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Abstract: This study extends the concept of competition graphs to cubic fuzzy competition graphs
by introducing additional variations including cubic fuzzy out-neighbourhoods, cubic fuzzy in-
neighbourhoods, open neighbourhood cubic fuzzy graphs, closed neighbourhood cubic fuzzy graphs,
cubic fuzzy (k) neighbourhood graphs and cubic fuzzy [k]-neighbourhood graphs. These variations
provide further insights into the relationships and competition within the graph structure, each with
its own defined characteristics and examples. These cubic fuzzy CMGs are further classified as
cubic fuzzy k-competition graphs that show competition in the kth order between components, p-
competition cubic fuzzy graphs that concentrate on competition in terms of membership degrees, and
m-step cubic fuzzy competition graphs that analyze competition in terms of steps. Further, some re-
lated results about independent strong vertices and edges have been obtained for these cubic fuzzy
competition graph classes. Finally, the proposed concept of cubic fuzzy competition graphs is sup-
ported by a numerical example. This example showcases how the framework of cubic fuzzy compe-
tition graphs can be practically applied to the predator-prey model to illustrate the representation and
analysis of ambiguous information within the graph structures.
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1. Introduction

Graphs are mathematical structures that are used to represent pairwise relationships between items.
The term ‘graph’ was first used by Euler in the 18th century while working to solve the Königsberg
Bridge Problem. The first directed graph was vocally exploited by Aristotle to develop persuasive
arguments. Numerous industries, including data mining, image sensing, and clustering. The main
purpose of a graph is to create a relationship between distinct members of a set.

Zadeh [1] introduced the innovative concept of fuzzy sets (FSs) to deal with uncertainties a fuzzy
set µ is a mapping µ : V → [0, 1].) The term fuzzy graphs (FGs) was announced by Rosenfeld [2]
and Gehrke [3] et al. is defined as let G = (V, µ, λ) on universe of discourseV, is a FG if µ is a fuzzy
set in V and λ is a fuzzy relation on µ such that λ(t, u) ≤ min{µ(t), µ(u)} for all t, u ∈ V. A fuzzy
directed graph on a non-empty setV is of the form G⃗ = (V, µ, λ), where µ is a fuzzy set onV and λ
is a fuzzy relation onV such that λ(−→t, u) ≤ min{µ(t), µ(u)} for all t, u ∈ V.
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To cope with the problem of ambiguous data in different variations, Jun et al. [4] introduced the
idea of cubic sets, an extended form of fuzzy sets. A CS is basically a combination of two sets, IVFSs
and FSs. The term cubic graphs with its applications was introduced by Rashid et al. [5]. Cohen [6],
originate the idea of competition graphs (CMGs) as the competition between species in ecology. The
CMG C(G⃗) of a directed graph G⃗ = (V,E) is defined as an undirected graph C(G⃗) = (V,E) which
has the same vertex set V and contains an edge between two distinct vertices t, u ∈ V if a vertex
z ∈ V and arcs (−→t, z) and (−−→u, z) ∈ E exist in G⃗. A graph G is said to be a CMG if a directed graph G⃗
exists such that C(G⃗) = G. Cohen’s theory was founded on the idea that if two species share the same
prey, they will fight over it. Akram et al. [7] described extension of competition graphs under complex
fuzzy environment and purposed the concept of bipolar fuzzy competition graphs and discussed their
further properties in [8, 9]. Borzooei et al. introduced new concepts of vague competition graphs
in [10].

Additionally, CMGs in ecosystems have numerous uses in a variety of domains, including mod-
elling economic centre structures, coding, energy efficiency, fuzzy logic, and fuzzy inference. The
literature has developed several distinctions for these graphs, including p-CMGs of digraph [11–15],
common enemy graphs of digraph [16], competition hypergraphs [17], tolerance CMGs [18] and
m-step CMGs [19].

Much work has been done on CMGs whose vertices and edges are assumed to be fully specified,
drawing heavily on food web models of natural communities. Whatever the case, this presumption
is insufficient to represent competition in some genuine scenarios, such as a biological system where
species can be weak, strong, vegetarian omnivorous, etc., and prey can be dangerous, edible, tasty,
etc. It is natural to plan a fuzzy model of the CMG because species, prey, and their associations are
not accurately shown.

In addition, Samanta and Pal proposed the idea of different categories of CMGs [20–22] such as
fuzzy out-neighbourhood and in-neighbourhood of a vertex and of a graph are defined as follows.
Let G⃗ = (V, µ, λ) be a directed FG. Then the fuzzy out-neighbourhood of a vertex t is the fuzzy set
N+(t) = (V+t , s

+
t ), where V+t = {u|λ(

−→t, u) > 0} and s+t : V+t → [0, 1] defined by s+t = λ(
−→t, u). In similar

way the fuzzy in-neighbourhood of a vertex t is the CS N−(t) = (V−t , s
−
t ), where V−t = {u|λ(

−→t, u) > 0}
and s−t : V−t → [0, 1] defined by s−t = λ(

−→t, u). The fuzzy neighbourhood of a vertex t ∈ V of a directed
fuzzy graph G⃗ = (V, µ, λ) is defined as the fuzzy set N(t) = (Vt, st), where Vt = {w | λ(

−−→t,w) > 0}
and st : Vt → [0, 1] is given by st(w) = λ(−−→t,w). The m-step fuzzy out-neighbourhood of a vertex
t ∈ V of a fuzzy directed graph G⃗ = (C,D) is defined as the fuzzy set N+m(t) = (V+t , s

+
t ), where

V+t = {u | pm(−→t, u) = min{λ(−−→t, u1), λ(−−−−→u1, u2), . . . , λ(−−−→um, u)} > 0}, with tu1u2 . . . umu being a path from t
to u and s+t : V+t → [0, 1] is defined by s+t (u) = pm(−→t, u). If there are multiple fuzzy paths of length m,
the minimum degree of membership path pm(−→t, u) should be taken.

Parvathi et al. [23] proposed intuitionistic fuzzy graphs and Sahoo and Pal [24] converted them
into intuitionistic fuzzy competition graphs. Nasir et al. [25] discussed their further properties. Pal et
al. [26] discuss further properties of fuzzy graphs in the book “Modern trends in fuzzy graph theory”.
Pramanik discussed an extension of fuzzy competition graph and its uses in manufacturing industries
in [27]. Further, Talebi et al. [28] recognized the notion of interval-valued intuitionistic fuzzy CMGs.
Akram and Nasir [29] discussed interval-valued neutrosophic CMGs. Rashid et al. [5] introduced
the graphical structures of CSs with real-world applications. Further, Muhiuddin et al. [30] discussed
cubic graphs with their properties and applications. Moreover, different extensions of cubic graphs
have been discussed in [31–33]. The limitations of existing models, such as traditional fuzzy graphs
and interval-valued intuitionistic fuzzy graphs, lie in their inability to effectively manage the multi-
faceted nature of real-world data. These models fall short in scenarios where the data exhibits both
fuzziness and interval uncertainty simultaneously. Particularly, in ecological and biological systems,
species interactions are often characterized by various degrees of uncertainty and vagueness, which
cannot be captured by a single type of fuzzy set. Cubic fuzzy graphs provide a robust framework that
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combines both fuzzy membership functions and interval-valued fuzzy membership functions, allow-
ing for a more comprehensive representation of these interactions. This dual capability enables cubic
fuzzy graphs to model a wider range of real-world scenarios more effectively. This motivates us to
the occurrence of cubic fuzzy CMGs. Following is a description of this study’s major goal:

Cubic FS is a useful extension of FS and IVFS which can indicate the issue with ambiguity in
a single set. The cubic FS not only grasp the fuzzy information but also deals with interval-valued
fuzzy data.

