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monophonic-triangular path or mt-path. A non-empty subset M of V(G) is a monophonic-triangular
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1. Introduction

In this paper, a graph G = (V, E) refers to a finite undirected connected graph that lacks loops
and multiple edges. The order and size of a graph are represented by p and q, respectively. For basic
definitions and terminologies, we refer to [1–3]. A vertex v of a graph G is said to be simplicial or
extreme if the subgraph induced by its neighbors in complete. If the degree of a vertex v is one, then
v is called an end-vertex.

In graph theory, there are many types of paths of interest joining any two vertices in a graph. The
important paths joining any two vertices in a graph are geodesic path (a shortest path), detour path (a
longest path), monophonic path (a chordless path), detour monophonic path (a longest chordless path)
and triangle free detour path (a longest path having no triangle). In the year 2021, Santhakumaran
and Titus [4] introduced a new path named as monophonic-triangular path or mt-path by not allowing
a cycle of order more than 3 (i.e., a triangle) in it. Hence, if an edge e of a monophonic path P is
an edge of a triangle in G, then we enlarge the path P by replacing the edge e by the remaining two
edges of the triangle. Let Q be the revised path. Then the paths P and Q are known as monophonic-
triangular path or mt-path. Clearly, the monophonic-triangular path covers more number of vertices
than the usual monophonic path. Therefore, the monophonic-triangular path is a more powerful tool
for covering the vertices of a graph.

The distance d(a, b) between the vertices a and b in a graph G is the length of one of the shortest
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a−b paths in G. An a−b geodesic is an a−b path with length d(a, b). A non-empty subset S of V(G)
is a geodetic set of G if every member in V(G) lies on a geodesic path joining some pair of members
in S . The geodetic number is the smallest cardinality of a geodetic set of G and it is denoted by g(G).
The geodetic number of a graph was introduced in [5] and further investigated in [6–8].

The detour distance D(a, b) between the vertices a and b in a graph G is the length of one of the
longest a − b paths in G. In [9], the detour distance was first introduced. An a − b detour is an a − b
path with length D(a, b). A non-empty subset S of V(G) is a detour set of G if every member in
V(G) lies on a detour path joining some pair of members in S . The detour number of a graph is the
smallest cardinality of a detour set of G and it is denoted by dn(G). The detour number of a graph
was introduced in [10] and expanded upon in [11, 12].

An a − b path P is said to be an a − b monophonic path in G if P has no chords. The monophonic
distance dm(a, b) between the vertices a and b in a graph G is the length of one of the longest a − b
monophonic paths in G. The monophonic distance was introduced by Santhakumaran and Titus
in [13] and further studied in [14]. A non-empty subset S of V(G) is a monophonic set of G if every
member in V(G) lies on a monophonic path joining some pair of members in S . The monophonic
number is the smallest cardinality of a monophonic set of G and it is denoted by m(G). The concept
of monophonic number was studied in [15–17].

An a−b detour monophonic path is one of the longest a−b monophonic paths. A non-empty subset
S of V(G) is a detour monophonic set of G if every member in V(G) lies on a detour monophonic path
joining some pair of members in S . The detour monophonic number is the lowest cardinality of a
detour monophonic set of G and it is symbolized by dm(G). The idea of detour monophonic number
of a graph was presented in [18], which was expanded upon in [19].

An a − b path P is said to be an a − b triangle free path in G if no three vertices of P produce a
cycle C3 in G. The triangle free detour distance D△ f (a, b) between the vertices a and b in a graph G
is the length of one of the longest a − b triangle free path in G. An a − b triangular free detour is
an a − b triangle free path with length D△ f (a, b). The concept was studied in [20] and further studied
in [21]. A non-empty subset S of V(G) is a triangle free detour set of G if every member in V(G)
exists in a triangle free path joining some pair of members in S . The triangle free detour number is
the lowest cardinality of a triangle free detour set of G and it is symbolized by dn△ f (G).

