i, say i = 1. Then G = C + x2x3 and thus G is the graph illustrated
in Figure 1. It is easy to check that stγoidR(G) = 2 in this case.
• f (v) = 0.

Since f is an OI[2]RDF of G with ω( f ) ≤ 6 with V1 = ∅, we certainly have f (v1) = f (v2) =
f (v3) = 2. Then each of vertices u and w is adjacent to at least two vertices in {v1, v2, v3} and so
u and w have a common neighbor in {v1, v2, v3}, say v1. Then the function g defined on G − v3 by
g(v1) = 3, g(v2) = 2 and g(v) = g(u) = g(w) = 0 is an OI[2]RDF of G − v3 of weight less than
γoidR(G), which leads to a contradiction.

□

At the end of this section, we present a Nordhaus-Gaddum type inequality for the sum of the outer
independent double Roman domination stability of a graph G and its complement G.

Theorem 2. Let G be a graph of order n ≥ 2. Then stγoidR(G) + stγoidR(G) ≤ n.

Proof. Since n ≥ 2, we have min{γoidR(G), γoidR(G)} ≥ 3. If γoidR(G) = 3 (the case γoidR(G) = 3 is
similar), then G is the star K1,n−1 and so G has an isolated vertex. Using Corollary 7 and noting that

Ars Combinatoria Volume 160, 21–29



Outer Independent Double Roman Domination Stability in Graphs 27

stγoidR(G) = 1 we obtain stγoidR(G)+ stγoidR(G) = 2. Now suppose that min{γoidR(G), γoidR(G)} ≥ 4. Since
∆(G) + ∆(G) ≥ n − 1, we may assume, without loss of generality, that ∆(G) ≥ (n − 1)/2. Applying
Propositions 3 and 4 we obtain

stγoidR(G) + stγoidR(G) ≤ (n − ∆(G) − 1) + (δ(G) + 1)
≤ (n − ∆(G) − 1) + (n − ∆(G))
= 2n − 2∆(G) − 1 ≤ n.

□

4. Trees

In this section, we are ready to determine the γoidR(T )-stability, the γ−oidR(T )-stability and the
γ+oidR(T )-stability for trees. From Corollary 2, we know that st+γoidR

(T ) cannot be bounded. The proof
of the following observation is straightforward and therefore omitted.

Observation 3. (i) If v is a strong support vertex, then there exists a γoidR(G)-function f that assigns
3 to v and 0 to every leaf neighbor of v.

(ii) If v is a weak support vertex with leaf neighbor u, then for any γoidR(G)-function f , f (u)+ f (v) ≥
2.

Theorem 4. For every tree T of order n ≥ 2, stγoidR(T ) = 1.

Proof. If diam(T ) ≤ 2, then T is a star K1,n−1, and we have stγoidR(T ) = 1 by Corollary 7. If diam(T ) =
3, then T is a double star S r,s for some s ≥ r ≥ 1, and one can easily see that stγoidR(S r,s) = 1. If ∆ = 2,
then T = Pn and we are done by Proposition 3. Hence we may assume that diam(T ) ≥ 4 and ∆ ≥ 3.
By contradiction, we assume that there exists a tree T such that stγoidR(T ) ≥ 2. We choose such a tree
with smallest order. First let T has a strong support vertex v with leaf neighbors v1, . . . , vt. Then the
vertices v1, . . . , vt are isolated vertices in T ′ = T − v and any γoidR(T ′)-function certainly assigns 2 to
each vi. Now reassigning v1, . . . , vt the value 0 and v the value 3 provides an OI[2]RDF of T of weight
less than γoidR(T ′) and this leads to a contradiction. Henceforth, we may assume that T has no strong
support vertex. Let p = x1x2 . . . xt be a longest path in T and root the tree T at the vertex xt. Let
f = (V0,V1,V2,V3) be a γoidR(T )-function such that f (x3) is maximized. It follows from stγoidR(T ) ≥ 2
that V1 = ∅. Since T has no strong support vertex, each child of v3 with depth 1 has degree 2. We
consider the cases.
Case 1. x3 has a child w with depth 0, that is w is a leaf neighbor of x3.