The proposed CMGs under cubic fuzzy environment overcome the limitations of other existing
CMGs. We introduce the idea of cubic fuzzy CMGs in the current study, which deal with both fuzzy
membership functions and interval-valued fuzzy membership functions. Further, we provide cubic
fuzzy k-competition and cubic fuzzy p-CMGs, two extensions of cubic fuzzy CMGs. Also, we de-
fine m-step cubic fuzzy CMGs, m-step fuzzy neighbourhood graphs, and cubic fuzzy neighbourhood
graphs. Finally, to emphasise the cubic fuzzy CMG’s importance in the actual world, we present an
application.

This paper is classified as follows: Section 2, includes a few elementary definitions which have a
key role in the development of cubic fuzzy CMGs. Furthermore, the innovative concept of cubic fuzzy
CMGs with its two valuable expansions namely, cubic fuzzy k-CMGs and p-competition cubic FGs
was demonstrated. Section 3 contains the notion of cubic fuzzy neighbourhood graphs in addition to
some related results. Section 4, m-step cubic fuzzy CMGs defined and related results are obtained.
Section 5 includes the usefulness of cubic fuzzy CMGs to highlight the significance of these graphs
in a practical manner.

2. Cubic Fuzzy Competition Graphs

In this section, preliminary definitions and properties of cubic CMGs and its different variations
like cubic Fuzzy k-CMGs and p-Competition Cubic FGs have been explored.

Definition 1. [4] LetV be a universe set. A CS C is a structure;

C = {(t, µ(t), λ(t)) | t ∈ V}, (1)

where µ(t) = [µL(t), µU(t)], represents the interval valued fuzzy membership overV, while λ(t) repre-
sents simple fuzzy degree of membership.

Definition 2. The support of CS C = {(t, µ(t), λ(t)) | t ∈ V}, inV is basically a subset Co ofV defined
by Co = {t ∈ V : µC(t) , 0 and λC(t) , 0} and |supp(C0)| is the total number of elements present in
the set.

Definition 3. The height of CS C inV is defined as:

h(C) = ([sup
t∈V
µL
C(t, u), sup

t∈V
µU
C (t, u)], sup

t∈V
λC(t, u)),

for all t ∈ V.

The concept of cubic sets can be extended to the concept of a cubic fuzzy graph, which combines
cubic sets with graph theory. A cubic fuzzy graph extends the fuzzy graph concept by incorporating
interval-valued memberships, providing a richer framework for modeling uncertainty and vagueness
in graph structures.

Definition 4. [5] A cubic fuzzy graph G = (C,D) of a graph G = (V,E), where C = (µC, λC)
represents the vertex set andD = (µD, λD) represents an edge set, holds the following conditions:

1) The functions µC : V → [0, 1] × [0, 1] and λC : V → [0, 1] represent the interval-valued
membership degrees and simple fuzzy valued membership degrees, respectively.
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2) The functions µD : V ×V → [0, 1] × [0, 1] and λD : V ×V → [0, 1] are denoted by:

µL
D(t, u) ≤ µL

C(t) ∧ µ
L
C(u),

µU
D(t, u) ≤ µU

C (t) ∧ µU
C (u),

λD(t, u) ≤ λC(t) ∧ λC(u).

for all (t, u) ∈ E ⊆ V × V, where µL
D

and µU
D

are the lower and upper values of the interval valued
membership, respectively.

Definition 5. The edge of a cubic graph denoted as (t, u) is called independent strong if:

µL
D(t, u) ≥

µL
C
(t) ∧ µL

C
(u)

2
,

µU
D(t, u) ≥

µU
C

(t) ∧ µU
C

(u)
2

,

λD(t, u) ≥
λC(t) ∧ λC(u)

2
.

Definition 6. The cubic graph is said to be complete if:

µL
D(t, u) =

µL
C
(t) ∧ µL

C
(u)

2
,

µU
D(t, u) =

µU
C

(t) ∧ µU
C

(u)
2

,

λD(t, u) =
λC(t) ∧ λC(u)

2
.

Further, we define a cubic directed graph (CuDG), a directed version of the cubic fuzzy graph.

Definition 7. A cubic directed graph (CuDG) on a setV is defined as G⃗ = (C,D), where C = (µC, λC)
represents the vertex set andD = (µD, λD) represents the edge set, such that:

µL
D(−→t, u) ≤ µL

C(t) ∧ µ
L
C(u),

µU
D(−→t, u) ≤ µU

C (t) ∧ µU
C (u),

λD(−→t, u) ≤ λC(t) ∧ λC(u).

To understand the interaction between vertices in a CuDG, the notions of cubic fuzzy out-
neighborhood and in-neighborhood describing the set of vertices that are directly connected to a
given vertex through directed edges is defined as follows.

Definition 8. Consider a CuDG G⃗ = (C,D). The cubic fuzzy out-neighbourhood for any vertex t is
defined as the CS N+(t) = (V+t , r

+
t , s

+
t ), where V+t = {u | µ

L
D

(−→t, u) > 0, λD(−→t, u) > 0} and r+t : V+t →
[0, 1] × [0, 1] is given by r+t (u) = [µL

D
(−→t, u), µU

D
(−→t, u)] and s+t : V+t → [0, 1] is given by s+t (u) = λD(−→t, u).

Similarly, the cubic fuzzy in-neighbourhood for any vertex t is defined as the CS N−(t) =
(V−t , r

−
t , s

−
t ), where V−t = {u | µ

L
D

(−→u, t) > 0, λD(−→u, t) > 0} and r−t : V−t → [0, 1] × [0, 1] is given by
r−t (u) = [µL

D
(−→u, t), µU

D
(−→u, t)] and s−t : V−t → [0, 1] is given by s−t (u) = λD(−→u, t).

The theoretical basis of cubic CMGs like cubic fuzzy in-neighbourhood and cubic fuzzy out-
neighbourhood for any vertex sets are obtained. Next, we will see practical example to illustrate these
definitions.

Example 1. Let G⃗ = (C,D) be a CuDG on the vertex setV = {p, q, r, s, t} as shown in Figure 1. The
degree of memberships of the vertices as well as edges are chosen arbitrarily as described in Figure
1. The cubic fuzzy out neighbourhood and cubic fuzzy in neighbourhood are shown in Table 1:
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r

([0.6, 0.7], 0.5)([0.5, 0.6], 0.6)

([0.4, 0.5], 0.6)

([0.4, 0.5], 0.4)

([0.7, 0.9], 0.8)

([0.5, 0.7], 0.4)

([0
.3
, 0
.5
], 0

.4
)

([
0.
4,
0.
6]
,0
.3
)

([0
.3,

0.4
], 0

.6)

([0.5, 0.6], 0.4)

Figure 1. cubic Digraph

t N+(t) N−(t)
p {(t,[0.4,0.5],0.4),(q,[0.3,0.5],0.4)} Ø
q Ø {(p,[0.3,0.5],0.4),(q,[0.3,0.4],0.6)}
r {(s,[0.5,0.6],0.4),(q,[0.3,0.4],0.6)} Ø
s Ø {(t,[0.4,0.6],0.3),(r,[0.5,0.6],0.4)}
t {(s,[0.4,0.6],0.3)} {(p,[0.4,0.5],0.4)}

Table 1. cubic fuzzy out neighbourhoods and cubic fuzzy in neighbourhoods

Now, we are going to define the definition of cubic fuzzy CMG.

