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abstract

This paper investigates the Turán-like problem for K−
r+1-free (r ≥ 2) unbalanced signed

graphs, where K−
r+1 is the set of unbalanced signed complete graphs with r + 1 vertices.

The maximum number of edges and the maximum index for K−
r+1-free unbalanced signed

graphs are given. Moreover, the extremal K−
r+1-free unbalanced signed graphs with the

maximum index are characterized.
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1. Introduction

In this paper, write Ġ = (G, σ) for a signed graph with underlying graph G and sign

function σ on the edge set of G. Denote by V (Ġ), E(Ġ), e(Ġ), and e−(Ġ) the vertex set,

the edge set, the number of edges, and the number of negative edges of Ġ, respectively. If

two vertices u, v ∈ V (Ġ) are joined by an edge, let the quantity auv be 1 or −1 depending

on whether uv is a positive or a negative edge. The n×n adjacency matrix A (= A(Ġ)) of

Ġ is then de�ned by A = (auv). The eigenvalues of Ġ is that of A(Ġ), which are denoted

by λ1(Ġ) ≥ λ2(Ġ) ≥ · · · ≥ λn(Ġ). In particular, the largest eigenvalue of Ġ is called

the index. The spectral radius of Ġ is the largest absolute value of the eigenvalues of Ġ,

denoted by ρ(Ġ). These two coincide when the absolute values of the eigenvalues of Ġ do
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not exceed its index.

This paper aims to investigate the Turán-like problem for K−
r+1-free (r ≥ 2) unbalanced

signed graphs, where K−
r+1 is the set of all the r + 1-vertex unbalanced signed complete

graphs. Before presenting new theorems, we provide an introductory discussion.

Given a graph F , a graph G is called F -free, if it contains no F as a subgraph. A prime

problem of extremal graph theory is to determine the maximum number of edges in an

n-vertex F -free graph, known as Turán problem. Early in 1907, Mantel [10] proved that

if G is an n-vertex triangle-free graph, then e(G) ≤ ⌊n2/4⌋, with equality holding if and

only if G = K⌊n
2
⌋,⌈n

2
⌉, that is, G is an n-vertex complete bipartite graph with two almost

equally size partitions. The study of extremal graph theory as a subject in its own right

was formally initiated by Turán in 1940. Let r ≥ 2 be an integer and Kr+1 be a complete

graph on r+1 vertices. In his seminal papers [14, 15], the maximum number of edges of a

Kr+1-free graph was determined, and the unique extremal graph was also characterized.

Turán's graph, denoted by Tr(n), is the complete r-partite graph on n vertices which is

the result of partitioning n vertices into r almost equally sized partitions (⌊n/r⌋, ⌈n/r⌉)
and taking all edges connecting two di�erent partition classes (note that if n ≤ r then

Tr(n) = Kn). Denote the number of edges in Turán's graph by tr(n) = e(Tr(n)). Using

these notations, Turán's Theorem can be stated as follows.

Theorem 1.1 (Turán's Theorem). Let G be a graph on n vertices. If G is Kr+1-free

(r ≥ 2) then e(G) ≤ tr(n). Furthermore, equality holds if and only if G = Tr(n).

Turán's Theorem is a fundamental theorem in extremal graph theory, providing insights

into the structure of extremal graphs. In addition to Turán's Theorem, extremal graph

theory also encompasses many other important results and problems, such as the shortest

path problems [1], graph decomposition problems [8], and so on. Research into these

problems not only helps in understanding the relationship between the global and local

structures of graphs, but also plays a crucial role in solving combinatorial optimization

problems, network design, and information transmission. The readers can refer to [3] for

a comprehensive overview.

In the past two decades, the spectral version of Turán problem is paid much attention

by many researchers. Below we only mention the result raised by Nikiforov in 2007[11],

which will be used for study later in this article. The readers can refer to an outstanding

paper [9] to understand the current research status of such problems.

Theorem 1.2 ([11, Theorem 1]). Let G be a graph on n vertices. If G is Kr+1-free

(r ≥ 2) then λ1(G) ≤ λ1(Tr(n)). Furthermore, equality holds if and only if G = Tr(n).

