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abstract

A k-tree is a graph that can be formed by starting with Kk+1 and iterating the operation

of making a new vertex adjacent to all the vertices of a k-clique of the existing graph. A

structural characterization of 3-trees with diameter at most 2 is proven. This implies a

corollary for planar 3-trees which leads to a description of their degree sequences.
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1. Introduction

In this paper, we seek a structural (constructive) characterization of 3-trees with diameter

at most 2.

De�nition 1.1. A k-tree is a graph that can be formed by starting with Kk+1 and

iterating the operation of making a new vertex adjacent to all the vertices of a k-clique (the

root) of the existing graph. A deletion sequence of a graph G is an ordering v1, . . . , vn of

V (G) such that each vi has minimum degree in the induced subgraph G[{vi, vi+1, . . . , vn}].
A k-leaf is a degree k vertex of a k-tree.

See [5] for a survey of results on k-trees. There are many results describing and char-
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acterizing the structure of k-trees. Graphs with diameter 2 have been studied in relation

to many other graph classes, such as cages and planar graphs [11].

De�nition 1.2. The distance between vertices u and v, d (u, v), is the length of a shortest

u − v path. The diameter of a graph G is the maximum distance between any pair of

vertices in G.

A k-tree has diameter 1 if and only if it is Kk+1. For 2-trees, the following theorem was

proved in [6].

Proposition 1.3. [6]The following are equivalent for a 2-tree G:

1. G is has diameter at most 2.

2. G does not contain P 2
6 .

3. G is T +K1 for any tree T , or any graph formed by adding any number of vertices

adjacent to pairs of vertices of K3.

Note that 1 ⇔ 2 is a forbidden subgraph characterization, while 1 ⇔ 3 is a structural

(constructive) characterization. In [4], Proposition 1.3 was generalized to a structural

characterization of maximal 2-degenerate graphs with diameter 2. In [2], a forbidden

subgraph characterization was found for k-trees with diameter d ≥ 2. Thus the next

natural questions are to �nd a structural characterization of 2-trees with diameter 3 and

3-trees with diameter 2.

De�nitions of terms and notation not de�ned here appear in [3]. In particular, n (G) is

the number of vertices of a graph G. The neighborhood of a vertex v is denoted N (v),

and the closed neighborhood is denoted N [v]. The square G2 is formed by adding all

edges between pairs of vertices with distance 2 in G. The join of graphs G and H is

denoted G+H.

2. Preliminaries

One way for a k-tree to have diameter at most 2 is for there to be a vertex adjacent to

all other vertices.

De�nition 2.1. A dominating vertex of a graph is a vertex adjacent to all other vertices.

When constructing a k-tree, we duplicate a k-leaf by adding another k-leaf with the same

neighborhood.

The following observations should be immediate.

Lemma 2.2. Let T be a k-tree with diameter at least 2.

a. Adding a k-leaf to T cannot reduce the diameter.

b. Duplicating a k-leaf arbitrarily many times will not change the diameter.

Proposition 2.3. A k-tree has diameter at most 2 if and only if any two k-leaves of G
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have a common neighbor.

Proof. A k-tree G has diameter at most 2 if and only if the distance between any two

vertices of G is at most 2. By Lemma 2.2, this will be the case if and only if any two

k-leaves are at distance at most 2. This will hold if and only if any two k-leaves of G have

a common neighbor.

De�nition 2.4. A k-path graph G is an alternating sequence of distinct k- and k + 1-

cliques e0, t1, e1, t2, ..., tp, ep, starting and ending with a k-clique and such that ti contains

exactly two k-cliques ei−1 and ei.

For order n > k + 1, k-paths are just the k-trees with exactly two k-leaves [10]. See

Figures 1 and 2 for examples of k-paths.

P 2
6

Tr2

Fig. 1. The 2-trees of order 5 and 6 are shown above. Those in the �rst column are 2-paths. The one

in the second column is outerplanar but not a 2-path. The rest are not outerplanar

F3,5

Fig. 2. The 3-trees with order 7. The leftmost two are 3-paths, and the leftmost three are maximal

planar.

Lemma 2.5. A graph T of order n > k+1 is a k-tree if and only if T+K1 is a (k+1)-tree.