Definition 9. The cubic fuzzy CMG C(G⃗) of CuDG G⃗ = (C,D) is an undirected graph G = (C,D)
with C(G) = C(G⃗) and D(G) = {(t, u);N+(t) ∩ N+(u) > 0}. The degree of memberships of the edge
(t, u) in C(G⃗) are:

µL
D(t, u) = (µL

C(t) ∧ µ
L
C(u))hL(N+(t) ∩ N+(u)),

µU
D(t, u) = (µU

C (t) ∧ µU
C (u))hU(N+(t) ∩ N+(u)),

λD(t, u) = (λC(t) ∧ λC(u))h(N+(t) ∩ N+(u)).

Example 2. Consider a CuDG G⃗ = (C,D) on vertex setV = {a, b, c, d, e, f } as shown in Figure 2.

a b

c

f

e

d

([0.6, 0.7], 0.8)

([0.3, 0.5], 0.4)

([0.4, 0.7], 0.5)

([0.5, 0.6], 0.4)

([0.8, 0.9], 0.8)

([0.7, 0.9], 0.6) ([0.6, 0.8], 0.7)
([0.4

, 0.6
], 0.4

)

([0
.4,

0.6
], 0

.3)
([0.5, 0.6], 0.4)

([0
.5,

0.6
], 0

.5)

([0.4, 0.5], 0.4)

([0.7, 0.8], 0.6)

Figure 2. cubic digraph

The degree of memberships of the vertices and edges are taken arbitrarily as described in Figure
2. The cubic fuzzy out neighbourhood vertices are: N+(a) = {(b, [0.3, 0.5], 0.4), (c, [0.5, 0.7], 0.4)},
N+(b) = Ø, N+(c) = {(b, [0.4, 0.6], 0.3), (d, [0.4, 0.5], 0.4), ( f , [0.4, 0.6], 0.4)}, N+(d) =

{(e, [0.5, 0.6], 0.5}, N+(e) = Ø, N+( f ) = {(e, [0.7, 0.8], 0.6)}.
Since,

N+(a) ∩ N+(c) = {(b, [0.3, 0.5], 0.3)},

Ars Combinatoria Volume 160, 141–159



Afeefa Maryam, M. Tariq Rahim and F. Hussain 146

a b

c

f d

e

([0.15,0.30],0.12)

([0.30,0.48],0.30)

([0.6,0.7],0.8) ([0.4,0.7],0.5)

([0.7,0.9],0.6)

([0.5,0.6],0.4)

([0.6,0.8],0.7)

([0.8,0.9],0.8)

Figure 3. cubic fuzzy CMG

and
N+(d) ∩ N+( f ) = {(e, [0.5, 0.6], 0.5)}.

Therefore, hL(N+(a) ∩ N+(c)) = 0.3, hU(N+(a) ∩ N+(c)) = 0.5, h(N+(a) ∩ N+(c)) = 0.3
and hL(N+(d) ∩ N+( f )) = 0.5, hU(N+(d) ∩ N+( f )) = 0.6, h(N+(d) ∩ N+( f )) = 0.5.

Thus, there exist edges among vertices a, c and d, f in cubic fuzzy CMG C(G⃗), whose degree of
memberships are given by: µL

D
(a, c) = 0.15, µU

D
(a, c) = 0.30, λD(a, c) = 0.12 and µL

D
(d, f ) = 0.30,

µU
D

(d, f ) = 0.48, λD(d, f ) = 0.30. For all remaining edges µL
D
= µU

D
= λD = 0. The corresponding

cubic fuzzy CMG is shown in Figure 3.

Theorem 1. Let G⃗ = (C,D) be a CuDG and G = (C,D) be its CMG. An edge (t, u) in C(G⃗) is
independent strong if and only if hL(N+(t) ∩ N+(u)) > 0.5, hU(N+(t) ∩ N+(u)) > 0.5 and h(N+(t) ∩
N+(u)) > 0.5 provided that N+(t) ∩ N+(u) has one and only one element.

Proof. Since, N+(t) ∩ N+(u) has one and only one element. Let N+(t) ∩ N+(u) = {(m, [a, ă], c)},
where [a, ă] are interval-valued fuzzy membership of the vertex m. Then hL(N+(t) ∩ N+(u)) = a,
hU(N+(t) ∩ N+(u)) = ă and h(N+(t) ∩ N+(u)) = c. So,

µL
D(t, u) = (µL

C(t) ∧ µ
L
C(u))hL(N+(t) ∩ N+(u)) = a × (µL

C(t) ∧ µ
L
C(u)) >

1
2

(µL
C(t) ∧ µ

L
C(u),

µU
D(t, u) = (µU

C (t) ∧ µU
C (u))hU(N+(t) ∩ N+(u)) = ă × (µU

C (t) ∧ µU
C (u)) >

1
2

(µU
C (t) ∧ µU

C (u),

λD(t, u) = (λC(t) ∧ λC(u))h(N+(t) ∩ N+(u)) = c × (λC(t) ∧ λC(u)) >
1
2

(λC(t) ∧ λC(u)).

Hence, the edge (t, u) in C(G⃗) is independent strong if and only if a > 0.5, ă > 0.5 and c > 0.5. □

Theorem 2. If all the edges of a CuDG G⃗ = (C,D) be independent strong, then µL
D

(t,u)
(µL
C

(t)∧µL
C

(u))2 > 0.5,
µU
D

(t,u)
(µU
C

(t)∧µU
C

(u))2 > 0.5 and λD(t,u)
(λC(t)∧λC(u))2 > 0.5 for all t, u ∈ V in C(G⃗), provided (µL

C
(t) ∧ µL

C
(u)) , 0,

(µU
C

(t) ∧ µU
C

(u)) , 0 and λC(t) ∧ λC(u)) , 0.

Proof. Since, all the edges of G⃗ = (C,D) be independent strong, then µL
D

(−→t, u) ≥
µL
C

(t)∧µL
C

(u)
2 , µU

D
(−→t, u) ≥

µU
C

(t)∧µU
C

(u)
2 and λD(−→t, u) ≥ λC(t)∧λC(u)

2 , i.e µL
D

(−→t,u)
µL
C

(t)∧µL
C

(u) ≥ 0.5,
µU
D

(−→t,u)
µU
C

(t)∧µU
C

(u) ≥ 0.5 and λD(−→t,u)
λC(t)∧λC(u) ≥ 0.5, for all

t, u ∈ V such that µL
D

(t, u) , 0, µU
D

(t, u) , 0 and λD(t, u) , 0. Let N+(t) ∩ N+(u) has at least one
element. Let

N+(t) ∩ N+(u) = {(mi, [ai, ăi], ci)|i = 1, . . . k}, (2)

where [ai, ăi] is interval-valued membership and ci is simple fuzzy degree of membership of mi, (i =
1, . . . k). This shows that

[ai, ăi] = [min{µL
D(−−−→t,mi), µL

D(−−−→u,mi)},min{µU
D(−−−→t,mi), µU

D(−−−→u,mi)}]
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ci = min{λD(−−−→t,mi), λD(−−−→u,mi)}.

