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abstract

An hourglass Γ0 is the graph with degree sequence {4, 2, 2, 2, 2}. In this paper, for integers

j ≥ i ≥ 1, the bull Bi,j is the graph obtained by attaching endvertices of two disjoint paths

of lengths i, j to two vertices of a triangle. We show that every 3-connected {K1,3,Γ0, X}-
free graph, where X ∈ {B2,12,B4,10,B6,8}, is Hamilton-connected. Moreover, we give an

example to show the sharpness of our result, and complete the characterization of forbid-

den induced bulls implying Hamilton-connectedness of a 3-connected {claw, hourglass,
bull}-free graph.
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1. Introduction

In this paper, we basically follow the most common graph-theoretical terminology and

notation and for concepts not de�ned here we refer the reader to [1]. By a graph we always

mean a simple �nite undirected graph G = (V (G), E(G)); whenever we admit multiple

edges, we always speak about a multigraph. For a set X, the cardinality of X is denoted
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by |X|. We write |G| for |V (G)|. For a family of graphs F , we say that G is F -free if

G does not contain an induced subgraph isomorphic to a member of F , and the graphs

in F are referred to in this context as forbidden induced subgraphs. If F = {F}, then we

simply say that G is F -free. Here, the claw is the graph K1,3.

Several further graphs that will be used as forbidden subgraphs are shown in Figure 1

(speci�cally, the vertex of degree 2 in the triangle of the bull Bi,j will be called its mouth

and denoted µ(Bi,j)). When listing vertices of an induced subgraph F ∼= Bi,j, we will

always list �rst µ(F ), and then vertices of the two paths, starting (if possible) with the

shorter one. In addition, let Pi and Ci denote the path and cycle with i vertices.

K1,3 Γ0

i ≥ 0 edges

Γi

︸ ︷︷ ︸

Zi

i ≥ 1 vertices
︸ ︷︷ ︸

Bi,j

i ≥ 1 vertices

j ≥ 1 vertices

︸ ︷︷ ︸
︸ ︷︷ ︸

Ni,j,k

i ≥ 1 vertices

k ≥ 1 vertices

j ≥ 1 vertices
︸ ︷︷ ︸

︸ ︷︷ ︸
︸ ︷︷ ︸

Fig. 1. The graphs K1,3, Γ0, Γi, Zi, Bi,j and Ni,j,k

In this paper, we will consider these questions in 3-connected and claw-free graphs. A

graph G is hamiltonian if G has a spanning cycle. The hamiltonian problem is generally

considered to be determining conditions under which a graph contains a spanning cycle.

To determine whether a graph is hamiltonian is very basic and popular problem. There are

many results on hamiltonian properties of graphs in classes de�ned in terms of forbidden

induced subgraphs. We �rst summarize some known results.

Theorem 1.1. Let G be a 3-connected K1,3-free graph. Then

(1) (Fujisawa [7]) if G is Z9-free, then either G is hamiltonian, or G is isomorphic to

the line graph of the graph obtained from the Petersen graph by adding one pendant

edge to each vertex.

(2) (Hu and Lin [8], Xiong et al. [23]) if G is Ni,j,k-free with positive integers i+j+k ≤ 9,

then G is hamiltonian.

(3) (Du and Xiong [6]) if G is Bi,j-free with positive integers i + j ≤ 9, then G is

hamiltonian.

In 2002, Brousek [3] start to consider a triples of forbidden subgraphs for a graph to be

Hamiltonian. Ryjá£ek et al. [19] and Du and Xiong [6] continue in this direction by show-
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ing that Theorem 1.1 can be substantially strengthened under an additional assumption

that G is Γ0-free, and it shows that these results of Hamiltonicity are sharp.

Theorem 1.2. Let G be a 3-connected {K1,3,Γ0}-free graph. Then if G is

(1) (Ryjá£ek et al. [19]) Z18-free, or

(2) (Ryjá£ek et al. [19]) N2i,2j,2k-free with positive integers i+ j + k ≤ 9, or

(3) (Du and Xiong [6]) B2i,2j-free with positive integers i+ j ≤ 9,

then G is hamiltonian.

Theorem 1.2 adds the condition that G is hourglass-free on the basis of Theorem 1.1.

Ryjá£ek and Vrána [17] give the following result.

Theorem 1.3. (Ryjá£ek and Vrána [17]) Let G be a 3-connected {K1,3, Z7}-free graph of

order n ≥ 21. Then G is Hamilton-connected.

In 2018, Ryjá£ek et al. [19] start to consider a triples of forbidden subgraphs for a

graph to be Hamilton-connected. Recently, Liu and Xiong [12] also considered a triples

of forbidden subgraphs for a 3-connected graph to be Hamilton-connected, this result on

Hamilton-connectedness are sharp.

Theorem 1.4. Let G be a 3-connected {K1,3,Γ0, X}-free graph, where

(1) (Ryjá£ek, Vrána and Xiong [19]) X = P12, or

(2) (Liu and Xiong [12]) X = P16.

Then G is Hamilton-connected.

Theorem 1.5 lists known result on pairs of forbidden subgraphs implying Hamilton-

connectedness of a 3-connected graph.

Theorem 1.5. (Ryjá£ek and Vrána [18]) Let X ∈ {B1,6, B2,5, B3,4}, and let G be a 3-

connected {K1,3, X}-free graph. Then G is Hamilton-connected.

By adding the condition �Γ0-free� to Theorem 1.5, we further prove that every 3-

connected, {claw, hourglass, bull}-free graph is Hamilton-connected.

Theorem 1.6. Let X ∈ {B2,12, B4,10, B6,8}, and let G be a 3-connected {K1,3,Γ0, X}-free
graph. Then G is Hamilton-connected.

Proof of Theorem 1.6, consisting in direct case-distinguishing, is postponed to Section 3.

In Section 2, we collect necessary known results on line graphs and on closure operations.
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2. Preliminaries

In order to state results clearly, we further introduce the following notation. We denote

by NG(v) (or simply N(v)) and dG(v) (or simply d(v)) the neighborhood and the degree of

a vertex v in G, respectively. For each integer i ≥ 0, de�ne Vi(G) = {v ∈ V (G) : d(v) = i}.
Let N [v] = N(v) ∪ {v}. Let S ⊆ V (G), the subgraph with S as the vertex set and all

the edges with both end-vertices in S as the edge set is called the subgraph induced from

the vertex set S (or simply induced subgraph), denoted by G[S]. Let S ′ ⊆ E(G), the

subgraph with S ′ as edge set and all the end-vertices of S ′ as vertex set is called the

subgraph induced from edge set S ′ (or simply edge induced subgraph), denoted as G[S ′].

A vertex-cut (edge-cut, respectively) X of a multigraph G is essential if G − X has

at least two nontrivial components, and G is essentially k-connected (essentially k-edge-

connected, respectively) if every essential vertex-cut (essential edge-cut, respectively) of

H is of size at least k. Let κ′(G), c(G) denote the edge connectivity and the circumference

of G, respectively.

In Subsections 2.1-2.3, we summarize some facts that will be need in our proof of

Theorem 1.6.