Moreover, T is a k-path if and only if T +K1 is a (k + 1)-path.
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Proof. (⇒) Any k-tree T has a deletion sequence v1 · · · vn so that d (vi) = max {k, n− i}
when vi is deleted. Joining a vertex x to T results in a graph T ′ with a deletion sequence

v1 · · · vnx so that d (vi) = max {k + 1, n+ 1− i} when vi is deleted. Thus T
′ is a (k + 1)-

tree.

(⇐) Let T +K1 have the K1 denoted x. Then T +K1 has a deletion sequence v1 · · · vnx
so that d (vi) = max {k + 1, n+ 1− i} when vi is deleted. Thus T has a deletion sequence

v1 · · · vn so that d (vi) = max {k, n− i} when vi is deleted, so T is a k-tree.

The proof for k-paths is essentially the same.

3. 2-trees with Diameter 3

In this section, we characterize 2-trees with diameter at most 3.

De�nition 3.1. A dominating triple is three vertices {x, y, z} that form a triangle of a

2-tree T so that any 2-leaf of T is adjacent to at least one of them. A private neighbor of

x (in a dominating triple) is adjacent to x, but not y or z.

A common triple is three vertices {x, y, z} that form a triangle of a 2-tree T so that

any 2-leaf of T is adjacent to at least two of them.

Theorem 3.2. A 2-tree T has diameter at most 3 if and only if T has a dominating

triple.

Proof. (⇐) If T has a dominating triple, then there is a path of length at most 3 between

any two vertices of T .

(⇒) Suppose that T has diameter at most 3. The result is obvious for diameter 1 or 2,

so suppose T has diameter 3.

We use induction on n. Assume the result holds for 2-trees with order n, and let T

have order n+1, and 2-leaf v. Now T − v has diameter at most 3, so it has a dominating

triple t = {x, y, z}. If v is adjacent to any of its vertices, T also has a dominating triple

and we are done. Thus we assume that T has no dominating triple with a vertex adjacent

to v.

Deleting two vertices of t (say x and y) will disconnect v from the third (z). Thus there

is a vertex w adjacent to x and y in the same component of T − x − y as v. We may

assume that z has no private neighbor a, since else d (v, a) = 4. But then {x, y, w} is also

a dominating triple. Thus by our assumption, v is not adjacent to w. Say d (v, x) = 2.

Then y has no private neighbor b, since else d (v, b) = 4. But then x is a dominating

vertex of T − v. Let N (v) = {u1, u2}. Then T has a dominating triple {x, u1, u2}. A

fan is Pr +K1, where Pr is a path. Call K1 the center of the fan.

Proposition 3.3. A 2-tree T has a dominating triple t = {x, y, z} if and only if it has a

covering by fans centered at the three vertices of t.

Proof. (⇐) If this holds, any vertex of T is adjacent to a vertex of t.
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(⇒) Let T have a dominating triple t = {x, y, z}. Let v be a vertex not in t, so v is

adjacent to a vertex x of t. If v is adjacent to two vertices of t, it is contained in a fan

centered at x. Else v is adjacent to x and a vertex u not in t. Now u is adjacent to x,

and the argument can be repeated, producing a fan centered at x.

4. 3-trees with Diameter 2

To characterize 3-trees with diameter 2, we use the strategy of starting with a 3-tree with

a dominating vertex, and then considering what can be added while maintaining diameter

2.

De�nition 4.1. A k-fan Fk,r is Kk−1 + Pr. Call the K2 in a 3-fan its base.

Thus a 2-fan is just a fan. Any k-fan is a k-path, and hence also a k-tree. Any 3-fan is

maximal planar (see Figure 2).

We may be able to identify a triangle of a 3-fan with a triangle of a 3-tree (with the

base as one of the identi�ed edges) while maintaining diameter 2. Call this operation

fan overlapping. Fan overlapping produces only 3-trees since identifying k-cliques of two

k-trees produces another k-tree.

Theorem 4.2. Let T be 3-tree. Then T has diameter at most 2 if and only if it is formed

in one of the following ways.