A path x1, x2, . . . , xn in a connected graph G with no edge xix j ( j ≥ i + 3) is called a monophonic-
triangular path or mt-path. The monophonic-triangular distance or mt-distance dmt(a, b) from a to
b is defined as the length of one of the longest a − b mt-paths in G. The mt-eccentricity emt(v) of
a vertex v in G is defined as the maximum mt-distance between v and other vertices in G. The
mt-radius radmt(G) is defined as the minimum mt-eccentricity among the vertices of G and the mt-
diameter diammt(G) is defined as the maximum mt-eccentricity among the vertices of G. The concept
of monophonic-triangular distance in graphs introduced in [4]. This new distance motivates us to
introduce a new parameter ”monophonic-triangular number”.

The following theorems are used in the sequel.

Theorem 1. [4] Let G be a connected graph of order p ≥ 2. Then diammt(G) = 1 if and only if
G = K2.

Theorem 2. [16] Every extreme vertex of a connected graph G belongs to every monophonic set of
G.

Theorem 3. [16] Let G be a connected graph of order p ≥ 3. Then m(G) = p − 1 if and only if
G = K1 + ∪m jK j, where

∑
m j ≥ 2.

Theorem 4. [5] Each extreme vertex of a connected graph G belongs to every geodetic set of G.
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2. Monophonic-triangular Number of a Graph

Definition 1. A non-empty subset M of V(G) is a monophonic-triangular set or mt-set of G if every
member in V(G) exists in an mt-path joining some pair of members in M. The monophonic-triangular
number or mt-number is the smallest cardinality of an mt-set of G and it is symbolized by mt(G).

Example 1. (i) For the graph G given in Figure 1, M1 = {u, x} and M2 = {z, x} are the minimum
mt-sets of G. Hence mt(G) = 2.

Figure 1. A Graph G with mt(G) = 2

(ii) Consider the graph G given in Figure 2. It can be easily verified that M1 = {a1, a3, a5, b2,

b3, c2, c4, d1, d2} is a minimum geodetic set, M2 = {a1, b1, c1, d1} is a minimum detour set, M3 =

{a1, a5, b2, c2, c4, d1, d2} is a minimum monophonic set, M4 = {a1, a5, b2, b3, c2, c4, d1, d2} is a
minimum detour monophonic set, M5 = {a1, a5, b1, c1, d1, d2} is a minimum triangle free detour
set and M6 = {a3, b2, c2, c4, d1} is a minimum mt-set of G and so d(G) = 9, D(G) = 4, m(G) = 7,
dm(G) = 8, dn△ f (G) = 6 and mt(G) = 5. Hence the parameters based on the paths geodesic,
detour, monophonic, detour monophonic, triangle free detour and monophonic-triangular are
different.

Figure 2. A Graph G with d(G) = 9, D(G) = 4, m(G) = 7, dm(G) = 8, dn△ f (G) = 6 and
mt(G) = 5

Theorem 5. (i) Each end-vertex of G is a member of every mt-set of G.

(ii) No cut-vertex of G is a member of any minimum mt-set of G.

Proof. (i) Let v be an end-vertex of G. Then v is either the initial vertex or the terminal vertex of
any monophonic-triangular path containing the vertex v. Hence v is not an internal vertex of any
monophonic-triangular path so that v is a member of every mt-set of G.

(ii) Suppose v is a cut-vertex of G and let M be a minimum mt-set of G that contains v. Now, claim
that each component of G − v contains an element of M. If not, then there is a component B of
G−v such that B contains no element of M. Let u be any vertex in B. Since M is an mt-set, there
exist two vertices x and y in M such that v exists in some x − y monophonic-triangular path, say
P. Then u , x, y. Since v is a cut-vertex of G, the x − u subpath P1 of P and the u − y subpath
P2 of P both contain v, it results that P is not a path, it contradicts our assumption. Thus each
component of G − v contains an element of M. Let V1 and V2 be two different components of
G − v and let u ∈ V1 and w ∈ V2. Then v is an internal vertex of an u − w monophonic-triangular
path in G. Let M′ = M − {v}. Then each vertex that lies on an u − v monophonic-triangular path
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also exists on an u−w monophonic-triangular path and hence M′ is an mt-set of G, it contradicts
to M a minimum mt-set of G.