Note that Turán's graph is both the extremal graph of number of edges and of spectral

radius. Actually, the Turán problem and the spectral Turán problem are closely related.

See [12] for more discussions on this topic. Di�erent from aforementioned studies, we focus

on signed graphs, and ask what are the maximum number of edges and the maximum

spectral radius of an F -free signed graph of order n, where F is a set of signed graphs.
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That problem were initially proposed by Wang, Hou, and Li in their recent research [16],

in which they referred to such problem as the Turán-like problem in the context of signed

graphs.

Denote by K−
r+1 (r ≥ 2) the set of all unbalanced signed complete graphs on r + 1

vertices. Let Ġy1,···,yr be a K−
r+1-free unbalanced signed graph obtained from a signed

clique K−
r on vertex set X = {v1, · · · , vr} with one negative edge v1v2 and an all-positive

cliqueKn−r on vertex set Y = {vr+1, · · · , vn} by adding positive edges between each vertex
of Y and all but one vertex of X. The superscript yi (1 ≤ i ≤ r) denotes the number of

vertices not adjacent to vi. It is obvious that the number of vertices in Y not adjacent

to vi (3 ≤ i ≤ r) is not greater than r − 2, that is, y3 + · · · + yr ≤ r − 2. In addition,

y1 + · · · + yn = n − r. Note that, due to the unbalance, if r = 2, then y1, y2 ≥ 1, and if

r ≥ 3, then y1, · · · , yr ≥ 0. Here we draw the signed graphs when r = 2, 3 to illustrate

this structure, as shown in Fig. 1, noting that thin solid lines (resp., thin dashed lines)

represent positive edges (resp., negative edges), thick solid lines between two vertex sets

represent the connection of all possible positive edges, and the solid circle represents

all-positive clique.

An important feature of signed graphs is the concept of switching the signature. For a

signed graph Ġ and U ⊂ V (Ġ), the operation that changes the signs of all edges between

U and V (Ġ) \ U is called a switching operation. We say that the signed graphs Ġ and˜̇G obtained by a switching operation from Ġ is switching equivalent. It is important to

observe that switching equivalent signed graphs have similar adjacency matrices and so

have the same eigenvalues (see [22]).

Now we present some interesting results about the Turán-like problem.

Theorem 1.3 ([16, Theorem 1.2]). If Ġ is a connected K−
3 -free unbalanced signed graph

of order n, then

e(Ġ) ≤ n(n− 1)

2
− (n− 2),

with equality holding if and only if Ġ is switching equivalent to Ġy1,y2 (see Figure 1), where

y1 + y2 = n− 2 and y1, y2 ≥ 1.

Ky2
Ky1

Ġ
y1,y2

v1 v2

Ġ
y1,y2,y3

v1

v2v3

Ky3

Ky2
Ky1

Fig. 1. The signed graphs Ġy1,y2 and Ġy1,y2,y3

Theorem 1.4 ([16, Theorem 1.3]). If Ġ is a connected K−
3 -free unbalanced signed graph
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of order n, then

ρ(Ġ) ≤ 1

2
(
√
n2 − 8 + n− 4),

with equality holding if and only if Ġ is switching equivalent to Ġn−3,1.

Remark 1.5. In Theorems 1.3 and 1.4, the condition of connectivity can be omitted. In

fact, for the former theorem, if the signed extremal graph is disconnected, we can add an

edge between two connected components to obtain a K−
3 -free unbalanced signed graph,

leading to a contradiction. For the latter theorem, we know that for a K−
3 -free unbalanced

signed graph with the maximum spectral radius, its spectral radius is equal to its index

(cf. [16, p. 62]). Therefore, according to Proposition 3.2 and Lemma 3.3 , which we will

prove later, if the signed spectral extremal graph is disconnected, we can add a positive

edge between two connected components, getting a K−
3 -free unbalanced signed graph with

larger index, a contradiction.