2.1. Line graphs of multigraphs and their preimages

The line graph of a given G, denoted by L(G), is a graph with vertex set E(G) such

that two vertices in L(G) are adjacent if and only if the corresponding edges in G are

incident to a common vertex in G. The induced sub(multi)graph on a set M ⊂ V (G),

denoted by G[M ].

The multigraph H will be called the preimage of a line graph G and denoted H =

L−1(G). We will also use the notation a = L(e) and e = L−1(a) for an edge e ∈ E(H)

and the corresponding vertex a ∈ V (G).

A vertex x ∈ V (G) is eligible if G[N(x)] is a connected noncomplete graph, and we use

VEL(G) to denote the set of all eligible vertices of G. The local completion of G at a vertex

x is the graph G∗
x obtained from G by adding all edges with both vertices in N(x) (note

that the local completion at x turns x into a simplicial vertex, and preserves the K1,3-free

property of G). The closure cl(G) of aK1,3-free graph G was de�ned as the graph obtained

from G by recursively performing the local completion operation at eligible vertices, as

long as this is possible(more precisely: cl(G) = Gk, where G1, . . . , Gk is a sequence of

graphs such that G1 = G, Gi+1 = (Gi)
∗
x for some x ∈ VEL(Gi), i ∈ 1, . . . , k − 1, and

VEL(Gk) = ∅). We say that G is closed if G = cl(G). The closure cl(G) of a K1,3-

free graph G is uniquely determined, is the line graph of a triangle-free graph, and is

Hamiltonian if and only if so is G. However, as observed in [2], the closure operation does

not preserve (non-)Hamilton-connectedness of G. It is a well-known fact that

Fact 2.1. A line graph G is k-connected if and only if L−1(G) is essentially k-edge-

connected.

We recall that if G = L(H), then a graph F is an induced subgraph of G if and only if

L−1(F ) is a subgraph (not necessarily induced) of H.
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The core of H is the multigraph H0 obtained from H by deleting all the vertices of

degree 1, and replacing the path xyz by the edge xz for each y of degree 2, and denoted

co(H).

Obviously, if G is K1,3-free, then so is G∗
x. Note that in the special case when G is a line

graph and H = L−1(G), G∗
x is the line graph of the graph obtained from H by contracting

the edge L−1(x) into a vertex and replacing the created loop(s) by pendant edge(s). The

following results show some properties of eligible vertexs.

Lemma 2.2. (Ryjá£ek et al. [19]) Let G be a K1,3-free graph such that every induced

hourglass in G is centered at an eligible vertex, and let x ∈ VEL(G). Then every induced

hourglass in G∗
x is centered at an eligible vertex.

The following theorem was proved in [4], [5].

Theorem 2.3. (Brousek and Ryjá£ek [4, 5]) Let G be a {K1,3,Γ0}-free graph, and let

x ∈ VEL(G). Then G∗
x is {K1,3,Γ0}-free.

A multigraph H is strongly spanning trailable if for any edge e1, e2 ∈ E(H) (possibly

e1 = e2), the multigraph H(e1, e2), which is obtained from H by replacing the edge e1
by a path u1ve1v1 and the edge e2 by a path u2ve2v2, has a spanning (ve1 , ve2)-trail. The

following theorem establishes a correspondence between a IDT in H and a hamiltonian

path in L(H).

Theorem 2.4. (Li et al. [10]) Let H be a multigraph with |E(H)|≥ 3. Then G = L(H) is

Hamilton-connected if and only if for any pair of edges e1, e2 ∈ E(H), H has an internally

dominating (e1, e2)-trail.

W0 is the family of multigraphs obtained from the Wagner graph W8 by subdividing

one of its edges and adding at least one edge between the new vertex and exactly one of

its neighbors (see Figure 2).

W8

w1w8

w2

w3

w4w5

w6

w7

W0

w0
w1w8

w2

w3

w4w5

w6

w7

Fig. 2. The graphs W8 and W0

Theorem 2.5. (Liu et al. [13]) The following statements should be true.

(1) Every 2-connected 3-edge-connected multigraph H with c(H) ≤ 8 other than W8 is

strongly spanning trailable.
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(2) Every 3-edge-connected multigraph H with |V (H)|≤ 9 other than a member of W8∪
W0 is strongly spanning trailable.

Theorem 2.6. (Shao [20]) Let H be an essentially 3-edge-connected multigraph. Then

the core H0 of H satis�es the following.

(1) H0 is uniquely de�ned and κ′(H0) ≥ 3,

(2) V (H0) dominates all edges of H,

(3) if H0 has a spanning closed trail, then H has a DCT,

(4) if H0 is strongly spanning trailable, then L(H) is Hamilton-connected.

2.2. SM-closure

For a given K1,3-free graph G, a graph GM , as introduced in [9], is de�ned by the

following construction.

(a) If G is Hamilton-connected, we set GM = cl(G).

(b) If G is not Hamilton-connected, we recursively perform the local completion oper-

ation at such eligible vertices for which the resulting graph is still not Hamilton-

connected, as long as this is possible. We obtain a sequence of graphs G1, ..., Gk

such that

(1) G1 = G,

(2) Gi+1 = (Gi)
∗
xi
for some xi ∈ VEL(Gi), i = 1, ..., k − 1,

(3) Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),

(4) for any x ∈ VEL(Gk), (Gk)
∗
x is Hamilton-connected,

and set GM = Gk.

A resulting GM is called a strong M-closure (or brie�y an SM-closure) of the graph

G, and a graph G equal to its SM -closure is said to be SM -closed. Note that for a

given graph G, its SM -closure is not uniquely determined. As shown in [15] and [9], if

G is SM -closed, then G = L(H), where H does not contain a subgraph(not necessarily

induced) isomorphic to any of the graphs in Figure 3.

For x, y ∈ V (G), a path (trail) with endvertices x, y is referred to as an (x, y)-path

((x, y)-trail), a trail with terminal edges e, f ∈ E(G) is called an (e, f)-trail, and Int(T )

denotes the set of interior vertices of a trail T . A set of vertices M ⊂ V (G) dominates

an edge e, if e has at least one vertex in M , and a subgraph F ⊂ G dominates e if

V (F ) dominates e. A closed trail T is a dominating closed trail (abbreviated DCT) if

T dominates all edges of G, and an (e, f)-trail is an internally dominating (e, f)-trail
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(abbreviated (e, f)-IDT) if Int(T ) dominates all edges of G.

M1 M2 M3

Fig. 3. The diamond M1, the multitriangle M2 and the triple edge M3

The following results show some properties of the SM -closure.

Theorem 2.7. (Kuºel et al., [9]) Let G be a K1,3-free graph and GM be the SM-closure.

Then

(1) V (G) = V (GM) and E(G) ⊂ E(GM).

(2) GM is obtained from G by a sequence of local completions at eligible vertices.

(3) G is Hamilton-connected if and only if GM is Hamilton-connected.

(4) if G is Hamilton-connected, then GM = cl(G).

(5) if G is not Hamilton-connected, then either

(A) VEL(G
M) = ∅ and GM = cl(G), or

(B) VEL(G
M) ̸= ∅ and (GM)∗x is Hamilton-connected for any x ∈ VEL(G

M).

(6) GM = L(H), where H contains either

(A) at most 2 triangles and no multiedge, or

(B) no triangle, at most one double edge and no other multiedge.