□

Corollary 1. If G is a tree graph with some k end-vertices, then mt(G) = k.

Corollary 2. If a graph G with k ≥ 2 end-blocks, then mt(G) ≥ k.

Corollary 3. In a graph G, if k is the largest number of blocks to which a vertex in G belongs, then
mt(G) ≥ k.

Theorem 6. 1. For the graph Kp (p ≥ 2), mt(Kp) = 2.

2. For the graph Cp (p ≥ 3), mt(Cp) = 2.

3. For the graph Wp = K1 +Cp−1 (p ≥ 5), mt(Wp) = 2.

4. For the graph Km,n (m, n ≥ 2), mt(Km,n) = min{4,m, n}.

Proof. 1. For any two vertices x and y in Kp, any vertex v , x, y is a member on the x, v, y
monophonic-triangular path. Hence M = {x, y} is an mt-set of Kp and so mt(Kp) = 2.

2. For any two non-adjacent vertices x and y in Cp, every vertex of Cp exists on an x−y monophonic-
triangular path. Hence M = {x, y} is an mt-set of Cp and so mt(Cp) = 2.

3. Let M = {x, y}, where x and y are any two non-adjacent vertices in Wp. It is obvious that each
vertex of Wp exists on an x − y monophonic-triangular path. Then M is an mt-set of Wp and so
mt(Wp) = 2.

4. Let the partite sets of Km,n (2 ≤ m ≤ n) be V1 = {x1, x2, . . . , xm} and V2 = {y1, y2, . . . , yn}. When
m = 2 or 3, M = V1 is a minimum mt-set of Km,n and so mt(Km,n) = |M| = m. When m ≥ 4, Let
M = {x1, x2, y1, y2}. It is evident that every vertex in V1 is a member on a y1 − y2 monophonic-
triangular path and every vertex in V2 is a member on an x1 − x2 monophonic-triangular path.
As a result, M is an mt-set of Km,n and hence mt(Km,n) ≤ |M| = 4. It is evident that neither two
members nor three members subset of V(Km,n) will form an mt-set of Km,n, we have mt(Km,n) = 4.

□

Proposition 1. If G is any connected graph, then 2 ≤ mt(G) ≤ m(G) ≤ p.

Proof. To form an mt-set, we need minimum two vertices and so mt(G) ≥ 2. Since every monophonic
set is a monophonic-triangular set, mt(G) ≤ m(G). Also, since V(G) is a monophonic set, we have
m(G) ≤ p. Thus 2 ≤ mt(G) ≤ m(G) ≤ p. □

Remark 1. For the cycle Cp, mt(Cp) = 2 and for the complete graph K2, mt(K2) = 2 = p. Therefore
the bounds for mt(G) in Proposition 1 are sharp.

We provide a better upper bound for the mt-number of a graph in the subsequent theorem.

Theorem 7. For any connected graph G with p vertices, mt(G) ≤ p − diammt(G) + 1.

Proof. Let P : a = a0, a1, . . . , ad = b be an a − b mt-path of length d = diammt(G). Then S = V(G) −
{a1, a2, . . . , ad−1} is an mt-set of G and so mt(G) ≤ |S | = p− d + 1. Hence mt(G) ≤ p− diammt(G)+ 1.

□

Remark 2. In K3, diammt(K3) = 2 and mt(K3) = 2 = p − diammt(K3) + 1. Therefore the bound
in Theorem 7 is sharp. The inequality in Theorem 7 can also be strict. For the cycle Cp (p ≥ 4),
diammt(Cp) = p − 2 and mt(Cp) = 2. Thus mt(Cp) < p − diammt(Cp) + 1. Also, since diamm(G) ≤
diammt(G), we have mt(G) ≤ p − diamm(G) + 1.