In this context, for some special F , we reframe the Turán-like problem in signed graphs

to connect it with the spectral Turán problem. Let K+
r+1 (r ≥ 2) be the set of balanced

signed complete graphs on r + 1 vertices. Note that, if F = K+
r+1, then the all-negative

signed complete graph is the unique (up to switching equivalence) F -free unbalanced

signed graph attaining the maximum spectral radius (see [5, Theorem 3.1]). This is the

trivial case. Thus, we only detect among K+
r+1-free balanced signed graphs those having

the maximum spectral radius. Moreover, balanced signed graphs are switching equivalent

to all-positive signed graphs. We can only look for the desired signed graphs in all-positive

signed graphs and this problem becomes the spectral Turán problem for Kr+1-free graphs,

when considering the spectral radius.

Recently, several researches have explored related issues (see [7, 20, 19, 17]), and here

we recall several results that will be helpful for study later. Chen and Yuan, in [7],

investigated the Turán-like problem for K−
4 -free signed graphs, and their results are as

follows:

Theorem 1.6 ([7, Theorem 1.5]). If Ġ is a K−
4 -free unbalanced signed graph of order n

(n ≥ 7), then

e(Ġ) ≤ n(n− 1)

2
− (n− 3).

Remark 1.7. Note that all the K−
4 -free unbalanced signed graphs attaining above upper

bound are determined in their paper. Here, we do not list them and observe that the

condition n ≥ 7 can be removed from Theorem 1.6 by consulting the tables of signed

graphs with order at most 6 (cf. [6]).

Theorem 1.8 ([7, Theorem 1.6]). If Ġ is a K−
4 -free unbalanced signed graph of order n,

then

ρ(Ġ) ≤ n− 2,

with equality holding if and only if Ġ is switching equivalent to Ġn−3,0,0.
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Now we are in a position to present our results. The following theorem concerns the

maximum of the number of edges.

Theorem 1.9. If Ġ is a K−
r+1-free (2 ≤ r ≤ n − 1) unbalanced signed graph of order n,

then

e(Ġ) ≤ n(n− 1)

2
− (n− r).

Furthermore, if e−(Ġ) = 1, then the equality holds if and only if Ġ = Ġy1,···,yr , where

y1+ · · ·+ yr = n− r, y3+ · · ·+ yr ≤ r− 2, and y1, y2 ≥ 1 when r = 2, y1, · · · , yr ≥ 0 when

r ≥ 3.

Below we show that the K−
r+1-free unbalanced signed graph with maximum index is

switching equivalent to Ġn−r,0,···,0.

Theorem 1.10. If Ġ is a K−
r+1-free (3 ≤ r ≤ n− 1) unbalanced signed graph of order n,

then

λ1(Ġ) ≤ λ1(Ġ
n−r,0,···,0),

with equality holding if and only if Ġ is switching equivalent to Ġn−r,0,···,0, where the number

of 0 in the superscript is r − 1.

The proposition below adds some numerical estimates to Theorem 1.10.

Proposition 1.11. The index λ1(Ġ
n−r,0,···,0) equals the largest root of the polynomial

f(x) = x3 + (3− n)x2 + (3− n− r)x+ (n+ 4)r − (r2 + n+ 7),

and satis�es

n− 2 ≤ λ1(Ġ
n−r,0,···,0) < n− 1.

In particular, λ1(Ġ
n−r,0,···,0) = n− 2 if and only if r = 3.

The remainder of this article is organized as follows: in Section 2, we present some

fundamental properties and conclusions that will be used in the sequel. In Section 3,

we provide the proofs of Theorems 1.9, 1.10, and Proposition 1.11. In the concluding

remarks, we analyze our results and provide some comments.

2. Preliminaries

In this section we introduce some results which will be useful in the sequel. The lemma

below concerns equitable partitions. Consider a partition P = {V1, · · · , Vm} of the set

V = {1, · · · , n}. The characteristic matrix χP of P is the n × m matrix whose columns

are the characteristic vectors of V1, · · · , Vm. Consider a symmetric matrix M of order n,

with rows and columns are partitioned according to P . The partition of M is equitable

if each submatrix Mi,j formed by the rows of Vi and the columns of Vj has constant row

sums qi,j. The m × m matrix Q = (qi,j)1≤i,j≤m is called the quotient matrix of M with

respect to the equitable partition P .