(7) If GM contains no hamiltonian (a, b)-path for some a, b ∈ V (GM) and

(A) X is a triangle in H, then E(X) ∩ {L−1
GM (a), L−1

GM (b)} ≠ ∅.
(B) X is a multiedge in H, then E(X) = {L−1

GM (a), L−1
GM (b)}.

We will also need the following lemma on SM -closed graphs proved in [16].

Lemma 2.8. (Ryjá£ek and Vrána [16]) Let G be an SM-closed graph and let H =

L−1(G). Then H does not contain a triangle with a vertex of degree 2 in H.

Lemma 2.9. (Ryjá£ek et,al. [19]) Let G be a K1,3-free graph and let GM be its SM-

closure, and let H = L−1(GM). Then v ∈ VEL(G
M) if and only if e = L−1(v) is in a

triangle or a multiedge in H.

Theorem 2.10. (Li et al. [10]) Let H be a multigraph with |E(H)|≥ 3. Then G = L(H)

is Hamilton-connected if and only if for any pair of edges e1,e2 ∈ E(G), H has an (e1, e2)-

IDT.
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2.3. Closure operations and bull-free graphs

The concept of SM -closure can be further strengthened by omitting the eligibility

assumption in the local completion operation. Speci�cally, for a given K1,3-free graph G,

Liu et al. [11] constructed a graph GU by the following construction.

(a) If G is Hamilton-connected, we set GU = K|V (G)|.

(b) If G is not Hamilton-connected, we recursively perform the local completion opera-

tion at such vertices for which the resulting graph is still not Hamilton-connected,

as long as this is possible. We obtain a sequence of graphs G1, . . ., Gk such that

(1) G1 = G,

(2) Gi+1 = (Gi)
∗
xi
for some xi ∈ V (Gi), i = 1, ..., k − 1,

(3) Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),

(4) for any x ∈ V (Gk), (Gk)
∗
x is Hamilton-connected,

and set GM = Gk.

A resulting GU is called a ultimate M-closure (or brie�y an UM-closure) of the graph

G, and a graph G equal to its UM -closure is said to be UM -closed. When applying

closure techniques to {claw,Γ0, bull}-free graphs, the main problem is that a closure of

a {K1,3,Γ0, Bi,j}-free graph is not necessarily {K1,3,Γ0, Bi,j}-free (i.e., in the terminology

of [14], the class of {K1,3,Γ0, Bi,j}-free graphs is not stable under the closure operation).
Unfortunately, this is the case with all the closure operations mentioned in the previous

subsections.

We say that a vertex x ∈ V (G) is simplicial if the subgraph induced by G[N(x)] is

complete graph, and we use VSI(G) to denote the set of all simplicial vertices of G.

It turns out that this di�culty can be overcome by working in a slightly larger class

of graphs which contains all the requested {K1,3,Γ0, Bi,j}-free graphs but is stable under
the closure. Ryjá£ek and Vrána [18] de�ned the class Bi,j as follows, and they proved the

following properties.

� For any positive integers i, j, Bi,j is the class of all K1,3-free graphs G such that

every induced subgraph F ⊂ G, F ≃ Bi,j, satis�es µ(F ) ∈ VSI(G).

Clearly, every {K1,3, Bi,j}-free graph is in Bi,j.

Theorem 2.11. (Ryjá£ek and Vrána [18]) Let G be a {K1,3, Bi,j}-free graph for some

i, j ≥ 1, and let GU be a UM-closure of G. Then GU ∈ Bi,j.

3. Proof of Theorem 1.6

We will always write the list such that integers 1 ≤ i ≤ j and i + j = 7, we use

S1,2i+1,2j+1 to denote the graph obtained from K1,3 by subdividing two of its edges 2i

and 2j times, respectively, where the labeling of vertices as in Figure 4, and the vertex

o will be called the center vertex. It is easy to observe that L−1(Γ0) is the unique graph

with degree sequence 3, 3, 1, 1, 1, 1 and L−1(B2i,2j) = S1,2i+1,2j+1. We will use the notation

S1,i,j(o, a1, b1b2 . . . bi, c1 . . . cj)(S1,i,j ⊆ S(o, a1, b1b2 . . . bi′ , c1 . . . cj′) with integers i′ ≥ i and
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j′ ≥ j) to denote the subgraph S1,i,j. Now, we present the proof of Theorem 1.6.

L−1(Γ0) S1,2i+1,2j+1 = L−1(B2i,2j)

o

a1

b1 b2 b3 b2i+1

c1 c2 c3 c2j+1

Fig. 4. The graphs L−1(Γ0) and L−1(B2i,2j)

Proof of Theorem 1.6. Let G be a 3-connected {K1,3,Γ0, X}-free graph, where X ∈
{B2,12,B4,10, B6,8}, and suppose, to the contrary, that G is not Hamilton-connected. By

Theorems 2.3 and 2.11, we can assume that G is UM -closed and G ∈ B2,12 ∪ B4,10 ∪ B6,8.

Obviously, G is also SM -closed, implying that G is a line graph and H = L−1(G) has

special structure (contains no diamond, no multitriangle and triple edge), and let H0 be

the core of H. By Theorem 2.6 (4), H0 is not strongly spanning trailable. By Lemma 2.2,

every induced hourglass in G is centered at an eligible vertex. By Theorem 2.7, H has at

most two triangles or an multiedge. Hence, we may let

E0 be the edge set of two triangles or the multiedge in H.

By Theorem 2.6 (1),

κ′(H0) ≥ 3. (1)

For any edge e ∈ E(H0)\E0, L(e) is not an eligible vertex in G by Lemma 2.9, i.e., the

edge e cannot be a central edge of an L−1(Γ0) for some induced hourglass Γ0 of G. Thus

we have

each edge of E(H0)\E0 should be subdivided by a vertex of degree 2 in H. (2)

It su�ces to show thatH contains all possible subgraphs S1,2i+1,2j+1 ∈ {S1,3,13,S1,5,11,S1,7,9},
where positive integers i+ j = 7.

Claim 3.1. c(H0) ≥ 9 and |V (H0)|≥ 10.

Proof. Assume, to the contrary, that c(H0) ≤ 8 or |V (H0)|≤ 9. By Theorem 2.5,

H0 ∈ {W8} ∪W0. Then H0 has a 8-cycle w1w2 . . . w8w1 or 9-cycle w1w2 . . . w8w0w1 with

{w1w5, w2w6, w3w7, w4w8} ⊆ E(H0) and w0w1 is multiple edge. By (2), each edge wmwn

of H0 should be subdivided by a vertex wm,n of degree 2 with integers 0 ≤ m < n ≤ 8.

Then H contains subgraphs

S1,3,13(w1, w1,5, w1,8(w0)w8w4,8, w1,2w2w2,3w3w3,4w4w4,5w5w5,6w6w6,7w7w7,8),

S1,5,11(w1, w1,5, w1,8(w0)w8w7,8w7w3,7, w1,2w2w2,3w3w3,4w4w4,5w5w5,6w6w6,7)

and

S1,7,9(w1, w1,5, w1,8(w0)w8w7,8w7w6,7w6w2,6, w1,2w2w2,3w3w3,4w4w4,5w5w5,6),
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a contradiction. This proves Claim 3.1.