Ars Combinatoria Volume 160, 117–126



The Monophonic-triangular Number of a Graph 121

Theorem 8. Let G be a graph with order p ≥ 2. Then G = K2 if and only if mt(G) = p.

Proof. Supposing that G = K2, subsequently mt(G) = 2 = p. Conversely, let mt(G) = p. If G , K2,
then G contains minimum 3 vertices. Since G is connected with at least 3 vertices, diammt(G) ≥ 2.
Then by Theorem 7, mt(G) ≤ p − diammt(G) + 1 ≤ p − 1, it contradicts our assumption. Hence
G = K2. □

Theorem 9. Let G be a graph with order p ≥ 3. Then G is either K3 or K1,p−1 if and only if mt(G) =
p − 1.

Proof. Supposing that G = K3 or K1,p−1, subsequently by Theorem 6(i) and Corollary 1, mt(G) = p−1.
Conversely, suppose that mt(G) = p − 1. Then by Proposition 1, we have m(G) = p − 1 or p. If
m(G) = p, then G = Kp and so by Theorem 6 (i), mt(G) = 2 = p − 1 only for p = 3. Hence G = K3.
If m(G) = p − 1, then by Theorem 3, G = K1 + ∪m jK j, where

∑
m j ≥ 2. Now, we claim that G

is a star. i.e., j = 1. If not, then G has at least one clique K j of order more than one. Let S be a
collection of exactly one vertex from each clique of G = K1 + ∪m jK j. Clearly, S is an mt-set of G
and so mt(G) ≤ |S | ≤ p − 2, it contradicts our assumption. Hence G is a star. □

Theorem 10. Let G be a graph with order p ≥ 5. Then G is either a double star or K1,p−1 + e if and
only if mt(G) = p − 2.

Proof. If G is a double star, then by Corollary 1, mt(G) = p − 2. If G = K1,p−1 + e, then G contains
exactly one cut-vertex, say x; two simplicial vertices of degree two, say y1 and y2; and p − 3 end-
vertices. Let M be the end-vertices set of G. By Theorem 5(i), every member of M is included in each
mt-set of G. Let M′ = M ∪ {y1}. As a result, a minimum mt-set of G is M′ and hence mt(G) = p − 2.

Conversely, let G be a graph of order p ≥ 5 such that mt(G) = p − 2. Then by Theorem 1,
diammt(G) ≥ 2. If diammt(G) ≥ 4, then by Theorem 7, mt(G) ≤ p − 3, it contradicts our assumption.
Hence diammt(G) = 2 or 3. If G is a tree, then G is either a star or a double star. If G is a star, then
by Corollary 1, mt(G) = p − 1, it contradicts our assumption. If G is a double star, then by Corollary
1, mt(G) = p − 2. Now, let G be not a tree. Let k denote the length of the longest cycle with no inner
chords in G. Since diammt(G) = 2 or 3, we have k ≤ 5. Now we have three cases.
Case 1. k = 5. Let 5-cycle in G be C5 = v1, v2, v3, v4, v5, v1.

Then mt-set of G is M = (V(G) − V(C5)) ∪ {v1, v3} and hence mt(G) ≤ p − 3, it contradicts our
assumption.
Case 2. k = 4.

Let 4-cycle in G be C4 = v1, v2, v3, v4, v1. Since p ≥ 5 and G is connected, there exists a vertex,
say u, not on C4 such that u is adjacent to some vertices in C4. If u is adjacent to exactly one vertex,
say v1, then an mt-set of G is M = V(G) − {v1, v2, v4} and hence mt(G) ≤ p − 3, it contradicts our
assumption. If u is adjacent to two consecutive vertices of C4, say v1 and v2, then also M is an mt-set
of G and so mt(G) = p − 3, it contradicts our assumption. If u is adjacent to two non-consecutive
vertices of C4, say v1 and v3, then M1 = V(G) − {u, v2, v4} is an mt-set of G and so mt(G) = p − 3, it
contradicts our assumption.
Case 3. k = 3.