66 Xiong and Hou

Lemma 2.1 ([4, p. 30]). The matrix M has the following two kinds of eigenvectors and

eigenvalues:

(i) The eigenvectors in the column space of χP ; the corresponding eigenvalues coincide

with the eigenvalues of Q,

(ii) The eigenvectors orthogonal to the columns of χP ; the corresponding eigenvalues of

M remain unchanged if some scalar multiple of the all-one block J is added to block Mi,j

for each i, j ∈ {1, · · · ,m}.

Next we present a celebrated result of signed graphs, which is an important method

for determining the switching equivalence of two signed graphs with the same underlying

graph.

Lemma 2.2 ([21, Proposition 3.2]). Two signed graphs on the same underlying graph are

switching equivalent if and only if they have the same list of balanced cycles.

The balanced clique number of a signed graph Ġ, denoted by ωb(Ġ), is the maximum

order of a balanced clique in Ġ. The following lemma gives an upper bound on the index

of a signed graph in terms of its order and balanced clique number.

Lemma 2.3 ([18, Prosition 5]). Let Ġ be a signed graph of order n. Then

λ1(Ġ) ≤ n

(
1− 1

ωb(Ġ)

)
.

We end this section by following lemma which says that the index of a signed graph is

not greater than that of its underlying graph.

Lemma 2.4 ([5, Theorem 2.1 and Proposition 2.5]). For a non-empty signed graph Ġ of

order n, λ1(Ġ) ≤ λ1(G). Furthermore, λ1(Ġ) ≤ n − 1, with equality if and only if Ġ is

balanced and complete.

3. Proofs

This section is devoted to the proofs of Theorems 1.9, 1.10, and Proposition 1.11. For

notations and concepts of signed graphs unde�ned here, we refer the reader to [21]. For

introductory material on the matrix theory of signed graphs see the survey of Zaslavsky

[22] and its references. In particular, let Ġ be a signed graph, and X and Y be disjoint

sets of vertices of Ġ. We write:

- V (Ġ) = {v1, · · · , vn} for the set of vertices of Ġ;

- Ġ[X] for the signed graph induced by X, and e(X) for e(Ġ[X]);

- e(X, Y ) for the number of edges joining vertices in X to vertices in Y ;

- NĠ(v) for the set of neighbors of a vertex v in Ġ, and dĠ(v) for |NĠ(v)|;
- u

+∼ v, u
−∼ v, and u ̸∼ v for that u is adjacent to v by a positive edge, a negative

edge, and non-edge, respectively;

- Ġ′ ∼ Ġ for that Ġ′ is switching equivalent to Ġ.
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Proof of Theorem 1.9. From Theorem 1.3, we know that our assertion holds for

r = 2. We will prove our result by induction on r. Assume that the assertion is true for

all r ≤ t− 1 (2 ≤ t− 1 ≤ n− 2), and we prove it for t. Let Ġ be a K−
t+1-free unbalanced

signed graph with maximum possible number of edges. Note that Ġy1,···,yt is K−
t+1-free,

and so e(Ġ) ≥ e(Ġy1,···,yt).

First we claim that Ġ contains an unbalanced signed clique of order t. Otherwise, by

induction hypothesis we know

e(Ġ) ≤ n(n− 1)

2
− (n− t+ 1) < e(Ġy1,···,yt),

a contradiction.

Let X be the vertex set of an unbalanced signed complete graph with order t and let

Y be its complement. Since each vertex in Y can have at most t− 1 neighbours in X, the

number of edges between X and Y is at most (t− 1)(n− t). We see that

e(Ġ) = e(X) + e(Y ) + e(X, Y ) ≤
(
t
2

)
+
(
n−t
2

)
+ (t− 1)(n− t) =

n(n− 1)

2
− (n− t).