Therefore c(H0) ≥ 9 and |V (H0)|≥ 10. Throughout the proof, we use the following

notation:

� Cc(H0) = v1v2 . . . vc(H0)v1 always denotes a longest cycle of H0, and C = PIH(Cc(H0));

� Set mH0 = |E0 ∩ E(Cc(H0))|;

� Set DH0 = V (H0) \ V (Cc(H0));

� Let E1
H0

be the set of all edges between Cc(H0) and DH0 . Then |E1
H0
|≥ 3;

By (2), Cc(H0) has at least c(H0)−mH0 edges that should be subdivided by c(H0)−mH0

vertices of degree 2 in H0, then |V (C)|= 2c(H0)−mH0 . For integers 1 ≤ r < s ≤ c(H0),

we use vr,s to denote the vertex subdivide edge vrvs in Cc(H0). An edge vrvs ∈ E(Cc(H0))

is a l-chord if the shortest one of the two subpaths of Cc(H0) determined by vr and vs has

l internal vertices.

Claim 3.2. For a pair of vertices x and y in Cc(H0), and a path PH0\Cc(H0)
(x, y) with x, y

as its end vertices and their internal vertices are not in Cc(H0). Let PCc(H0)
(x, y) be the

subpath of Cc(H0). Then |PCc(H0)
(x, y)|≥ |PH0\Cc(H0)

(x, y)|.

Proof. Suppose Claim 3.2 false, |PCc(H0)
(x0, y0)|< |PH0\Cc(H0)

(x0, y0)| for some x0, y0 sat-

isfying the hypothesis Claim 3.2. Then

C ′ = H0[(E(Cc(H0)) ∪ E(PH0\Cc(H0)
(x0, y0)) \ E(PCc(H0)

(x0, y0)]

is a cycle of length at least c(H0) + 1, which contradicts the choice of Cc(H0). This proves

Claim 3.2.

Claim 3.3. V (E0) ∩ V (Cc(H0)) ̸= ∅.

Proof. Assume, to the contrary, that V (E0) ∩ V (Cc(H0)) = ∅. Then |V (DH0)|≥ 2 and

E1
H0

∩E0 = ∅. By (2), |V (C)|= 2c(H0) ≥ 18. Moreover, there is at least one edge in E1
H0

with vi0 as its end-vertex should be subdivided by a vertex x0 of degree 2 in H0. Then H

contains all subgraphs S1,2i+1,2j+1 ⊆ H[V (C)∪{x0}] with its center vertex vi0 , for positive

integers i+ j = 7, a contradiction. This proves Claim 3.3.

Claim 3.4. H0 has no multiple edges.

Proof. Assume, to the contrary, that H0 contains multiple edges. By Theorem 2.7 (6),

H0 contains at most two mutiple edges and no other multiple edge. Let {e′1, e′2} ⊆ E(H0)

be a pair of multiple edges, with u1, u2 as their end-vertices.

Suppose �rst that |V (H0)|= c(H0). Then T = vi0e
′
1vi0+1 . . . vi0e

′
2vi0+1 is an (e′1, e

′
2)-

IDT in H with {u1, u2} = {vi0 , vi0+1}, contradicting Theorem 2.7 (7). Now suppose that

|V (H0)|> c(H0). Firstly, suppose that mH0 = 2, but then c(H0) = 2, contradicting
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c(H0) ≥ 9. Then, suppose that mH0 = 0. By Claim 3.3, {u1, u2} ∩ V (Cc(H0)) ̸= ∅. If

|{u1, u2} ∩ V (Cc(H0))|= 2 and u1u2 /∈ E(Cc(H0)), since H is triangle-free, e′1 is a k-chord

in Cc(H0) with k ≥ 2, then Γ0 ⊆ L−1(H[u1, u
+
1 , u

−
1 , u2, u

+
2 , u

−
2 ]), a contradiction; otherwise,

{u1, u2} ∩ V (Cc(H0)) = {u1} = {vi0}( say vi0 ∈ V (Cc(H0))) and u2 is not in Cc(H0), by (2),

|V (C)|= 2c(H0) ≥ 18. Then H contains all subgraphs S1,2i+1,2j+1 ⊆ H[V (C)∪{u2}] with
its center vertex u1, and positive integers i+ j = 7, a contradiction. Finally suppose that

mH0 = 1, say e′1 = vi0vi0+1 ∈ E(Cc(H0)). By (2), |V (C)|= 2c(H0) − 1 ≥ 17. Moreover,

there is at least one edge in E1
H0

with vj0 as its end-vertex that should be subdivided a

vertex x0 of degree 2 in H. Then H contains all subgraphs S1,2i+1,2j+1 ⊆ H[V (C)∪ {x0}]
with its center vertex vj0 , for positive integers i+ j = 7, a contradiction. Thus H0 has no

multiple edges. This proves Claim 3.4.

By Claims 3.3 and 3.4, we can get that H0 is simple graph.

Claim 3.5. H0 is not triangle-free simple graph.

Proof. Assume, to the contrary, that H0 is a triangle-free simple graph. By (2), |V (C)|=
2c(H0) ≥ 18. Since κ′(H0) ≥ 3, there is a vertex x0 ∈ NH(vi0) and x0 /∈ V (Cc(H0)). Then

H contains all subgraphs S1,2i+1,2j+1 ⊆ H[V (C) ∪ {x0}] with center vertex at V (C), for

positive integers i+ j = 7, a contradiction. This proves Claim 3.5.

By Claims 3.4 and 3.5, H0 contains at least one triangle.

Claim 3.6. Let u1u2u3u1 be a triangle of H0. Then

(1) dH0(u1) = dH0(u2) = dH0(u3) = 3.

(2) mH0 ∈ {2, 4} if H0 contains at least one triangle.

Proof. (1). By Lemma 2.8, suppose to the contrary that dH0(u1) ≥ 4. Since dH0(u3) ≥
3, Γ0 ⊆ L−1(H[u1, u

+
1 , u

−
1 , u3, u

+
3 , u

−
3 ]), a contradiction. Then dH0(u1) = 3. Similarly,

dH0(u3) = 3. If dH0(u2) ≥ 4, then Γ0 ⊆ L−1(H[u1, u
+
1 , u

−
1 , u2, u

+
2 , u

−
2 ]), a contradiction.

We have that dH0(u2) = 3.

(2). Firstly, suppose that mH0 = 3, but then c(H0) = 3, contradicting c(H0) ≥ 9.

We can easily get that m /∈ {3, 5, 6}. Then, suppose that mH0 = 0. By Claim 3.3,

{u1, u2, u3} ∩ V (Cc(H0)) ̸= ∅. Then for some vertex u0 ∈ {u1, u2, u3}, dH0(u0) ≥ 4, which

contradicts dH0(u0) = 3, a contradiction. Finally, supposemH0 = 1, and u1u2 ∈ E(Cc(H0)).

By Claim 3.2, u3 ∈ V (Cc(H0)). Then dH0(u3) ≥ 4, a contradiction. ThereforemH0 ∈ {2, 4}.
This proves Claim 3.6.