Therefore,
hL(N+(t) ∩ N+(u)) = max{a1, a2, . . . , ak} = amax,

hU(N+(t) ∩ N+(u)) = max{ă1, ă2, . . . , ăk} = ămax,

h(N+(t) ∩ N+(u)) = max{c1, c2, . . . , ck} = cmax.

Obviously, amax > µ
L
D

(−→t, u) ămax > µ
U
D

(−→t, u) and cmax > λD(−→t, u), shows that:

amax

µL
C
(t) ∧ µL

C
(u)
>

µL
D

(−→t, u)
µL
C
(t) ∧ µL

C
(u)
≥ 0.5

ămax

µU
C

(t) ∧ µU
C

(u)
>

µU
D

(−→t, u)

µU
C

(t) ∧ µU
C

(u)
≥ 0.5

cmax

λC(t) ∧ λC(u)
>

λD(−→t, u)
λC(t) ∧ λC(u)

≥ 0.5.

As,

µL
D(t, u) = (µL

C(t) ∧ µ
L
C(u))hL(N+(t) ∩ N+(u)) or

µL
D

(t, u)
µL
C
(t) ∧ µL

C
(u)
= amax

µU
D(t, u) = (µU

C (t) ∧ µU
C (u))hU(N+(t) ∩ N+(u)) or

µU
D

(t, u)

µU
C

(t) ∧ µU
C

(u)
= ămax

λD(t, u) = (λC(t) ∧ λC(u))h(N+(t) ∩ N+(u) or
λD(t, u)

λC(t) ∧ λC(u)
= cmax.

Then,
(µL
D

(−→t, u))
(µL
C
(t) ∧ µL

C
(u))2

=
amax

µL
C
(t) ∧ µL

C
(u)
≥ 0.5

(µU
D

(−→t, u))

(µU
C

(t) ∧ µU
C

(u))2
=

ămax

µU
C

(t) ∧ µU
C

(u)
≥ 0.5

(λD(−→t, u))
(λC(t) ∧ λC(u))2 =

cmax

λC(t) ∧ λC(u)
≥ 0.5.

□

It is noted that, an independent strong edge may or may not exist in the corresponding cubic fuzzy
CMGs if all of a CuDG’s edges are independent strong.

2.1. Cubic Fuzzy k-Competition Graphs

In this section, the concept of fuzzy k-CMGs derived from CuDGs has been explored. Fuzzy k-
CMGs extend the idea of common membership by introducing a fuzzy degree to the edges, reflecting
the strength of connection based on shared neighborhoods. This approach allows for a more nuanced
understanding of the relationships between vertices, especially in scenarios where connections are not
merely binary but have degrees of intensity.
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Definition 10. Take G⃗ = (C,D) be a CuDG and k be a non-negative number. The fuzzy k-CMG
Ck(G⃗) for the CuDG is an undirected graph G = (C,D) with C(Ck(G)) = C(G⃗) and D(Ck(G⃗)) =
{(t, u);N+(t) ∩N+(u) > k}. The membership degree of the edge (t, u) ∈ V ×V in Ck(G⃗) is calculated
by:

µL
D(t, u) =

ǩ − k
k

(µL
C(t) ∧ µ

L
C(u))hL(N+(t) ∩ N+(u)),

µU
D(t, u) =

ǩ − k
k

(µU
C (t) ∧ µU

C (u))hU(N+(t) ∩ N+(u)),

λD(t, u) =
ǩ − k

k
(λC(t) ∧ λC(u))h(N+(t) ∩ N+(u)),

where |N+(t) ∩ N+(u)| = ǩ.

To better understand this concept, let‘s consider an example of CuDG and how the fuzzy k-CMG
is constructed from it.

Example 3. Let G⃗ = (C,D) be a CuDG on vertex setV = {a, b, c, d, e, f } as shown in Figure 4.

a

b

c

d

e

f

([0.7, 0.9], 0.8)

([0.3
, 0.4

], 0.6
)

([0.4, 0.6], 0.5)

([0
.5
, 0
.6
], 0

.3
)

([
0
.4
, 0
.8
],
0
.3
)

([0
.3
, 0
.6
],
0.
3)

([0.4, 0.9], 0.7)

([0.2, 0.4], 0.2)

([0.8, 0.9], 0.7)

([
0.
6,
0.
7]
, 0
.4
)

([0.5, 0.7], 0.5)

([0.6, 0.8], 0.4)
([0.5, 0.8], 0.5)

([0.4, 0.7], 0.8)

Figure 4. Cubic Digraph

a

b

c

f

d

e

([0.10,0.28],0.10)

([0.16,0.49],0.20)

([0.7,0.9],0.8)

([0.5,0.7],0.5)([0.4,0.7],0.8)

([0.6,0.8],0.4)

([0.6,0.8],0.7)

([0.5,0.8],0.5)

([0
.12
,0.4
2],
0.2
4)

Figure 5. Cubic Fuzzy 0.2-CMG

The degree of memberships of the vertices and edges are taken arbitrarily as de-
scribed in Figure 4. The cubic fuzzy out neighbourhood vertices are: N+(a) =

{(b, [0.4, 0.6], 0.5), ( f , [0.3, 0.4], 0.6), (c, [0.2, 0.4], 0.2), (e, [0.3, 0.6], 0.3)}, N+(b) =

{(c, [0.5, 0.6], 0.3), (d, [0.6, 0.7], 0.4)}, N+(c) = Ø, N+(d) = Ø, N+(e) = Ø, N+( f ) =

{(d, [0.4, 0.9], 0.7), (e, [0.4, 0.8], 0.3)}. Since,

N+(a) ∩ N+(b) = {(c, [0.2, 0.4], 0.2)},

N+(b) ∩ N+( f ) = {(d, [0.4, 0.7], 0.4)},
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N+(a) ∩ N+( f ) = {(e, [0.3, 0.6], 0.3)}.

Therefore, hL(N+(a)∩N+(b)) = 0.2, hU(N+(a)∩N+(b)) = 0.4, h(N+(b)∩N+( f )) = 0.2, hL(N+(b)∩
N+( f )) = 0.4, hU(N+(b) ∩ N+( f )) = 0.7, h(N+(a) ∩ N+(b)) = 0.4, hL(N+(a) ∩ N+( f )) = 0.3,
hU(N+(a) ∩ N+( f )) = 0.6, h(N+(a) ∩ N+( f )) = 0.3.