If e−(Ġ) = 1, then the equality holds if and only if the unbalanced t-vertex clique

contains the negative edge, Ġ[Y ] is an all-positive clique, each vertex of Y is adjacent to

t− 1 vertices of X by positive edges, and the number of vertices adjacent to both v1 and

v2 is not great than t− 2.

Thus, we have proven that the conclusion holds when r = t. Based on the induction

hypothesis, we complete the proof of Theorem 1.9.

The approach for proving Theorem 1.9 is inspired by the proof of Turán's Theorem,

with the key di�erence being that we use induction on r here, whereas his proof employs

induction on n.

Proof of Proposition 1.11. We give a vertex partition as V1 = {v1}, V2 = {v2},
V3 = {v3, · · · , vr}, and V4 = {vr+1, · · · , vn}. Then the adjacency matrix of Ġn−r,0,···,0 and

its quotient matrix Q are

A =


V1 V2 V3 V4

V1 0 −1 j
′

0
′

V2 −1 0 j
′

j
′

V3 j j J − I J

V4 0 j J J − I

and Q1 =


V1 V2 V3 V4

V1 0 −1 r − 2 0

V2 −1 0 r − 2 n− r

V3 1 1 r − 3 n− r

V4 0 1 r − 2 n− r − 1

,

where 0 and j represent the zero vector and the all-ones vector of appropriate dimensions,

respectively, and I and J denote the identity matrix and all-ones matrix of appropriate

orders, respectively. By Lemma 2.1, the eigenvalues of Q1 are that of A and the other

eigenvalues of A remain if we add some scalar multiple of j or J from the blocks equal to
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−1, j, J , and J − I. Then A and Q1 become

A+ =


V1 V2 V3 V4

V1 0 0 0
′

0
′

V2 0 0 0
′

0
′

V3 0 0 −I 0

V4 0 0 0 −I

and Q+
1 =


V1 V2 V3 V4

V1 0 0 0 0

V2 0 0 0 0

V3 0 0 −1 0

V4 0 0 0 −1

,
The eigenvalues of matrix A+ except the eigenvalues of Q+

1 are −1 with multiplicity n−
4. Then the eigenvalues of Ġn−r,0,···,0 are the eigenvalues ofQ1 and−1 with multiplicity n−
4. Therefore, λ1(Ġ

n−r,0,···,0) = λ1(Q1). By direct calculation, the characteristic polynomial

of the matrix Q1 is

g(x) = (x+ 1)(x3 + (3− n)x2 + (3− n− r)x+ (n+ 4)r − (r2 + n+ 7)) = (x+ 1)f(x).

Thus λ1(Ġ
n−r,0,···,0) is the largest root of f(x) = x3 + (3− n)x2 + (3− n − r)x + (n +

4)r − (r2 + n+ 7). By simple calculations f(n− 2) = −(r − 3)2 ≤ 0, and so the equality

holds if and only if r = 3. So we have λ1(Ġ
n−r,0,···,0) ≥ n− 2, and λ1(Ġ

n−r,0,···,0) < n− 1

from Lemma 2.4.

To simplify the proof of Theorem 1.10, we shall prove several auxiliary results. First,

note that according to Perron-Frobenius theory, there exists a strictly positive eigenvector

corresponding to the index of a simple connected graph G. Furthermore, if we add some

edges in G, the index of the resulting graph is larger than that of G. These are incorrect

for signed graphs, but we have following results.

Lemma 3.1 ([13, Lemma 1]). Let Ġ be a signed graph with n vertices. Then there exists a

signed graph Ġ′ switching equivalent to Ġ such that λ1(Ġ
′) has a non-negative eigenvector.

Let x = (x1, x2, · · · , xn)
′
be an eigenvector corresponding to the index λ1(Ġ) of a signed

graph Ġ. The entry xi corresponds to the vertex vi of Ġ. So the eigenvalue equation for

vi reads as follows

λ1(Ġ)xi =
∑

vj∈NĠ(vi)

σ(vivj)xj.

The following proposition presents a crucial method investigating the maximum index in

signed graphs, which can be proven based on [13, Theorem 3] or [2, Proposition 2.1]. For

the sake of completeness, we provide a detailed proof here.