If mH0 = 2, then H0 has exactly one triangle and Cc(H0) contains exactly three vertices

of the triangle, where the vertices of the triangle are pairwise adjacent in H0. Without

loss of generally, we denote the triangle by v1v2v3v1. Choose a shortest path P r,s ⊆
H[E(DH0) ∪ E1

H0
] with two vertices vr, vs ∈ V (Cc(H0)) as its end-vertices, respectively,

where the edges incident with vertices vr and vs in P r,s are denoted by err,s and esr,s,

respectively. For edge err,s, e
s
r,s /∈ E0 and err,s, e

s
r,s ∈ E1

H0
, by (2), they should be subdivided
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by two vertices of degree 2 in H, say xr
r,s, x

s
r,s ∈ V (H), respectively. Let P ′ be the set of

all path P r,s satisfying integer 1 ≤ r, s ≤ c(H0).

Claim 3.7. If c(H0) ≥ 9 and |V (H0)|≥ 10, then mH0 ̸= 2.

Proof. Assume, to the contrary, that mH0 = 2. Then E1
H0

∩ E0 = ∅. By (2), |V (C)|=
2c(H0) − 2 ≥ 16. For any path P r,s ∈ P ′, if r = s, then H contains a subgraph

S1,2i+1,2j+1 ⊆ S(vr, vr+1, P
r,svs\vs, vr−1,rvr−1 . . . vr+1,r+2), a contradiction. Therefore in-

teger 1 ≤ r < s ≤ c(H0) in P r,s. Since κ′(H0) ≥ 3, there is at least a vertex x0
r ∈

NH0(vr)\{vr−1, vr+1} for all vr ∈ V (Cc(H0))\{v1, v3}.
Case 1. G ∈ B2,12.

Suppose that x0
r /∈ V (Cc(H0)) and x0

r ∈ V (P ′). Then H contains a subgraph S1,3,13 ⊆
S(v2, v1, P

2,s
H xs

2,s, v2,3v3 . . . v9) or S1,3,13 ⊆ S(vr, vr−1,r, P
r,sxs

r,s, vr,r+1vr+1 . . . vr−1) with vr ∈
{v4, v5, . . . vc(H0)}, a contradiction. Now suppose that x0

r ∈ V (Cc(H0)) and |V (H0)|=
c(H0) ≥ 10. Then v2vs ∈ E(H0), where vs ∈ {v5, . . . , vc(H0)−1}, and H contains a sub-

graph S1,3,13(v2, v2,s, v1 . . . vc(H0), v3v3,4 . . . v9), a contradiction. Therefore dH0(v2) = 2,

contradicting (1). This proves Case 1.

Case 2. G ∈ B4,10.

Suppose that x0
r /∈ V (Cc(H0)) and x0

r ∈ V (P ′) and |P r,s|≥ 4. Then H contains a

subgraph S1,5,11 ⊆ S(vr, vr+1, P
r,s
H xs

r,s, vr−1,rvr−1 . . . vr+2), where vr ∈ {v2, v4, v5, . . . vc(H0)},
a contradiction. Then, suppose that |P r,s|= 3 with P r,s

H = vrx
r
r,sxr,s(x

0
r)x

s
r,svs and c(H0) ≥

10. By (2), |V (C)|= 2c(H0) − 2 ≥ 18. Then H contains a subgraph S1,5,11 ⊆ H[V (C) ∪
{xr

r,s}] with its center vertex vr, a contradiction. We have that c(H0) = 9, say Cc(H0) =

v1v2 . . . v9v1. Firstly, suppose NH0(v6)\{v7, v5} ⊆ V (DH0). Then there exists a path P 6,r

for any possibility r ∈ {2, 4, 8, 9}. Then H contains a subgraph

S1,5,11(v1, v1,9, v3v3,4 . . . v5, v2P
2,6
H v6v6,7 . . . v9), S1,5,11(v6, v5,6, P

4,6
H v4v4,5, v6,7v7 . . . v3,4),

S1,5,11(v6, v6,7, P
6,8
H v8v7,8, v5,6v5 . . . v8,9) or S1,5,11(v9, v1,9, v8,9v8 . . . v6,7, P

6,9
H v6v5,6 . . . v3v2),

a contradiction. Hence v6 is on a chord of Cc(H0) (v2v6 ∈ E(H0) or v6v9 ∈ E(H0)).

Similarly, v7 is on a chord of Cc(H0) (v2v7 ∈ E(H0) or v4v7 ∈ E(H0)). Then, suppose

NH0(v2)\{v1, v3} ⊆ V (DH0), {v2, vs} ⊆ N(DH0) ∩ V (Cc(H0)), by symmetry, s ∈ {4, 5}.
Then H contains a subgraph

S1,5,11(v4, v3,4, P
2,4
H v2v3, v5v5,6 . . . v1,9)

or

S1,5,11(v7, v4,7, v7,8v8 . . . v1,9, v6,7 . . . v5P
2,5
H v2v3v3,4v4),

a contradiction. v2 is on a chord of Cc(H0). Then NH0(v2) ∈ {v5, v6, v7, v8}. If v2v6 ∈
E(H0), then H contains a subgraph S1,5,11(v6, v6,7, v5,6v5 . . . v2,3, v2,6v2v3,4v4 . . . v7v4,7), a

contradiction. Hence v2v6 /∈ E(H0), by symmetry, v2v7 /∈ E(H0). Hence v4v7 ∈ E(H0)

and v6v9 ∈ E(H0), we have that H contains a subgraph

S1,5,11(v9, v6,9, v1,9v1 . . . v3,4, v8,9v8 . . . v4v4,7),
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a contradiction. Therefore dH0(v6) = dH0(v7) = 2, contradicting (1). This proves Case 2.

Case 3. G ∈ B6,8.

Subcase 3.1. c(H0) ≥ 10 and |V (H0)|≥ 10.

By (2), |V (C)|= 2c(H0) − 2 ≥ 18. Hence dH0(vr) ≥ 3, where vr ∈ V (Cc(H0)). Then

H contains all subgraphs S1,2i+1,2j+1 ⊆ H[V (C) ∪ {u}] with its center vertex vr, positive

integers i+ j = 7, and u ∈ NH(vr)\{vr−1,r, vr,r+1}, a contradiction.

Subcase 3.2. c(H0) = 9(say Cc(H0) = v1v2 . . . v9v1) and |V (H0)|≥ 10.