Thus, there exist edges (a, b) (b, f ) and (a, f ) in cubic fuzzy 0.2-CMG Ck(G⃗), whose degree of
memberships are given by: µL

D
(a, b) = 0.10, µU

D
(a, b) = 0.28, λD(a, b) = 0.10 µL

D
(b, f ) = 0.16,

µU
D

(b, f ) = 0.49, λD(b, f ) = 0.20, µL
D

(a, f ) = 0.12, µU
D

(a, f ) = 0.42, λD(a, f ) = 0.24. For all re-
maining edges µL

D
= µU

D
= λD = 0 The corresponding cubic fuzzy 0.2-CMG is shown in Figure

5.

We now proceed to a theorem that provides conditions under which an edge in the fuzzy k-CMG
is considered independent and strong.

Theorem 3. Suppose G⃗ = (C,D) be a CuDG. If |N+(t) ∩ N+(u)| > 2k and hL(N+(t) ∩ N+(u)) = 1,
hU(N+(t) ∩ N+(u)) = 1, h(N+(t) ∩ N+(u)) = 1, then this implies that the edge (t, u) is independent
strong in Ck(G⃗).

Proof. Consider a CuDG G⃗ = (C,D) and Ck(G⃗) = (V,C,D) be the corresponding cubic fuzzy k-
CMG. Also, if hL(N+(t) ∩N+(u)) = 1 and |N+(t) ∩N+(u)| > 2k, then, ǩ > 2k and so, ǩ−k

k >
1
2 , where

ǩ = |N+(t) ∩ N+(u)|. Hence,

µL
D(t, u) =

ǩ − k
k

(µL
C(t) ∧ µ

L
C(u))hL(N+(t) ∩ N+(u)) >

1
2

(µL
C(t) ∧ µ

L
C(u)),

we can write it as
µL
D

(t, u)
µL
C
(t) ∧ µL

C
(u)
>

1
2
.

In similar steps, it can be proved that: µU
D

(t, u) > 1
2 (µL
C
(t) ∧ µU

C
(u)), and λD(t, u) > 1

2 (λC(t) ∧ λC(u)).
Hence, the edge (t, u) is independent strong in Ck(G⃗). □

2.2. p-Competition Cubic Fuzzy Graphs

In this section, the concept of p-competition cubic FGs, which extend the classical notion of
CuDGs has been introduced. This extension allows to model uncertainty and partial information in
the relationships between vertices. We start by defining a p-competition cubic FG Cp(G⃗) associated
with a CuDG G⃗:

Definition 11. Consider a positive integer p, a p-competition cubic FG Cp(G⃗) of a CuDG G⃗ = (C,D)
is an undirected graph Cp(G⃗) = (C,D) with C(Cp(G⃗)) = V(G) andD(Cp(G⃗)) = {(t, u);N(t)∩N(u) ≥
p}. The degree of membership of (t, u) ∈ V in Cp(G⃗) is calculated as:

µL
D(t, u) =

(n − p) + 1
n

[µL
C(t) ∧ µ

L
C(u)]hL(N+(t) ∩ N+(u))

µU
D(t, u) =

(n − p) + 1
n

[µU
C (t) ∧ µU

C (u)]hU(N+(t) ∩ N+(u))

λD(t, u) =
(n − p) + 1

n
[λC(t) ∧ λC(u)]h(N+(t) ∩ N+(u))

where |supp(N+(t) ∩ N+(u))| = n.

Example 4. Consider a CuDG G⃗ = (C,D) on vertex setV = {p, q, r, a, b, c} as shown in Figure 6.
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q r

ca

p
([0.7, 0.9], 0.8) ([0.5, 0.7], 0.5)

([0.6, 0.8], 0.4)
([0.5, 0.8], 0.5)

([0.4, 0.7], 0.8)

b
([0.8, 0.9], 0.7)

([0.3, 0.6], 0.3)
([0.2, 0.3], 0.2)

([0.3
, 0.5

], 0.
2)

([0
.4,
0.7

], 0
.4)

([0
.5,
0.7

], 0
.3)

([0.6, 0.7], 0.4)

Figure 6. Cubic Digraph

q r

c

p

ba

([0.15,0.35],0.10)

([0.7,0.9],0.8) ([0.5,0.7],0.5)([0.4,0.7],0.8)

([0.6,0.8],0.4)([0.8,0.9],0.7)([0.5,0.8],0.5)

([0.12,0.42],0.24)

([0.8,0.21],0.10)

Figure 7. 3-Competition Cubic FG

The degree of memberships of the vertices and edges are taken arbitrarily as described in Figure
6. The cubic fuzzy out neighbourhood vertices are:

N+(p) = {(b, [0.2, 0.3], 0.2), (c, [0.3, 0.6], 0.3)},

N+(q) = {(a, [0.5, 0.7], 0.3), (c, [0.6, 0.7], 0.4)},

N+(r) = {(a, [0.3, 0.5], 0.2), (b, [0.4, 0.7], 0.4)}.

Since,
N(p) ∩ N(q) = {(c, [0.3, 0.6], 0.3)},

N(p) ∩ N(r) = {(d, [0.2, 0.3], 0.2)},

N(q) ∩ N(r) = {(a, [0.3, 0.5], 0.2}.

Therefore, for p = 3, the corresponding 3-competition cubic FG is shown in Figure 7.

Theorem 4. Consider a CuDG G⃗ = (C,D). If hL(N+(t) ∩ N+(u)) = 1, hU(N+(t) ∩ N+(u)) = 1,
h(N+(t)∩N+(u)) = 1, in C[ n

2 ](G⃗) then the edge (t, u) is independent strong, where n = |supp(N+(t)∩
N+(u))|, in Ck(G⃗).([n]= greatest integer not exceeding n).

Proof. Let G⃗ = (C,D) be a CuDG and Cp(G⃗) = (C,D) be the corresponding [n
2 ]-competition cubic

FG, where n = |supp(N+(t) ∩ N+(u))|. Also, if hL(N+(t) ∩ N+(u)) = 1, then

µL
D(t, u) =

n − [n
2 ] + 1
n

[µL
C(t) ∧ µ

L
C(u)] × 1,

this implies
µL
D

(t, u)
[µL
C
(t) ∧ µL

C
(u)]
=

n − [ n
2 ] + 1
n

> 0.5.

In similar steps, we can show that:
µU
D

(t,u)
[µU
C

(t)∧µU
C

(u)] =
n−[ n

2 ]+1
n > 0.5 and λD(t,u)

[λC(t)∧λC(u)] =
n−[ n

2 ]+1
n > 0.5. Hence

(t, u) is independent strong in Cp(G⃗). □
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3. Cubic Fuzzy Neighbourhood Graphs

This section explores p-competition cubic FGs, provides illustrative examples, and establishes
essential theorems. The cubic fuzzy open and the cubic fuzzy closed neighbourhoods of any vertex
in a cubic FG are defined as:

Definition 12. Let G = (C,D) be a cubic FG. The cubic fuzzy open-neighbourhood of a vertex t ∈ V
is the CS N(t) = (Vt, rt, st), where Vt = {u|µL

D
(t, u) > 0, λD(t, u) > 0} and rt : Vt → [0, 1] × [0, 1]

specified by rt = [µL
D

(t, u), µU
D

(t, u)] and st : Vt → [0, 1] specified by st = λD(t, u). The cubic fuzzy
singleton set for vertex t ∈ V, is a set of the form, Ct = ({t},C) with C : {t} → [0, 1] and C(t) = C(t).
The cubic fuzzy closed-neighbourhood of any vertex t in N[t] = N(t) ∪Ct.