Proposition 3.2. Let Ġ be a signed graph with a non-negative unit eigenvector x =

(x1, x2, · · · , xn)
′
corresponding to the index λ1(Ġ). If we perform one of the following

perturbations in Ġ:

(i) Adding some positive edges,

(ii) Removing some negative edges,
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(iii) Reversing the signs of some negative edges, resulting in a new signed graph Ġ′,

then λ1(Ġ
′) ≥ λ1(Ġ). The equality holds if and only if the entries of x corresponding to

the endpoints of these edges are all zeros.

And if we perform one of the following perturbations in Ġ:

(iv) Rotating the positive edge vivj to the non-edge position vivk, where xj ≤ xk,

(v) Reversing the sign of the positive edge vivj and the negative edge vivk, where xj ≤ xk,

resulting in a new signed graph Ġ′, then λ1(Ġ
′) ≥ λ1(Ġ). The equality holds if and only

if xi = 0 and xj = xk.

Proof. For (i), we denote by E1 ⊆ E(Ġ′) the set of added positive edges. By Rayleigh

Principle, we have

λ1(Ġ
′)− λ1(Ġ) = max

∥y∥=1
y

′
A(Ġ′)y − x

′
A(Ġ)x ≥ x

′
A(Ġ′)x− x

′
A(Ġ)x = 2

∑
vivj∈E1

xixj ≥ 0.

If λ1(Ġ
′) = λ1(Ġ), then all the equalities hold and so x is an eigenvector of A(Ġ′) cor-

responding to the eigenvalue λ1(Ġ
′). Take one positive edge from E1, say vkvl. We

will show xl = 0. Assume that the added positive edges with one endpoint vk are

vkvl, vkvk1 , vkvk2 , · · · , vkvks . According to the following eigenvalue equations,

λ1(Ġ)xk =
∑

vh∈NĠ(vk)

σ(vhvk)xh,

λ1(Ġ
′)xk =

∑
vh∈NĠ(vk)

σ(vhvk)xh +
s∑

j=1

xkj + xl,

we obtain xl = xk1 = · · · = xkj = 0. By similar analysis as above, the entries of x

corresponding to the endpoints of added positive edges are all zeros.

The proof for (ii) is similar to that for (i).

Note that changing negative edges to positive is equivalent to deleting the negative

edges and then adding positive edges, so (iii) follows easily from (i) and (ii).

For (iv), we have

λ1(Ġ
′)− λ1(Ġ) ≥ x⊺A(Ġ′)x− x⊺A(Ġ)x = 2xi(xk − xj) ≥ 0.

If λ1(Ġ
′) = λ1(Ġ), then all the equalities hold and so x is an eigenvector of A(Ġ′) corre-

sponding to the eigenvalue λ1(Ġ
′). In view of the following eigenvalue equations,

λ1(Ġ)xi =
∑

vh∈NĠ(vi)\vj

σ(vhvi)xh + xj,

λ1(Ġ
′)xi =

∑
vh∈NĠ(vi)\vj

σ(vhvi)xh + xk,

λ1(Ġ)xj =
∑

vh∈NĠ(vj)\vi

σ(vhvj)xh + xi,

λ1(Ġ
′)xj =

∑
vh∈NĠ(vj)\vi

σ(vhvj)xh,
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λ1(Ġ)xk =
∑

vh∈NĠ(vk)

σ(vhvk)xh,

λ1(Ġ
′)xk =

∑
vh∈NĠ(vk)

σ(vhvk)xh + xi,

we have xi = 0 and xj = xk.

The proof for (v) is similar to that for (iv) and we omit it. The converse is clear.

Lemma 3.3. Let Ġ be a signed graph with a unit eigenvector x = (x1, x2, · · · , xn)
′
corre-

sponding to λ1(Ġ). If λ1(Ġ) > n− k, then x has at most k − 2 zero components.