It is easy to verify that f (x1) + f (x2) + f (x3) + f (w) ≥ 5 and by the choice of f certainly we have
f (x3) = 3, f (x1) = 2 and f (w) = f (x2) = 0. This implies that γoidR(T − x1) < γoidR(T ) which leads to
a contradiction.
Case 2. x3 has a child u2 , x2 with depth 1.

Let u1 be the leaf neighbor of u2. It is easy to verify that f (x1) + f (x2) + f (x3) + f (u2) + f (u1) ≥ 6
and by the choice of f certainly we have f (x3) ≥ 2, f (x1) = f (u1) = 2 and f (u2) = f (x2) = 0. Then
the function g defined on T − x1 by g(x3) = 3, g(v) = f (v) for each vertex v ∈ V(T − x1) − {x3},
is an OI[2]RDF of T − x1 of weight at most ω( f ) − 1 and so γoidR(T − x1) < γoidR(T ) leading to a
contradiction.
Case 3. deg(x3) = 2.

By Observation 3 we have f (x1) + f (x2) ≥ 2. If f (x1) + f (x2) = 2, then we must have f (x1) = 2,
f (x2) = 0 and f (x3) ≥ 2. Then reassigning x3 the value 3 provides an OI[2]RDF of T − x1 of weight
less than ω( f ) which leads to a contradiction. Assume that f (x1) + f (x2) = 3. If f (x2) ≤ 2, then
reassigning x2 the value 2 provides an OI[2]RDF of T − x1 which leads to a contradiction. Hence we
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may assume that f (x2) = 3 and f (x1) = 0. If f (x3) = 0, then since f is an OIDRDF with V1 = ∅,
we have f (x4) ≥ 2 and reassigning x2 the value 2 provides an OI[2]RDF of T − x1 which leads to
a contradiction. If also f (x3) ≥ 2, then reassigning x2 the value 1 provides an OI[2]RDF of T − x1

which leads to a contradiction again. This completes the proof. □

Finally, we will establish an upper bound on the γ−oidR-stability of a tree. Moreover, we characterize
the trees that achieve the upper bound.

Theorem 5. For every tree T of order n ≥ 2 with maximum degree ∆, st−γoidR
(T ) ≤ ∆ with equality if

and only if T is the star K1,n−1.

Proof. If ∆ = 2, then T = Pn and we are done by Corollary 1. If diam(T ) ≤ 2, then T is a star
K1,n−1, and we have st−γoidR

(T ) = n − 1 = ∆, by Corollary 7. Hence we may assume that ∆ ≥ 3 and
diam(T ) ≥ 3. Let p = x1x2 . . . xt be a longest path in T and root the tree T at the vertex xt. Let
f be a γoidR(T )-function such that f (x3) is maximized. Assume first that deg(x2) < ∆. We have
clearly f (x1) + f (x2) ≥ 2 and f (x1) + f (x2) + f (x3) ≥ 3. Let T ′ be the tree obtained from T by
removing all vertices of Tx2 . Define the function f ′ : V(T ′) → {0, 1, 2, 3} by f ′(x3) = max{2, f (x3)}
and f ′(y) = f (y) for each y ∈ V(T ′) \ {x3}. It is not hard to see that f ′ is an OI[2]RDF of T ′.
Since γoidR(T ′) ≤ w( f ′) ≤ w( f ) − 1 = γoidR(T ) − 1, we have st−γoidR

(T ) < ∆. Hence we may assume
that deg(x2) = ∆. Similarly, we may assume that every child of x3 with depth 1, is of degree ∆.
By Observation 3, f assign 3 to each child of x3 with depth 1, in particular to x2. If f (x3) , 0,
then remove all leaves adjacent to x2, and denote the resulting graph by T ′. Define the function
f ′ : V(T ′)→ {0, 1, 2, 3} by f ′(x2) = 0, f ′(x3) = 3 and f ′(y) = f (y) for any y ∈ V(T ′)\{x2, x3}. Clearly,
f ′ is an OI[2]RDF of T ′ with weight at most γoidR(T ) − 1, so we have st−γoidR