By (2), |V (C)|= 2c(H0) − 2 ≥ 16. Firstly, suppose that P 2,s ∈ P ′ for any possibility

s ∈ {4, 5, 6}. Then H contains a subgraph

S1,7,9 ⊆ S(v2, v3, P
2,4
H v4v4,5v5v5,6, v1v1,9 . . . v6),

S1,7,9 ⊆ S(v5, x
5
2,5, v4,5v4v3,4v3v1v2x

2
2,5, v5,6v6 . . . v1,9),

S1,7,9 ⊆ S(v6, x
6
2,6, v6,7v7 . . . v1,9, v5,6v5 . . . v3v1v2x

2
2,6).

a contradiction. Hence s /∈ {4, 5, 6}, by symmetry, s /∈ {9, 8, 7}. Then, supposed that

P 4,s ∈ P ′. Then H contains a subgraph S1,7,9 ⊆ S(v4, v4,5, P
4,6
H v6v5,6v5u, v3,4v3 . . . v7,8),

where u ∈ NH(v5)\{v4,5, v5,6}, S1,7,9 ⊆ S(v4, v4,5, P
4,7
H v7v6,7v6v5,6, v3,4v3 . . . v7,8), S1,7,9 ⊆

S(v8, x
8
4,8, v7,8v7 . . . v4,5, v8,9v9 . . . v4 x

4
4,8) or S1,7,9 ⊆ S(v9, x

9
4,9, v1,9v1 . . . v4x

4
4,9, v8,9v8 . . . v4,5),

a contradiction. Hence P 4,s /∈ P ′, by symmetry, P r,9 /∈ P ′. Finally, suppose that

P 5,s ∈ P ′. Then H contains a subgraph S1,7,9 ⊆ S(v5, v5,6, P
5,7
H v7v6,7v6u, v4,5v4 . . . v8,9),

where u ∈ NH(v6)\{v6,7, v5,6} or S1,7,9 ⊆ S(v5, v5,6, P
5,8
H v8v7,8 v7v6,7, v4,5v4 . . . v8,9), a con-

tradiction. Hence P 5,s /∈ P ′, by symmetry, P r,8 /∈ P ′. Hence P 6,s /∈ P ′ and P 7,s /∈ P ′.

Therefore |V (H0)|= 9, a contradiction. This proves Claim 3.7.

By Claims 3.6 and 3.7, mH0 = 4. If mH0 = 4, then Cc(H0) contains exactly six vertices

of two triangles, where the vertices of each triangle are pairwise adjacent in Cc(H0). In

the following of Theorem 1.6, we denote the another triangle by vq−1vqvq+1vq−1, by sym-

metry, q ∈ {5, 6, . . . , ⌈ c(H0)+3
2

⌉}. By Claim 3.6 (1), we have that dH0(vq−1) = dH0(vq) =

dH0(vq−1) = 3.

Claim 3.8. Suppose that mH0 = 4 and |V (H0)|≥ 10. Then c(H0) ̸= 9.

Proof. Assume, to the contrary, that c(H0) = 9(say Cc(H0) = v1v2 . . . v9v1). By (2),

|V (C)|= 2c(H0)− 2 ≥ 14. In this case, vq ∈ {v5, v6}, and |V (DH0)|≥ 1 and E1
H0

∩E0 = ∅.
Case 1. G ∈ B2,12.

Subcase 1.1. vq = v5.

Suppose that NH0(v8)\{v7, v9} ⊆ V (DH0). Then H contains a subgraph S1,3,13 ⊆
S(v8, v8,9, P

r,8 xr
r,8, v7,8v7 . . . v9x) with x ∈ NH(v9), a contradiction. Hence v8 is on a chord

of Cc(H0), i.e.,

v8v2 ∈ E(H0) or v8v5 ∈ E(H0). (3)

Suppose thatNH0(v9)\{v8, v1} ⊆ V (DH0). Then there exists a path P r,9 for any possibility

r ∈ {2, 5, 7, 9}, and H contains a subgraph S1,3,13 ⊆ S(v9, v1,9, P
r,9
H xr

r,9, v7,8v7 . . . v3v1v2x1)

with x1 ∈ NH(v2)\ {v3, v1} and r ∈ {5, 7}, S1,3,13 ⊆ (v4, v5, v3,4v3v2, v6v6,7 . . . v9P
9,9
H v9\v9)
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or S1,3,13 ⊆ (v1, v1,9, v3v3,4v4, v2P
2,9
H v9v8,9 . . . v5x2) with x2 ∈ NH(v5)\{v4,5, v5,6}, a contra-

diction. Hence v9 is on a chord of Cc(H0) (v5v9 ∈ E(H0)). Similarly, v2v7 ∈ E(H0). Hence

by Claim 3.6 (1), v8v2 ̸∈ E(H0) and v8v5 ̸∈ E(H0), contradicting (3).

Subcase 1.2. vq = v6.

Suppose that NH0(v8)\{v7, v9} ⊆ V (DH0). Then there exists a path P r,8 for any possi-

bility r ∈ {2, 4, 6, 8}. Then H contains a subgraph

S1,3,13 ⊆ (v1, v2, v1,9v9v8,9, v3v3,4,7 . . . v8P
8,8
H v8 \ v8)

or

S1,3,13 ⊆ S(v8, v8,9, P
r,8
H xr

r,8, v7,8v7 . . . v9x1)

with x1 ∈ NH(v9)\ {v1,9, v8,9}, a contradiction. Hence v8 is on a chord of Cc(H0). Simi-

larly, v9 is on a chord of Cc(H0). Suppose that NH0(v2)\{v3, v1} ⊆ V (DH0). Then there

exists a path P 2,r for any possibility r ∈ {4, 6}, and H contains a subgraph S1,3,13 ⊆
(v5, v6, v4,5v4v3,4, v7v7,8 . . . v2P

2,2
H v2\v2), S1,3,13 ⊆ (v9, x2, v8,9v8v7,8, v1,9v1 . . . v5v7v6P

2,6
H x2

2,6)

with x2 ∈ NH(v9)\ {v8,9, v1,9} or S1,3,13 ⊆ S(v4, v4,5, P
2,4
H x2

2,4, v3,4v3 . . . v7v5v6x3) with

x3 ∈ NH(v6)\ {v5, v6}, a contradiction. Hence v2 is on a chord of Cc(H0). Similarly, v6 is

on a chord of Cc(H0). Then we have that v4 is on a chord of Cc(H0). Therefore, |V (H0)|= 9,

a contradiction, this proved Case 1.

In the proof of the following cases, for any path P r,r ∈ P ′. Then H contains a subgraph

S1,2i+1,2j+1 ⊆ S(vr, vr+1, P
r,r
H vr\vr, vr−1,rvr−1 . . . vr+1,r+2), a contradiction. Therefore inte-

ger 1 ≤ r < s ≤ c(H0) in P r,s.

Case 2. G ∈ B4,10.

Suppose that |P r,s|≥ 4, S1,5,11 ⊆ H[V (C)∪ V (P r,s
H )] with its center vertex vr, a contra-

diction. Then suppose that |P r,s|= 3, say P r,s
H = vrx

r
r,sxr,sx

s
r,svs.

Subcase 2.1. vq = v5.

Suppose that NH0(v8)\{v7, v9} ⊆ V (DH0). Then there exists a path P r,8 for any pos-

sibility r ∈ {2, 5}, and H contains a subgraph S1,5,11(v9, x1, v8,9v8P
r,8
H xr

r,8, v1,9v1 . . . v7,8)

with x1 ∈ NH(v9) and r ∈ {2, 5} a contradiction. Hence v8 is in a chord of Cc(H0), i.e.,

v8v2 ∈ E(H0) or v8v5 ∈ E(H0). (4)

Suppose thatNH0(v9)\{v8, v1} ⊆ V (DH0). Then there exists a path P r,9 for any possibility

r ∈ {2, 5, 7}, andH contains a subgraph S1,5,11(v9, v1,9, v8,9v8 . . . v6,7, P
2,9
H v2v1v3v3,4v4v6v5x2)

with x2 ∈ NH(v5), S1,5,11(v9, v1,9, v8,9v8 . . . v6,7, P
5,9
H v5v6v4v3,4v3v1v2x3) with x3 ∈ NH(v2)

or S1,5,11(v8, x2, v7,8v7 P
7,9
H x9

7,9, v8,9v9 . . . v6,7) with x2 ∈ NH(v5), a contradiction. Hence v9
is on a chord of Cc(H0) (v5v9 ∈ E(H0)). Similarly, v2v7 ∈ E(H0). Hence by Claim 3.6 (1),

v8v2 ̸∈ E(H0) and v8v5 ̸∈ E(H0), contradicting (4).