Proof. Without loss of generality, assume for a contradiction that x1 = x2 = · · · =

xk−1 = 0. Delete the corresponding vertices from Ġ to obtain a signed graph Ġ′. Then by

Rayleigh Principle and Lemma 2.4,

λ1(Ġ) = (xk, · · · , xn)A(Ġ
′)(xk, · · · , xn)

′ ≤ λ1(Ġ
′) ≤ λ1(Kn−k+1) = n− k,

a contradiction.

Remark 3.4. Note from Proposition 1.11 that Ġn−r,0,···,0 is a K−
r+1-free unbalanced signed

graph with index λ1(Ġ
n−r,0,···,0) > n− 2, for r ≥ 4. Combining this with Proposition 3.2

and Lemma 3.3, we know that if Ġ is a K−
r+1-free unbalanced signed graph with maximum

index, then it is connected. Furthermore, if r ≥ 4, then we can �nd an eigenvector

corresponding to λ1(Ġ) with no zero components.

Proof of Theorem 1.10. From Theorem 1.8 we know that our assertion holds when

r = 3. Now by induction on r, assume the assertion is true for all r ≤ t− 1 (3 ≤ t− 1 ≤
n− 2) and prove it for t.

Let Ġ be a signed graph having the maximum index over all K−
t+1-free unbalanced signed

graphs. In view of Lemma 3.1 and Remark 3.4 we can �nd ˜̇G ∼ Ġ with a positive unit

eigenvector x = (x1, · · · , xn)
′
corresponding to λ1(

˜̇G) > n− 2. Note from Lemma 2.2 that˜̇G is also a connected K−
t+1-free unbalanced signed graph. We will show ˜̇G = Ġn−t,0,···,0

step by step.

First, since ˜̇G is unbalanced, there exist at least one negative edge and at least one

negative cycle. Take a negative cycle C = v1v2 · · · vlv1 of the shortest length from ˜̇G. We

claim l = 3, otherwise ˜̇G is K−
3 -free, and so λ1(

˜̇G) ≤ 1
2
(
√
n2 − 8 + n − 4) < n − 2 by

Theorem 1.4, a contradiction. Thus, C is a negative triangle on vertices v1, v2, and v3.

Secondly, we say that all the negative edges of ˜̇G are contained in C. Indeed, if there

exists a negative edge not in C, by Proposition 3.2 we may delete it resulting in a K−
t+1-

free unbalanced signed graph with larger index, a contradiction. Therefore, the number

of negative edges of ˜̇G is either 1 or 3.

We conclude that ˜̇G contains only one negative edge. Actually, if not, then C is a

negative triangle with three negative edges and by Proposition 3.2 we may reverse signs
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of two of those, resulting in a K−
t+1-free unbalanced signed graph with larger index, which

leads to a contradiction.

Next we claim that ˜̇G contains an unbalanced t-vertex clique with one negative edge

v1v2, written as K−
t . If not, ˜̇G is K−

t -free and by induction hypothesis and Proposition

3.2 we know that λ1(
˜̇G) ≤ λ1(Ġ

n−t+1,0,···,0) < λ1(Ġ
n−t,0,···,0), a contradiction. Without loss

of generality, suppose that X = V (K−
t ) = {v1, · · · , vt} and Y = V ( ˜̇G) \ X, and further

that x1 ≤ x2 and x3 ≤ · · · ≤ xt. Let W1 = N ˜̇G(v1) \N ˜̇G(v2),W2 = N ˜̇G(v2) \N ˜̇G(v1), and
W = N ˜̇G(v1) ∩ N ˜̇G(v2) \ X. We claim that W1 = ∅, otherwise there exists a vertex vk

satisfying vk
+∼ v1 and vk ̸∼ v2, and by Proposition 3.2 we can rotate the positive edge vkv1

to the non-edge position vkv2, getting a K−
t+1-free unbalanced signed graph with larger

index than ˜̇G, a contradiction.