(T ) < ∆. Henceforth, we
may assume that f (x3) = 0. Since f is an OI[2]RDF of T , we must have f (x4) ≥ 1. If f (x4) = 1,
then the restriction of f to T − x4 is an OI[2]RDF of T − x4 with weight γoidR(T ) − 1, so we have
st−γoidR

(T ) = 1 < ∆. Assume that f (x4) ≥ 2. Remove all leaf-neighbors of x2, and denote the resulting
graph by T ′. Define the function g : V(T ′) → {0, 1, 2, 3} by g(x2) = 2 and g(x) = f (x) for any
x ∈ V(T ′) \ {x2}. It is easy to see that g is an OI[2]RDF of T ′ with weight γoidR(T ) − 1, so we have
st−γoidR

(T ) < ∆. This completes the proof. □
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2024. Further results on the [k]-Roman domination in graphs. Bulletin of the Iranian Mathemati-
cal Society, 50(2), p.27.

4. Chellali, M., Jafari Rad, N., Sheikholeslami, S.M. and Volkmann, L., 2020. Roman domination
in graphs. Topics in Domination in Graphs, pp.365-409.

5. Chellali, M., Rad, N.J., Sheikholeslami, S.M. and Volkmann, L., 2021. Varieties of Roman domi-
nation. Structures of Domination in Graphs, pp.273-307.

Ars Combinatoria Volume 160, 21–29



Outer Independent Double Roman Domination Stability in Graphs 29

6. Chellali, M., Jafari Rad, N., Sheikholeslami, S.M. and Volkmann, L., 2020. Varieties of Roman
domination II. AKCE International Journal of Graphs and Combinatorics, 17(3), pp.966-984.

7. Chellali, M., Rad, N.J., Sheikholeslami, S.M. and Volkmann, L., 2022. The Roman domatic prob-
lem in graphs and digraphs: A survey. Discussiones Mathematicae Graph Theory, 42(3), pp.861-
891.

8. Chellali, M., Rad, N.J., Sheikholeslami, S.M. and Volkmann, L., 2020. A survey on Roman dom-
ination parameters in directed graphs. J. Combin. Math. Combin. Comput, 115, pp.141-171. ’

9. Beeler, R.A., Haynes, T.W. and Hedetniemi, S.T., 2016. Double roman domination. Discrete
Applied Mathematics, 211, pp.23-29.

10. Hajjari, M., Abdollahzadeh Ahangar, H., Khoeilar, R., Shao, Z. and Sheikholeslami, S.M., 2023.
An upper bound on triple Roman domination. Communications in Combinatorics and Optimiza-
tion, 8(3), pp.505-511.

11. Poureidi, A. and Fathali, J., 2024. Algorithmic complexity of triple Roman dominating functions
on graphs. Communications in Combinatorics and Optimization, 9(2), pp.217-232.

12. Abdollahzadeh Ahangar, H., Chellali, M. and Samodivkin, V., 2017. Outer independent Ro-
man dominating functions in graphs. International Journal of Computer Mathematics, 94(12),
pp.2547-2557.

13. Martı́nez, A.C., Kuziak, D. and Yero, I.G., 2020. A constructive characterization of vertex cover
Roman trees. Discussiones Mathematicae Graph Theory, 41(1), pp.267-283.

14. Dehgardi, N. and Chellali, M., 2021. Outer independent Roman domination number of trees.
Communications in Combinatorics and Optimization, 6(2), pp.273-286.

15. Mojdeh, D.A., Samadi, B., Shao, Z. and Yero, I.G., 2022. On the outer independent double Roman
domination number. Bulletin of the Iranian Mathematical Society, 48(4), pp.1789-1803.

16. Teymourzadeh, A. and Mojdeh, D. A., 2023. Covering total double Roman domination in graphs.
Communications in Combinatorics and Optimization, 8, 115-125.

17. Abdollahzadeh Ahangar, H., Chellali, M. and Sheikholeslami, S. M., 2020. Outer independent
double Roman domination. Applied Mathematics and Computation, 364, p. 124617.

© 2024 the Author(s), licensee Combinatorial Press.
This is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Ars Combinatoria Volume 160, 21–29

http://creativecommons.org/licenses/by/4.0

	Introduction
	Exact Value and Bounds
	Graphs G with Large oidR-Stability
	Trees