Subcase 2.2. vq = v6.

Suppose that NH0(v8)\{v7, v9} ⊆ V (DH0). Then there exists a path P r,8 for any pos-

sibility r ∈ {2, 4, 6}, and H contains a subgraph S1,5,11(v9, x1, v8,9v8P
r,8
H xr

r,8, v1,9v1 . . . v7,8)

for any possibility r ∈ {2, 4, 6} and x1 ∈ NH(v9), a contradiction. Hence v8 is on a
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chord of Cc(H0). Similarly, v9 is on a chord of Cc(H0). Suppose that NH0(v2)\{v3, v1} ⊆
V (DH0). Then there exists a path P 2,s for any possibility s ∈ {4, 6}, and H con-

tains a subgraph S1,5,11(v4, v3,4, v4,5v5v7v6x2, P
2,4
H v2v3v1v1,9 . . . v7,8) with x2 ∈ NH(v6) or

S1,5,11(v4, v3,4, v4,5v5 . . . v7,8, v4,8v8v8,9v9v1,9v1v3v2P
2,6
H x6

2,6), a contradiction. Thus v2 is on a

chord of Cc(H0). Similarly, v6 is on a chord of Cc(H0). Hence v4 is on a chord of Cc(H0).

Therefore |V (H0)|= 9, a contradiction. This proved Case 2.

Case 3. G ∈ B6,8.

Suppose that |P r,s|≥ 5, S1,7,9 ⊆ H[V (C) ∪ V (P r,s
H )] with its center vertex vr, a con-

tradiction. Then suppose that |P r,s|= 3 or |P r,s|= 4, say P r,s
H = vrx

r
r,sxr,sx

s
r,svs or

P r,s
H = vrx

r
r,sx

1
r,sx

12
r,sx

2
r,sx

s
r,svs.

Subcase 3.1. vq = v5.

Let NH0(v8)\{v7, v9} ⊆ V (DH0), there exists a path P r,8 for any possibility r ∈ {2, 5}.
Then H contains a subgraph S1,7,9 ⊆ S(v8, v7,8, v8,9v9 . . . v3,4, P

5,8
H v5v4v6v6,7v7x1) with

x1 ∈ NH(v7) or S1,7,9 ⊆ S(v8, v8,9, v7,8v7 . . . v3,4, P
2,8
H v2v3v1v1,9v9x2) with x2 ∈ NH(v9), a

contradiction. Hence v8 is on a chord of Cc(H0), i.e.,

v8v2 ∈ E(H0) or v8v5 ∈ E(H0). (5)

Let NH0(v9)\{v8, v1} ⊆ V (DH0), there exists a path P r,9 for any possibility r ∈ {2, 5, 7}.
If |P r,s|= 4, then H contains a subgraph S1,7,9(v3, v2, v3,4v4v6v6,7 . . . v8, v1v1,9v9P

5,9
H v5), a

contradiction. Hence |P r,s|= 3 (P r,s
H = v9x

9
r,9xr,9x

r
r,9vr). Then H contains a subgraph

S1,7,9(v9, v1,9, P
2,9
H v2v1v3v3,4, v8,9v8 . . . v6v4v5x3)

with x3 ∈ NH(v5),

S1,7,9(v8, x4, v8,9v9 . . . v3,4, v7,8v7v6,7v6v4v5P
5,9
H x9

5,9)

with x4 ∈ NH(v8) or S1,7,9(v7, v7,8, P
7,9
H v9v8,9v8x5, v6,7v6 . . . v1,9) with x5 ∈ NH(v8), a con-

tradiction. Hence v9 is on a chord of Cc(H0) (v5v9 ∈ E(H0)). Similarly, v2v7 ∈ E(H0).

Hence by Claim 3.6 (1), v8v2 ̸∈ E(H0) and v8v5 ̸∈ E(H0), contradicting (5).

Subcase 3.2. vq = v6.

Let NH0(v8)\{v7, v9} ⊆ V (DH0), there exists a path P r,8 for any possibility r ∈ {2, 4, 6}.
If |P r,s|= 4, then H contains a subgraph

S1,7,9(v8, v7,8, P
4,8
H v4v4,5v5v6, v8,9v9 . . . v3,4)

or

S1,7,9(v2, v1, v3v3,4 . . . v7, P
2,8
H v8v8,9v9v1,9),

a contradiction. Hence |P r,s|= 3 (P r,s
H = v8x

8
r,8xr,8x

r
r,8vr). Then H contains a subgraph

S1,7,9(v4, x1, v4,5v5 . . . v8,9, v3,4v3 . . . v8P
2,8
H x2

2,8) with x1 ∈ NH(v4),

S1,7,9(v8, v7,8, v8,9v9 . . . v3,4, P
4,8
H v4v4,5v5v7v6x2) with x2 ∈ NH(v6),

S1,7,9(v4, x3, v3,4v3 . . . v8,9, v4,5v5v7v6P
6,8
H v8v7,8) with x3 ∈ NH(v4),
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a contradiction. Hence v8 is on a chord of Cc(H0). Similarly, v9 is on a chord of Cc(H0).

Let NH0(v2)\{v3, v1} ⊆ V (DH0), there exists a path P 2,r for any possibility r ∈ {4, 6}.
Then H contains a subgraph S1,7,9 ⊆ S(v9, v4,9, v1,9v1v2P

2,6
H v6, v8,9v8v7,8v7v5v4,5v4v3,4v3)

or S1,7,9 ⊆ S(v8, v4,8, v8,9v9 . . . v3,4, v7,8v7 . . . v4P
2,4
H x2

2,4), a contradiction. Hence v2 is on a

chord of Cc(H0). Similarly, v6 is on a chord of Cc(H0). Hence v4 is on a chord of Cc(H0).

Therefore, |V (H0)|= 9, a contradiction. This proves Claim 3.8.

Thus we can get that c(H0) ≥ 10 and |V (H0)|≥ 10 and mH0 = 4, where E1
H0

∩E0 = ∅.
By (2), |V (C)|= 2c(H0)− 2 ≥ 16. For any path P r,r ∈ P ′. Then H contains a subgraph

S1,2i+1,2j+1 ⊆ S(vr, vr+1, P
r,r
H vr\vr, vr−1,rvr−1 . . . vr+1,r+2), a contradiction. Therefore inte-

ger 1 ≤ r < s ≤ c(H0) in P r,s.

Claim 3.9. Suppose that mH0 = 4. Then |V (H0)|= c(H0) ≥ 10.