Now, we are going to define cubic fuzzy open-neighbourhood graphs and cubic fuzzy closed-
neighbourhood graphs.

Definition 13. Let G = (C,D) be a cubic FG. The cubic fuzzy open-neighbourhood graph of G is
a cubic FG N(G) = (C,D) with C(N(G)) = C(G) and D(N(G)) = {(t, u);N(t) ∩ N(u) , o} and
µD : V ×V → [0, 1] × [0, 1] and λD : V ×V → [0, 1] such that:

µL
D(t, u) = (µL

C(t) ∧ µ
L
C(u))hL(N(t) ∩ N(u))

µU
D(t, u) = (µU

C (t) ∧ µU
C (u))hU(N(t) ∩ N(u))

λD(t, u) = (λC(t) ∧ λC(u))h(N(t) ∩ N(u)).

Definition 14. Let G = (C,D) be a cubic FG. The cubic fuzzy closed-neighbourhood graph of G is
a cubic FG N[G] = (C,D) with C(N(G)) = C(G) and D(N(G)) = {(t, u);N(t) ∩ N(u) , o} and
µD : V ×V → [0, 1] × [0, 1] and λD : V ×V → [0, 1] such that:

µL
D(t, u) = [µL

C(t) ∧ µ
L
C(u)]hL(N[t] ∩ N[u])

µU
D(t, u) = [µU

C (t) ∧ µU
C (u)]hU(N[t] ∩ N[u])

λD(t, u) = [λC(t) ∧ λC(u)]h(N[t] ∩ N[u]).

Example 5. Consider a cubic FG G = (C,D) on set of vertices V = {a, b, c, d, e, f } as shown in
Figure 4. The degree of memberships of the vertices and edges are taken arbitrarily as described in
Figure 1. The cubic fuzzy open-neighbourhood and cubic fuzzy closed-neighbourhood are shown in
Table 2:

x N(t) N[t]
a {(b,[0.3,0.5],0.4),(c,[0.5,0.6],0.4)} {(b,[0.3,0.5],0.4),(c,[0.5,0.6],0.4)}∪{(a,[0.6,0.7],0.8)}
b {(a,[0.3,0.5],0.4),(c,[0.4,0.6],0.3)} {(a,[0.3,0.5],0.4),(c,[0.4,0.6],0.3)} ∪{(b,[0.4,0.7],0.5)}
c {(d,[0.4,0.5],0.4),(f,[0.4,0.6],0.4), {(d,[0.4,0.5],0.4),(f,[0.4,0.6],0.4),(a,[0.5,0.6],0.4),

(a,[0.5,0.6],0.4),(b,[0.4,0.6],0.3)} (b,[0.4,0.6],0.3)} ∪ {(c,[0.5,0.6],0.4)}
d {(c,[0.4,0.5],0.4),(e,[0.5,0.6],0.5)} {(c,[0.4,0.5],0.4),(e,[0.5,0.6],0.5)}∪{(d,[0.6,0.8],0.7)}
e {(d,[0.5,0.6],0.5),(f,[0.7,0.8],0.6)} {(d,[0.5,0.6],0.5),(f,[0.7,0.8],0.6)}∪{(e,[0.8,0.9],0.8)}
f {(c,[0.4,0.6],0.4),(e,[0.7,0.8],0.6)} {{(c,[0.4,0.6],0.4),(e,[0.7,0.8],0.6)}∪{(f,[0.7,0.9],0.6)}

Table 2. Cubic Fuzzy Open-Neighbourhoods and Cubic Fuzzy Closed-Neighbourhoods

The cubic fuzzy open-neighbourhood graph N(G) in Figure 9 and the cubic fuzzy closed-
neighbourhood graph N[G] in Figure 10 of the cubic graph G in Figure 8 are shown.
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a b

c

f

e

d

([0.6, 0.7], 0.8)

([0.3, 0.5], 0.4)

([0.4, 0.7], 0.5)

([0.5, 0.6], 0.4)

([0.8, 0.9], 0.8)

([0.7, 0.9], 0.6) ([0.6, 0.8], 0.7)
([0.4

, 0.6
], 0.4

)

([0
.4,

0.6
], 0

.3)
([0.5, 0.6], 0.4)

([0
.5,

0.6
], 0

.5)

([0.4, 0.5], 0.4)

([0.7, 0.8], 0.6)

Figure 8. G

a b

c

f

e

d

([0.6, 0.7], 0.8)

([0.16, 0.42], 0.15)

([0.4, 0.7], 0.5)

([0.5, 0.6], 0.4)

([0.8, 0.9], 0.8)

([0.7, 0.9], 0.6) ([0.6, 0.8], 0.7)

([0
.12

, 0.
30]

, 0.
16)([0.15, 0.30], 0.16)

([
0
.2
4
, 0
.4
2
],
0
.2
4
) ([0

.1
6
, 0
.3
5
], 0

.2
0
)

([
0
.2
0
, 0
.3
6
],
0
.1
6
)

([0.30, 0.48], 0.30)

([0.24, 0
.35], 0.2

8)

Figure 9. N(G)

a b

c

f

e

d

([0.6, 0.7], 0.8) ([0.4, 0.7], 0.5)

([0.5, 0.6], 0.4)

([0.8, 0.9], 0.8)

([0.7, 0.9], 0.6)
([0.6, 0.8], 0.7)

([0
.16

, 0.
36]

, 0.
12)([0.25, 0.36], 0.16)

([0.16, 0.42], 0.15)

([0.24, 0.
35], 0.28)

([
0
.2
0
,0
.3
6
],
0
.1
6
)

([0.30, 0.48], 0.30)

([0
.1
6
, 0
.3
5
], 0

.2
0
)

([
0
.2
4
, 0
.4
2
],
0
.2
4
)

([0.
20,

0.3
6], 0

.16
) ([0.20, 0.30], 0.16)

([0.49, 0.72], 0.36) ([0
.30

, 0.
48
], 0

.35
)

Figure 10. N[G]

Definition 15. Let G = (C,D) be a cubic FG. The (open) (k)-neighbourhood graph of G is a cubic
FG N(k)(G) = (C,D) with C(N(k)(G) = C(G) and D(N(k)(G)) = {(t, u);N(t) ∩ N(u) > k} and
µD : V ×V → [0, 1] × [0, 1] and λD : V ×V → [0, 1] such that:

µL
D(t, u) =

ǩ − k
k

[µL
C(t) ∧ µ

L
C(u)]hL(N(t) ∩ N(u))

µU
D(t, u) =

ǩ − k
k

[µU
C (t) ∧ µU

C (u)]hU(N(t) ∩ N(u))
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λD(t, u) =
ǩ − k

k
[λC(t) ∧ λC(u)]h(N(t) ∩ N(u)),

where ǩ = |N(t) ∩ N(u)|.