If G contains 2 or more edge distinct triangles, then diammt(G) ≥ 4. Then by Theorem 7, mt(G) ≤
p−3, it contradicts our assumption. If G contains two common edge triangles, then G1 or G2 in Figure
3 is a subgraph of G. As a result, mt-set of G is M = V(G) − {x1, x2, x3} and hence mt(G) ≤ p − 3, it
contradicts our assumption. If G contains three or more common edge triangles, then G3 in Figure 3
is a subgraph of G. As a result, mt-set of G is M = V(G) − {x1, x2, x3} and hence mt(G) ≤ p − 3, it
contradicts our assumption. Hence G contains a unique triangle C3 = v1, v2, v3, v1. If there are two or
three vertices of C3 having degree 3 or more, then diammt(G) ≥ 4, it contradicts our assumption. Thus
exactly one vertex in C3 has degree 3 or more. Since diammt(G) = 3, it follows that G = K1,p−1 + e.

□
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Figure 3. The Subgraphs of G in Case 3 of Theorem 10

Remark 3. Let G be a graph with order p ≤ 4. Then mt(G) = p − 2 if and only if G is any connected
graph of order four other than a star.

3. Realization Result

Theorem 11. If G is any connected graph of order p, then 2 ≤ mt(G) ≤ m(G) ≤ g(G) ≤ p.

Proof. Obviously, every monophonic path is an mt-path and every geodesic is a monophonic path.
Hence every monophonic set is an mt-set and every geodetic set is a monophonic set, and so mt(G) ≤
m(G) ≤ g(G). Then the result follows from Proposition 1. □

Theorem 12. For each triple (k, l, n) with 2 ≤ k ≤ l ≤ n, there exists a connected graph G with
mt(G) = k, m(G) = l and g(G) = n.

Proof. If 2 ≤ k = l = n, then take G as a tree with number of end-vertices k. Then by Theorems 2,
4 and Corollary 1, we have mt(G) = m(G) = g(G) = k. In other cases, we construct a graph G as
follows: Let P represent a path u1, u2, u3, u4 of length 3 and Pi represent n − l copies of a path xi, yi

(1 ≤ i ≤ n − l) of length 1. Assume G is the graph formed by connecting each xi (1 ≤ i ≤ n − l) to u2,
connecting each yi (1 ≤ i ≤ n − l) to u4, and adding l − 1 new vertices v1, v2, . . . , vk−1,w1,w2, . . . ,wl−k

and connecting each vi (1 ≤ i ≤ k − 1) to u4, and connecting each wi (i ≤ i ≤ l − k) to u3 and u4. The
graph G is shown in Figure 4.

Figure 4. The Graph G in Theorem 12

The set of simplicial vertices is M′ = M ∪ {w1,w2, . . . ,wl−k}, where M = {u1, v1, v2, . . . ,

vk−1} is the set of end-vertices. By Theorem 5(i), every member of M is included in each mt-set of G.
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As M is itself an mt-set, mt(G) = |M| = k. Similarly, by Theorem 2, every member of M′ is included
in each monophonic set of G. Obviously, M′ is a monophonic set of G and hence m(G) = |M′| = l.
Now, by Theorem 4, every member of M′ is included in each geodetic set of G. Obviously, the
vertices xi and yi (1 ≤ i ≤ n − l) do not lie on any geodesic connecting any two vertices in M′. As a
result, M′ is not a geodetic set of G and hence g(G) > |M′|. We can easily verify that either xi or yi

(i ≤ i ≤ n − l) must belong to every geodetic set of G. Let M′′ = M′ ∪ {x1, x2, . . . , xn−l}. Now, every
vertex of G exists on a geodesic joining two vertices in M′′. Hence M′′ is a geodetic set of G and
so g(G) = |M′′| = n. In the next theorem, we construct a graph of prescribed order, mt-diameter and
mt-number under suitable conditions. □

Theorem 13. For each triple (k, l, p) with 2 ≤ l ≤ p− k+ 1 and k ≥ 3, there exists a connected graph
G with diammt(G) = k, mt(G) = l and |V(G)| = p.