1. T = H +K1, where H is a 2-tree.

2. Let K4 have vertices {u, x, y, z}. Then T is formed by fan overlapping, where the

base of the fan must be ux, uy, or xy, and adding 3-leaves with root {x, y, z}.
3. Let uxy be the K3 in K3 +Kr, r ≥ 1. Then T is formed by fan overlapping, where

the base of the fan must be ux, uy, or xy.

Proof. (⇐) Clearly each construction produces a 3-tree. In Case 1, there is a dominating

vertex. In Case 2, every pair of vertices not in {u, x, y, z} has a neighbor in {u, x, y, z}.
In Case 3, every pair of vertices not in {u, x, y} has a neighbor in {u, x, y}. Thus each

3-tree has diameter at most 2.

(⇒) Assume the hypotheses. Let u have maximum degree in T , S = V (T ) − N [u],

and H = N (u). Now H is a 2-tree [7], so T − S is a 3-tree. Thus if u is a dominating

vertex, T − u is a 2-tree by Lemma 2.5. Thus we assume T has no dominating vertex, so

S is nonempty.

Clearly, every vertex in S neighbors a vertex in H. Let R be all vertices in H with

neighbors in S. Every vertex in R is contained in a triangle of H, and each pair of these

triangles must have a have a nonempty intersection, since else two vertices of S have

no common neighbor. Then R is a union of triangles, and the graph induced by R has

diameter 2. It is contained in a minimal 2-tree T ′ which has diameter 2, so by Proposition

1.3, T ′ has a dominating vertex or a common triple.

Suppose T ′ has a dominating vertex x. Now H must have diameter 2, since else some
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vertex in S would be more than 2 away from a vertex in H. If x is dominating in H, x is

also dominating in T . By assumption, we can exclude this case. Thus H has a common

triple, so T ′ does also.

Next we assume that T ′ = K3, whose vertices are {x, y, z}, none of which is dominating

in H. There is at least one vertex v in S whose neighbors are T ′. Then any other vertex

in H is adjacent to a vertex in T ′ and u. Then T is formed by fan overlapping with bases

ux, uy, or xy, and adding at least one 3-leaf with root {x, y, z}.
Next we assume that T ′ = K2 +Ks, the vertices of K2 are {x, y}, neither of which is

dominating in H. Then for each vertex w in the Ks, there is at least one vertex in S

not adjacent to it (else we return to the previous case). Then every vertex of T not in

D = {u, x, y} is adjacent to at least two vertices in D. Thus every vertex not in D is part

of a 3-fan with base ux, uy, or xy, and there is at least one vertex of T adjacent to all

vertices of D.

Finally, we assume T ′ contains a triangle xyz, any other vertex of T ′ is adjacent to

exactly two of {x, y, z}, and each pair (xy, xz, and yz) has at least one additional neighbor

in T ′. Now each vertex of T ′ is adjacent to at least one vertex in S, so H = T ′. Thus

each vertex in S is adjacent to at least two vertices in {x, y, z}. Thus each vertex in T is

adjacent to at least two vertices in {x, y, z}. But then we can return to the previous case

by giving {x, y, z} the roles of {u, x, y}. This characterization allows us to evaluate

or bound parameters of 3-trees with diameter 2. In the following results, we refer to the

three graph classes in the statement of Theorem 4.2 as Cases 1, 2, and 3.

Corollary 4.3. A 3-tree with diameter 2 and order n ≥ 5 and maximum degree ∆ has

n ≤ 5∆−5
3

.

Proof. In Case 1, a 3-tree with a dominating vertex has ∆ = n− 1, so n = ∆+ 1.

In Case 2, for each vertex v ∈ {u, x, y, z}, let Sv be the set of vertices not adjacent to

v. To have ∆(T ) = n − 1 − r, each Sv must contain at least r vertices. Now vertices in

Su are adjacent to triangle xyz, so they are only in Su.

The vertices in Sx may be in Sy or Sz (not both), and similarly for the vertices in Sy

or Sz. However, there must be at least one vertex only in one of the sets Sx, Sy, or Sz. If

there is exactly one vertex adjacent to (say) {u, y, z}, then ∆(T ) = n− 1− r requires at

least r vertices each in Sy and Sz, and none in both. Thus n ≥ 4 + 3r + 1 = 3r + 5 and

∆(T ) ≥ n− 1− n−5
3

= 2
3
n+ 2

3
, so n ≤ 3∆−2

2
.