Definition 16. Let G = (C,D) be a cubic FG. The cubic fuzzy (close) [k]-neighbourhood graph of G
is a cubic FG N[k][G] = (C,D) with C(N[k][G]) = C(G) and D(N[k][G]) = {(t, u);N[t] ∩ N[u] > k}
and µD : V ×V → [0, 1] × [0, 1] and λD : V ×V → [0, 1] such that:

µL
D(t, u) =

ǩ − k
k

[µL
C(t) ∧ µ

L
C(u)]hL(N[t] ∩ N[u])

µU
D(t, u) =

ǩ − k
k

[µU
C (t) ∧ µU

C (u)]hU(N[t] ∩ N[u])

λD(t, u) =
ǩ − k

k
[λC(t) ∧ λC(u)]h(N[t] ∩ N[u]),

where ǩ = |N[t] ∩ N[u]|.

Now we can proceed to a theorem that provides a significant property of p-competition cubic FGs.

Theorem 5. There exist one edge in N[G] for every edge in a cubic graph G.

Proof. Let edge (t, u) be any edge of cubic graph G = (C,D). Consider the corresponding cubic
fuzzy closed-neighbourhood graph N[G] = (C,D). Then (t, u) ∈ N[t] and (t, u) ∈ N[u]. Thus
(t, u) ∈ N[t] ∩ N[u]. Hence, hL(N[t] ∩ N[u]) , 0, hU(N[t] ∩ N[u]) , 0 and h(N[t] ∩ N[u]) , 0.
Therefore,

µL
D(t, u) = µL

C(t) ∧ µ
L
C(u)hL(N[t] ∩ N[u]) , 0,

µU
D(t, u) = µU

C (t) ∧ µU
C (u)hU(N[t] ∩ N[u]) , 0,

λD(t, u) = λC(t) ∧ λC(u)h(N[t] ∩ N[u]) , 0.

So for every (t, u) in G, there is (t, u) in N[G]. □

4. m−Step Cubic Fuzzy Competition Graphs

In this section, the m-step cubic fuzzy digraph S(G⃗m), which forms the foundation for constructing
m-step cubic fuzzy CMGs has been introduced. The m-step digraph considers paths of length m
between vertices, thereby capturing the indirect relationships that might not be apparent in a single
step. This concept is crucial as it allows us to analyze the structure of the graph beyond immediate
connections, which can reveal deeper insights into the network’s topology.

Definition 17. The m-step cubic fuzzy digraph S(G⃗m) of a CuDG G⃗ = (C,D) is indicated as S(G⃗m) =
(C,D) with C(S(G⃗m)) = C(G) andD(S(G⃗m)) = {(t, u);∃ a CuDP of m length from t to u, P⃗m

(t,u)in G⃗}.

This definition establishes the framework for constructing m-step cubic fuzzy CMGs by consider-
ing paths of length m between vertices. Next, the concept of cubic fuzzy m-step out and in neighbor-
hoods of a vertex in a CuDG has been introduced. These neighborhoods consist of vertices that can
be reached from a given vertex t within m steps, along with the associated fuzzy membership values.
These neighborhoods provide a localized view of the network, allowing us to examine how a vertex
is connected to others within a specified range, which is essential for understanding the influence and
reach of a vertex within the graph.
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Example 6. An example of 2-step cubic fuzzy CMGs of the CuDG of Figure 11 is shown in Figure 12.

b

b

b

b

b

([0.6, 0.8], 0.2)

([0.3, 0.4], 0.3)([0
.5,

0.6
], 0

.3)

([0.5, 0.6], 0.4) ([0.6, 0.8], 0

([0.6, 0.7], 0.3)

([0.4, 0.5], 0.3)

([
0
.4
,0
.6
],
0
.5
) ([0

.3
, 0
.5
], 0

.4
)

v

w u

x y

Figure 11. G⃗

b

b

b

b

b

([0.6, 0.8], 0.2)

([0.5, 0.6], 0.4) ([0.6, 0.8], 0.2)

([0.6, 0.7], 0.3)

([0.4, 0.5], 0.3)

v

w u

x y
([0.15, 0.24], 0.2)

Figure 12. S(G⃗m)

Definition 18. The cubic fuzzy m-step out neighbourhood of any vertex t of a CuDG G⃗ = (C,D) is
CS N+m(t) = (V+t , r

+
t , s

+
t ), where

V+t = {u| ∃ a CuDP of m length from t to u, P⃗m
(t,u)}, (3)

such that
r+t : V+t → [0, 1] × [0, 1]

specified by
r+t = {[min µL

D(t, u),min µU
D(t, u)]; (t, u) is an edge ofP⃗m

(t,u)}

and
s+t : V+t → [0, 1]

specified by
s+t = {min λD(t, u); (t, u) is an edge ofP⃗m

(t,u)}.

Definition 19. The cubic fuzzy m-step in neighbourhood of any vertex t of a CuDG G⃗ = (C,D) is CS
N−m(t) = (V−t , r

−
t , s

−
t ), where

V−t = {u| ∃ a CuDP of m length from t to u, P⃗m
(t,u)}, (4)

such that
r−t : V−t → [0, 1] × [0, 1]

specified by
r−t = {[min µL

D(t, u),min µU
D(t, u)], (t, u) is an edge o f P⃗m

(t,u)}

and
s−t : V−t → [0, 1]

specified by
s−t = {min λD(t, u), (t, u) is an edge o f P⃗m

(t,u)}.
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The notion of an independent strong vertex, which is a vertex that maintains a high degree of
membership across multiple m-step neighborhoods has also been explored. The strength of such a
vertex is quantified using specific measures, which aggregate the membership values from all relevant
connections.

Definition 20. Let G = (C,D) be a cubic graph. The m-step cubic fuzzy CMG of G is indicated by
Gm = (C,D) with C(Gm) = C(G) and D(Gm) = {(t, u);N(t) ∩ N(u) > k} in cubic graph. The degree
of membership of the edge (t, u) are defined as:

µL
D(t, u) = (µL

C(t) ∧ µL
C(u))hL(N+m(t) ∩ N+m(u)),

µU
D(t, u) = (µU

C(t) ∧ µU
C(u))hU(N+m(t) ∩ N+m(u)),

λD(t, u) = (λC(t) ∧ λC(u))h(N+m(t) ∩ N+m(u)).

Definition 21. Let G⃗ = (C,D) be a CuDG. Suppose u be the common vertex of m-step cubic fuzzy
out neighbourhoods of vertices t1, t2, . . . , tn, n is a positive integer. The m-step vertex u ∈ V is called
independent strong vertex if µL

m(t, u) > 0.5, µU
m(t, u) > 0.5 and λm(t, u) > 0.5, for all i = 1, 2, . . . , n.

Further, the strength of this vertex u is denoted by Sm(u) and is specified as:

S(u) = ([S L
m(u), S U

m(u)], S m(u)), (5)

where

S L
m(u) =

n∑
i=1
µL

m(−−→ti, u)

n
, S U

m(u) =

n∑
i=1
µU

m(−−→ti, u)

n
, S m(u) =

n∑
i=1
λm(−−→ti, u)

n
.

This definition provides a measure of how strong a vertex u is within its m-step neighbourhood.

Theorem 6. If a vertex u is independent strong then S L
m(u) > 0, S U

m(u) > 0 and S m(u) > 0.