Figure 5. The Graph G in Theorem 13

Proof. Assume G is the graph formed from the path Pk : u1, u2, . . . , uk of order k by adding p− k new
vertices v1, v2, . . . , vp−k−l+2,w1,w2, . . . ,wl−2 and connecting each wi (1 ≤ i ≤ l − 2) to u2, and joining
each vi (1 ≤ i ≤ p− k− l+ 2) to both u1 and u2. The graph G is shown in Figure 5 and the order of the
graph G is p. Obviously, for any x ∈ V(G), 2 ≤ emt(x) ≤ k and for any y ∈ {u1, uk, v1, v2, . . . , vp−k−l+2},
emt(y) = k. Hence diammt(G) = k. Now, we claim that mt(G) = l. Let the end-vertices set of G be
M = {w1,w2, . . . ,wl−2, uk}. Then by Theorem 5(i), every member of M is included in each mt-set
of G and hence mt(G) ≥ |M| = l − 1. Obviously, the vertices u1, v1, v2, . . . , vp−k−l+2 do not exist on
any u − v monophonic-triangular path for every u, v ∈ M. Let M′ = M ∪ {u1}. Since the vertices
u1, v1, v2, . . . , vp−k−l+2 lie on an u1 − y monophonic-triangular path for some y ∈ M, a minimum mt-set
of G is M′ and hence mt(G) = |M′| = k. Hence the result. □

Ostrand [22] has shown that every two positive integers k and l with k ≤ l ≤ 2k are realisable
as the radius and diameter of a graph, respectively, because rad(G) ≤ diam(G) ≤ 2 rad(G). San-
thakumaran et al. [16] have shown that every two positive integers k and l with k ≤ l are realisable
as the monophonic radius and monophonic diameter of a connected graph, respectively, because
radm(G) ≤ diamm(G). Similarly, since radmt(G) ≤ diammt(G), it was demonstrated by Titus et.al. [4]
that all positive integers k and l with k ≤ l, are realisable as the mt-radius and mt-diameter of a con-
nected graph, respectively. This theorem can also be extended so that the mt-number can be prescribed
when radmt(G) < diammt(G).

Theorem 14. For any triple (k, l, n) with 2 ≤ k < l and n ≥ 3, there is a connected graph G with
radmt(G) = k, diammt(G) = l and mt(G) = n.

Proof. We consider three cases to prove this theorem.
Case 1. k + 2 ≤ l ≤ 2k.
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Let the cycles of order k + 2 and l − k + 2 be C1 : u0, u1, . . . , uk+1, u0 and C2 : v0, v1, . . . , vl−k+1, v0,
respectively.

Figure 6. The Graph G in Case 1 of Theorem 14

Assume H is the graph formed from C1 and C2 by (i) merging the vertices u0 of C1 and v0 of C2,
(ii) connecting the vertices u0 and uk of C1, and (iii) connecting the vertices v0 and vl−k of C2. Assume
G is the graph formed from H by adding n − 2 new vertices w1,w2, . . . ,wn−2 and connecting each
vertex wi(1 ≤ i ≤ n − 2) to the vertex v0 in H. In Figure 6, the graph G is shown.

Obviously, the mt-eccentric vertex of u0 is u2, the mt-eccentric vertex of u2 is v2, and so emt(u0) = k
and emt(u2) = l. Also, for any vertex x in G, k ≤ emt(x) ≤ l. Hence radmt(G) = k and diammt(G) = l.
Let M = {w1,w2, . . . ,wn−2} be the end-vertices set of G. By Theorem 5(i), every member of M is
included in any mt-set of G and hence mt(G) ≥ |M| = n − 2. Also, it is evident that every mt-set of
G contains at least one vertex from each cycle C1 and C2. Hence mt(G) ≥ n. Let M′ = M ∪ {u2, v2}.
Clearly, M′ is an mt-set of G and hence mt(G) = |M′| = n.
Case 2. l = k + 1.