Suppose there are two vertices in only one of the sets Sx, Sy, or Sz, say one each in sets Sx

and Sy. Any other vertex can be in any two of the three sets. Then s vertices in Sx∪Sy∪Sz

yield |Sx| ∪ |Sy| ∪ |Sz| ≤ 2s− 2, so r ≤ 2s−2
3

. Now n = 4 + s + r ≥ 4 + 3r+2
2

+ r = 5r+10
2

,

so r ≤ 2n−10
5

. Then ∆(T ) ≥ n− 1− 2n−10
5

= 3n
5
+ 1. Thus n ≤ 5∆−5

3
.

In Case 3, K3+Kr has r ≥ 1, with uxy being the K3. There are at most n− 4 vertices

with exactly two neighbors in K3+Kr. These vertices split into three sets based on which

of {u, x, y} they are not adjacent to. When ∆ is minimum, one of these sets contains at

least n−4
3

vertices. Then ∆ ≥ n− 1− n−4
3

= 2n+1
3

, so n ≤ 3∆−1
2

. The smallest possible
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∆ for a 3-tree with diameter 2 and order n is n− 1 for 3 ≤ n ≤ 7 and
⌈
3n
5
+ 1

⌉
for n ≥ 5.

5. Planar 3-trees

Next we consider an important special class of k-trees.

De�nition 5.1. A simple k-tree is de�ned recursively by starting with Kk+1 and itera-

tively adding a vertex adjacent to all vertices of a k-clique Q not previously used as the

neighborhood of a k-leaf.

A plane drawing of a graph is a drawing in the plane that has no crossings. A graph

is outerplanar if it has a plane drawing with all vertices on the boundary of the exterior

region. A graph is a maximal outerplanar graph (MOP) if no edge can be added so that

the resulting graph is still outerplanar.

An Apollonian network is a planar 3-tree.

The MOPs are exactly the simple 2-trees, and the planar 3-trees are exactly the simple

3-trees [10]. See Figures 1 and 2 for examples of these graphs.

Corollary 5.2. Let T be planar 3-tree. Then T has diameter at most 2 if and only if it

is formed in one of the following ways.

1. T = H +K1, where H is a MOP.

2. Let K4 have vertices {u, x, y, z}. Then T is formed by fan overlapping with bases

ux, uy, uz, and only triangles of K4 are used for overlapping, each at most once. A single

3-leaf may be added with root {x, y, z}.
3. Let uxy be the K3 in K3 + Kr, 1 ≤ r ≤ 2. Then T is formed by fan overlapping

with bases ux, uy, or xy. Only triangles of K3 +Kr are used for overlapping, and each

at most once.

Proof. In Case 1, for T to be planar, H must be outerplanar.

In Cases 2 and 3, for T to be planar, it must be a simple 3-tree, so each root is used at

most once. Thus each triangle of K4 or K3+Kr can be used at most once for overlapping,

and no other triangle can be used for overlapping. In Case 3, r ≤ 2, since K3 +K3 is not

planar.

Sey�arth [11] studied maximal planar graphs with diameter 2. Sey�arth showed that

such graphs have n ≤ 3
2
∆ + 1 and found two in�nite classes of maximal planar graphs

that show this bound is sharp. This is not claimed to be a complete characterization.

Of course, maximal planar graphs with diameter 2 need not be 3-trees. For example,

the double wheel K2+Cn−2 has minimum degree 4 and diameter 2. Sey�arth's two classes

both contain subgraphs with minimum degree 4. Thus it appears that the bound on n

can be improved when we only consider planar 3-trees.

Corollary 5.3. A planar 3-tree with diameter 2 with order n ≥ 4 and maximum degree

∆ has n ≤ 3
2
∆− 1

2
.
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Proof. In Case 1, a 3-tree with a dominating vertex has ∆ = n− 1, so n = ∆+ 1.

In Case 2, there can only be one vertex not adjacent to u, so ∆ ≥ n−2, and n ≤ ∆+2.