Proof. Let G⃗ = (C,D) be a CuDG. Let u be the common vertex of m-step cubic fuzzy out neighbour-
hoods of vertices t1, t2, . . . , tn, n belong to positive integers. Since, the vertex u is independent strong
as given so µL

m(−−→ti, u) > 0.5 for all i = 1, 2, . . . , n. Therefore,

S L
m(u) =

µL
m(−−→t1, u) + µL

m(−−→t2, u) + . . . + µL
m(−−→tn, u)

n
>

0.5 + 0.5 + . . . + 0.5
n

= 0.5,

S U
m(u) =

µU
m(−−→t1, u) + µU

m(−−→t2, u) + . . . + µU
m(−−→tn, u)

n
>

0.5 + 0.5 + . . . + 0.5
n

= 0.5,

S m(u) =
λm(−−→t1, u) + λm(−−→t2, u) + . . . + λm(−−→tn, u)

n
>

0.5 + 0.5 + . . . + 0.5
n

= 0.5.

□

Theorem 7. The edges of S(G⃗m) must also be independent strong if all of its vertices are.

Proof. Suppose that the CuDG G⃗ = (C,D) has independent strong vertices. Let Gm = (C,D) be a
m-step cubic fuzzy CMG of G⃗.

µL
D(t, u) = (µL

C(t) ∧ µL
C(u))hL(Nm(t) ∩ Nm(u), (6)

if Nm(t) ∩ Nm(u) is empty then there doesn’t exists any edge among vertices t and u in Nm(G). If
Nm(t) ∩ Nm(u) is non-empty then clearly hL(N+m(t) ∩ N+m(u)) > 0.5 as all the edges of G⃗ must also be
independent strong hence,

µL
D(t, u) = (µL

C(t) ∧ µL
C(u))hL(N+m(t) ∩ N+m(u)) >

1
2

(µL
C(t) ∧ µL

C(u)). (7)

In similar way, we can show that µU
D

(t, u) > 1
2 (µU

C
(t) ∧ µU

C
(u)) and λD(t, u) > 1

2 (λC(t) ∧ λC(u)).
This suggests that each and every edge of S(G⃗m) is independently strong. □
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5. Applications of Cubic Fuzzy Competition Graphs

In this Section, an application of cubic fuzzy CMGs. Relationships among predators and prey,
in which one organism (the predator) pursues, captures, and consumes another organism (the prey)
for food, are a basic component of ecological interactions has been discussed. These connections
are essential for keeping ecosystems in balance. Take the cubic fuzzy food chain of animals as an
example: Grasses, Rabbit, Mouse, Grasshopper,Grain, Bird, Frog, Snake, Fox, Owl and Hawk as
shown in Figure 13.

Figure 13. Food Web

The goal is to find those species which have strong competition among them by using CMGs. The
interval degree of belongingness of each species characterizes strong access to itself requirements in
particular duration of time while simple fuzzy membership indicates their present requirements from
environment. The cubic fuzzy food web is shown in Figure 14.

Figure 14. Cubic Fuzzy Directed Food Web

Cubic fuzzy CMG can be constructed to investigate the strength of competition between species
having common food prey. The Cubic fuzzy out neighbourhoods are given in table 3.
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Species Cubic fuzzy out neighbourhoods of each specie
Hawk {(Rabbit,[0.6,0.7],0.5),(Snake,[0.5,0.7],0.8)}
Rabbit {(Grasses,[0.3,0.4],0.5)}
Bird {(Grasshopper,[0.5,0.6],0.4)}

Grasshopper {(Grasses,[0.5,0.6],0.6)}
Mouse {(Grasses,[0.4,0.5],0.6)}
Snake {(Frog,[0.6,0.7],0.5),(Bird,[0.4,0.7],0.3)}
Frog {(Grasshopper,[0.7,0.8],0.7)}
Fox {(Rabbit,[0.4,0.5],0.2),(Mouse,[0.3,0.4],0.2)}
Owl {(Mouse,[0.2,0.3],0.4),(Frog,[0.4,0.5],0.5)}

Table 3. The Cubic Fuzzy Out Neighbourhoods

Hawks are predatory birds known for their excellent vision and hunting abilities. They prey
on small animals, including mouse, rabbit snake and birds. Hawks use their sharp talons and
beaks to catch and kill mice, which serve as their primary food source.The degree of belongingness
([0.6, 0.7], 0.9), which shows that Hawk was 60% − 70% strong in accessing to itself requirements in
past and 90% strong in its present requirements from environment. The edge from Hawk to Snake
shows degree of belongingness ([0.5, 0.7], 0.6) represent that the Lion is 50%−70% predominated on
Snake in past environment and 60% predominated on Snake in present environment.
The cubic fuzzy CMG is shown in Figure 15.

Hawk

Snake

Graashopper

Grasses

Frog

Bird

Rabbit

Mouse

Fox Owl

([
0.

18
, 

0.
28

],
 0

.3
5) ([0.5, 0.6], 0.5)

([0.6, 0.7], 0.9)

([0.5, 0.7], 0.6)

([0.5, 0.6], 0.7)

([0.4, 0.5], 0.3)

([0.7, 0.8], 0.7)

([0.6, 0.7], 0.8)

([0.6, 0.8], 0.7)

([0.7, 0.8], 0.8)([0.8, 0.9], 0.7)

([0.18, 0.32], 0.35)

([
0.

16
, 0

.2
5]

, 0
.6

)

([0.25, 0.36], 0.20)

([0.8, 0.15], 0.6)

([0.20, 0.35], 0.30)

([0.10, 0.21], 0.24)

([0.24, 0.35], 0.42)

Figure 15. Cubic Fuzzy CMG

The edge membership values between two species represent the degree dominated on common
food. According to Figure 14, there is a strong competition between Hawk and Snake common food.
CMG can be constructed to investigate the strength of competition between species common food
prey.

6. Conclusion

The paper examines the idea of cubic fuzzy CMGs, its variations and uses. The concept of cu-
bic fuzzy out neighbourhoods and in neighbourhoods is introduced in order to use CSs to describe
relationships in a graph. Following that, the study describes various varieties of cubic fuzzy com-
petitive graphs based on external neighbourhoods, including cubic fuzzy k-competitive graphs, p-
competitive cubic FGs, and m-step cubic fuzzy CMGs. To shed further light on graph interactions
and competition, the varieties of cubic FGs including open and closed neighbourhood cubic FGs,
cubic fuzzy (k)(open) neighbourhood graphs, and cubic fuzzy [k](close) neighbourhood graphs are
also introduced.These cubic fuzzy CMGs are further categorized into three specific types: cubic fuzzy
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k-competition graphs, which depict competition at the kth order between components; p-competition
cubic fuzzy graphs, which focus on competition based on membership degrees; and m-step cubic
fuzzy competition graphs, which explore competition in terms of steps. Additionally, several theo-
rems and conditions concerning independent strong vertices and edges are validated for these cubic
fuzzy competition graph classes. To show how rivalry between predators and prey affects each other
over time, a cubic fuzzy CMG application in predator-prey dynamics is employed.
It is expected that in future this work can be extended to cubic fuzzy CMGs, including cubic fuzzy
intuitionistic CMGs and cubic fuzzy Pythagorean CMGs, and some interesting properties along with
applications can be obtained.
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