We proceed with our proof and establish that x2 < x3. Assume for a contradiction that

x2 ≥ x3. If there exists V1 ⊆ V ( ˜̇G) such that ˜̇G[V1 ∪ {v1, v3}] is all-positive clique Kt+1,

then by W1 = ∅ we have that each vertex in V1 is adjacent to v2 and so ˜̇G[V1 ∪ {v1, v2}]
is an unbalanced clique of order t+ 1, a contradiction. So there exist no V1 ⊆ V ( ˜̇G) such

that ˜̇G[V1 ∪ {v1, v3}] is Kt+1, and by Proposition 3.2 we may reverse the signs of v1v2

and v1v3, resulting in a K−
t+1-free unbalanced signed graph with larger index than ˜̇G, a

contradiction. Then we know that x1 ≤ x2 < x3 ≤ · · · ≤ xt.

Note that each vertex in Y is adjacent to at most t − 1 vertices in X. Then we

claim that W = ∅. Otherwise, there exists a vertex vi ∈ W not adjacent to a vertex

vj ∈ X \ {v1, v2}, and then we can rotate the positive edge viv1 to the non-edge position

vivj, resulting a signed graph with larger index than ˜̇G by Proposition 3.2 and the fact

xj > x1, a contradiction.

Summing up, ˜̇G must be a subgraph of Ġn−t,0,···,0. Furthermore, combining Proposition

3.2 and the fact that the eigenvector x is positive, ˜̇G actually is Ġn−t,0,···,0. Thus, we have

proven that the conclusion holds when r = t. Based on the induction hypothesis, we

complete the proof of Theorem 1.10.

4. Concluding Remarks

In this paper, we study the problems what is the maximum number of edges and what

is the maximum index for K−
r+1-free (r ≥ 2) unbalanced signed graphs. The condition of

unbalance is necessary, otherwise, up to switching equivalence, the all-positive complete

graph Kn is the unique K−
r+1-free signed graph with e(Ġ) = n(n− 1)/2, and is the unique

K−
r+1-free signed graph with ρ(Ġ) = n− 1. In this time, this problem is trivial.

Our result partly solve the following problem, which called as the spectral Turán-like

problem for K−
r+1-free signed graphs. To see this, we need introduce some notations and

notions.

Problem 4.1. What is the maximum spectral radius among all K−
r+1-free (2 ≤ r ≤ n−1)
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unbalanced signed graphs?

Combining Theorem 1.10 and Lemma 2.3, we can drive the following proposition. Note

that the negation of Ġ (denoted by −Ġ) is obtained by reversing the sign of each edge in

Ġ. Clearly, the eigenvalues of −Ġ are obtained by reversing the signs of the eigenvalues

of Ġ.

Proposition 4.2. If Ġ is a K−
r+1-free (3 ≤ r ≤ ⌊n/2⌋) unbalanced signed graph of order

n, then ρ(Ġ) ≤ ρ(Ġn−r,0,···,0), with equality holding if and only if Ġ ∼ Ġn−r,0,···,0.

Proof. The assertion holds for r = 3 by Theorem 1.8. Now assume that 4 ≤ r ≤ ⌊n/2⌋
and Ġ has the maximum spectral radius among K−

r+1-free unbalanced signed graphs. Note

that Ġn−r,0,···,0 is K−
r+1-free and so ρ(Ġ) ≥ ρ(Ġn−r,0,···,0) > n− 2.

We claim that ρ(Ġ) = λ1(Ġ). If not, then ρ(Ġ) = −λn(Ġ). Since −Ġ contains no

r + 1-vertex balanced clique, then ωb(−Ġ) ≤ r. Using Lemma 2.3, we have

n− 2 < ρ(Ġ) = −λn(Ġ) = λ1(−Ġ) ≤ n · (1− 1

wb(−Ġ)
) ≤ r − 1

r
n,

which contradicts to r ≤ ⌊n/2⌋.
So in this time, the problem �nding the maximum spectral radius among K−

r+1-free

(3 ≤ r ≤ ⌊n/2⌋) unbalanced signed graphs becomes �nding the maximum index among

K−
r+1-free (3 ≤ r ≤ ⌊n/2⌋) unbalanced signed graphs. The latter is solved by Theorem

1.10.

Proposition 4.2 solves Problem 4.1 under the restriction 3 ≤ r ≤ ⌊n/2⌋. The case of

r > ⌊n/2⌋ is left and seems more challenging for further study.
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