In Case 3, K3 +Kr has 1 ≤ r ≤ 2, with uxy being the K3. There are at most n − 4

vertices with exactly two neighbors in K3 +Kr. These vertices split into three sets based

on which of {u, x, y} they are not adjacent to. When ∆ is minimum, one of these sets

contains at least n−4
3

vertices. Then ∆ ≥ n− 1− n−4
3

= 2n+1
3

, so n ≤ 3∆−1
2

. Thus no

planar 3-tree can be an extremal graph for Sey�arth's theorem.

We may be interested to characterize the degree sequences of planar 3-trees with diam-

eter 2. Note that in Case 1, G has a dominating vertex u if and only if G− u is a MOP.

Consequently, we can determine whether a list of numbers is a degree sequence of a planar

3-tree with a dominating vertex if and only if we can determine whether a corresponding

list is the degree sequence of a MOP. However, no characterization of degree sequences

of MOPs is known. See [1, 8, 9] for partial results. Thus we instead consider graphs for

Cases 2 and 3 that are not covered by Case 1.

A
B
C

F
E

D

Case 2: To avoid a dominating vertex, we assume there is a vertex rooted on each

triangle of the K4 with vertex set {u, x, y, z}. We designate the six triangles A-F in order

around u (see the graph above). We can break down the cases by how many vertices are

in each of the 6 triangles. Note that if there are no vertices in D, we can move the vertices

in C to B without changing the degree sequence.

We organize cases based on how many degree 5 vertices there are rooted on the K4. We

can reduce the cases to possibly adding vertices inside ACE, ABD, ABCD, or ABCDEF.

Suppose a vertices are added inside A, and similarly for the other triangles. We require

a, b ≥ 1 when A and B are both listed in a case, and similarly for the pairs {C,D}
and {E,F}, but not otherwise. We obtain the following possible degree sequences (dr

indicates r vertices of degree d).

Triangles Degree Sequence

ACE (n− 2)1 (6 + a)1 (6 + c)1 (6 + e)1 4a+c+e34

ABD (n− 2)1 (6 + a)1 (6 + b)1 (6 + d)1 514a+b+d−235

ABCD (n− 2)1 (6 + a)1 (6 + b+ c)1 (6 + d)1 524a+b+c+d−436

ABCDEF (n− 2)1 (6 + a+ f)1 (6 + b+ c)1 (6 + d+ e)1 534a+b+c+d+e+f−637

Case 3: To avoid a dominating vertex, there must be fans attached to at least one

of each of the three pairs {A,D}, {B,E}, and {C,F} (see the graph above). Thus

the triangles where fans are attached are (up to symmetry) ABC, ABF, ABCD, ABDF,
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x x
A B C

D E F

ABCDE, or ABCDEF. Suppose a ≥ 1 vertices are added inside A, and similarly for the

other triangles. We obtain the following possible degree sequences.

Triangles Degree Sequence

ABC (4 + a+ b)1 (4 + a+ c)1 (4 + b+ c)1 614a+b+c−334

ABF (4 + a+ b)1 (4 + a+ f)1 (4 + b+ f)1 514a+b+f−233

ABCD (4 + a+ b+ d)1 (4 + a+ c+ d)1 (4 + b+ c)1 614a+b+c+d−334

ABDF (4 + a+ b+ d)1 (4 + a+ d+ f)1 (4 + b+ f)1 524a+b+d+f−434

ABCDE (4 + a+ b+ d+ e)1 (4 + a+ c+ d)1 (4 + b+ c+ e)1 61514a+b+c+d+e−535

ABCDEF (4 + a+ b+ d+ e)1 (4 + a+ c+ d+ f)1 (4 + b+ c+ e+ f)1 624a+b+c+d+e+f−636

For example, suppose we have the degree sequence S = 8261524134. We see n = 10 and∑
di = 48 = 2 (3n− 6), so we have the right degree sum for a 3-tree [5]. The 34 and 52

shows it must fall under Case 3, subcase ABDF. Then a + b + d + f = 5, so a = 2 and

b = d = f = 1. Thus S is the degree sequence of a 3-tree with diameter 2.
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