Assume G is a graph formed from a cycle C : u0, u1, . . . , uk+1, u0 by connecting the vertices u0 and
uk, and adding n − 1 new vertices v1, v2, . . . , vn−1 and connecting each vertex vi(1 ≤ i ≤ n − 2) to the
vertex u0 of C. In Figure 7, the graph G is shown.

Figure 7. The Graph G in Case 2 of Theorem 14

Obviously, the mt-eccentric vertex of u0 is u2, the mt-eccentric vertex of v1 is u2, and emt(x) is either
k or k + 1 for any vertex x in G. Hence radmt(G) = k and diammt(G) = k + 1 = l. Let the end-vertices
set of G be M = {v1, v2, . . . , vn−1}. By Theorem 5(i), every member of M is included in any mt-set
of G and hence mt(G) ≥ |M| = n − 1. It is evident that the vertices in V(C) − {u0} do not lie on any
x − y mt-path in G for any x, y ∈ M. Hence M is not an mt-set of G and so mt(G) > |M| = n − 1. Let
M′ = M ∪ {u2}. Clearly, M′ is an mt-set of G and hence mt(G) = |M′| = n.
Case 3. l > 2k.

Let W = K1 + Cl+2 be a wheel with V(K1) = {x} and V(Cl+2) = {v1, v2, . . . , vl+2}, and let C :
u0, u1, . . . , uk+1, u0 be a cycle of order k + 1. Assume G is the graph formed from the wheel W and the
cycle C by merging the vertex x of W and u0 of C, and by adding n − 3 new vertices w1,w2, . . . ,wn−3

and connecting each wi (1 ≤ i ≤ n − 3) to the vertex x of W. In Figure 8, the graph G is shown.
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Figure 8. The Graph G in Case 3 of Theorem 14

Obviously, uk is an mt-eccentric vertex of x, vl+2 is an mt-eccentric vertex of v1, and so emt(x) = k
and emt(v1) = l. Also, for any vertex u in G, k ≤ emt(u) ≤ l. Hence radmt(G) = k and diammt(G) = l.
Let M = {w1,w2, . . . ,wn−3} be the end-vertices set of G. By Theorem 5(i), every member of M is
included in any mt-set of G and hence mt(G) ≥ |M| = n − 3. It is clear that every mt-set of G contains
at least one vertex from the cycle C and at least two vertices from the cycle Cl+2 of the wheel W. Hence
mt(G) ≥ n. Let M′ = M ∪ {uk, v1, vl+1}. Clearly, M′ is an mt-set of G and hence mt(G) = |M′| = n. □

Problem 1. For any pair (k, n) with k ≥ 2 and n ≥ 2, is there any connected graph G with radmt(G) =
diammt(G) = k and mt(G) = n?

4. Conclusion

In this paper, we presented bounds and realization results for the mt-number of a connected graph.
Additionally, we provided some characterization results for the parameter mt(G). These findings
contribute to a deeper understanding of the parameter monophonic-triangular number.

Furthermore, to enhance the security and efficiency of networks, we aim to implement a routing
protocol based on the monophonic-triangular number of a graph. This protocol has the potential
to optimize routing paths, reduce latency, and increase the overall robustness of network communi-
cations. By leveraging the unique properties of mt-numbers, we can develop innovative solutions
for secure and efficient data transmission, which could be particularly beneficial for applications in
cybersecurity, telecommunications, and large-scale distributed systems.

In summary, our work not only advances the theoretical understanding of the mt-number in graphs
but also paves the way for practical applications that could significantly impact various fields that rely
on complex network structures.
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