Proof. Assume, to the contrary, that |V (H0)|> c(H0) ≥ 10. If c(H0) ≥ 11, then |V (C)|=
2c(H0)− 4 ≥ 18. Hence dH0(vr) ≥ 3 with vr ∈ V (Cc(H0)), Then H contains all subgraphs

S1,2i+1,2j+1 ⊆ H[V (C) ∪ {u}] with its center vertex vr, and u ∈ NH(vr)\{vr−1,r, vr,r+1}, a
contradiction. Therefore c(H0) = 10(say Cc(H0) = v1v2 . . . v10v1).

Case 1. G ∈ B2,12.

We can get that S1,3,13 ⊆ H[V (C) ∪ V (P r,s
H )] with its center vertex vr ∈ V (Cc(H0)), a

contradiction.

Case 2. G ∈ B4,10.

If |P r,s|≥ 4, then S1,5,11 ⊆ H[V (C) ∪ V (P r,s
H )] with its center vertex vr ∈ V (Cc(H0)), a

contradiction. Hence |P r,s|= 3, i.e., P r,s
H = vrx

r
r,sxr,sx

s
r,svs.

Subcase 2.1. vq = v5.

Firstly, suppose that NH0(v10)\{v1, v9} ⊆ V (DH0). Then H contains a subgraph

S1,5,11(v10, v1,10, v9,10v9 . . . v7,8, P
2,10
H v2v1v3 . . . v7),

S1,5,11(v10, v9,10, v1,10v1v2v3v3,4, P
5,10
H v5v4v6 . . . v9),

S1,5,11(v10, v1,10, v9,10v9v8,9v8v7,8, P
7,10
H v7v6,7 . . . v1),

S1,5,11(v8, v8,9, P
8,10
H v10v9,10, v7,8v7v6,7 . . . v1,10),

a contradiction. Hence NH0(v10) ⊆ V (Cc(H0)), by symmetry, NH0(v7) ⊆ V (Cc(H0)). Then,

suppose that NH0(v9)\{v8, v10} ⊆ V (DH0). Then H contains a subgraph

S1,5,11(v6, v5, v6,7v7 . . . v8,9, v4v3,4v3v2P
2,9
H v9v9,10v10v1,10)

or

S1,5,11(v9, v9,10, v8,9v8 . . . v6,7, P
5,9
H v5v4 . . . v10),

a contradiction. Hence NH0(v9) ⊆ V (Cc(H0)), by symmetry, NH0(v8) ⊆ V (Cc(H0)). Finally,

suppose that NH0(v2)\{v1, v3} ⊆ V (DH0). Then H contains a subgraph

S1,5,11(v4, v3,4, v5P
2,5
H v2, v6v6,7 . . . v1),
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a contradiction. Hence NH0(v2) ⊆ V (Cc(H0)), by symmetry, NH0(v5) ⊆ V (Cc(H0)). There-

fore, |V (H0)|= c(H0) = 10, a contradiction.

Subcase 2.2. vq = v6.

Firstly, suppose that NH0(v10)\{v1, v9} ⊆ V (DH0). Then H contains a subgraph

S1,5,11(v7, v6, v7,8 v8v8,9v9v9,10, v5v4,5v4 . . . v10P
r,10
H xr,10) for any possibility r ∈ {2, 4, 6, 8},

a contradiction. Hence NH0(v10) ⊆ V (Cc(H0)), by symmetry, NH0(v8) ⊆ V (Cc(H0)). Sec-

ondly, suppose that NH0(v9)\{v8, v10} ⊆ V (DH0). Then H contains a subgraph

S1,5,11(v7, v6, v5v4,5v4v3,4v3, v7,8v8 . . . v2x
2
2,9x2,9),

S1,5,11(v1, v2, v3v3,4v4x
4
4,9x4,9, v1,10v10 . . . v4,5),

S1,5,11(v1, v2, v3v3,4 . . . v5, v1,10v10v9,10v9 . . . v6x
6
6,9x6,9),

a contradiction. Hence NH0(v9) ⊆ V (Cc(H0)). Finally, suppose that NH0(v2)\{v1, v3} ⊆
V (DH0). Then H contains a subgraph S1,5,11(v4, v3,4, P

2,4
H v2v3, v4,5v5 . . . v1,10) or

S1,5,11(v1, v2, v3v3,4v4v4,5v5, v1,10v10 . . . v6x
6
2,6x2,6),

a contradiction. Hence NH0(v2) ⊆ V (Cc(H0)), by symmetry, NH0(v6) ⊆ V (Cc(H0)). There-

fore, NH0(v4) ⊆ V (Cc(H0)) and |V (H0)|= c(H0) = 10, a contradiction.

Subcase 2.3. vq = v7.

Suppose that NH0(v9)\{v8, v10} ⊆ V (DH0), then H contains a subgraph

S1,5,11(v8, v7, v8,9v9P
r,9
H , xr

r,9, v6v5,6 . . . v10) for any possibility r ∈ {2, 4, 5, 7}.

a contradiction. Hence NH0(v9) ⊆ V (Cc(H0)), by symmetry, NH0(v10) ⊆ V (Cc(H0)),

NH0(v5) ⊆ V (Cc(H0)) and NH0(v4) ⊆ V (Cc(H0)). Next, suppose that NH0(v2)\{v1, v3} ⊆
V (DH0). Then H contains a subgraph S1,5,11(v1, v2, v1,10v10 . . . v8,9, v3v3,4 . . . v7P

2,7
H x2

2,7), a

contradiction. Hence NH0(v2) ⊆ V (Cc(H0)), by symmetry, NH0(v7) ⊆ V (Cc(H0)). There-

fore, |V (H0) = c(H0)|= 10, a contradiction. This proves Case 2.

Case 3. G ∈ B6,8.

If |P r,s|≥ 5, then S1,7,9 ⊆ H[V (C) ∪ V (P r,s
H )] with its center vertex vr ∈ V (Cc(H0)),

a contradiction. Hence |P r,s|= 3 or |P r,s|= 4, i.e., P r,s
H = vrx

r
r,sxr,sx

s
r,svs or P r,s

H =

vrx
r
r,sx

1
r,sx

12
r,sx

2
r,sx

s
r,svs.

Subcase 3.1. vq = v5.

Firstly, suppose that NH0(v9)\{v8, v10} ⊆ V (DH0). Then H contains a subgraph

S1,7,9(v9, x
9
5,9, v9,10v10 . . . v3,4, v8,9v8 . . . v6v4v5x

5
5,9),

S1,7,9(v9, x
9
2,9, v9,10v10v1,10v1v3v2x

2
2,9, v8,9v8 . . . v3,4),

S1,7,9(v6, v5, v4v3,4 . . . v10, v6,7v7v7,8 . . . v9P
7,9
H x7

7,9),

a contradiction. Hence NH0(v9) ⊆ V (Cc(H0)), by symmetry, NH0(v8) ⊆ V (Cc(H0)). Then,

suppose that NH0(v7)\{v1, v9} ⊆ V (DH0), we can easily get that H contains a subgraph

S1,7,9(v7, x
7
2,7, v7,8v8 . . . v1,10, v6,7v6 . . . v3v1v2x

2
2,7),

S1,7,9(v7, x
7
7,10, v7,8v8v8,9v9v9,10v10x

10
7,10, v6,7v6 . . . v1,10),

S1,7,9(v7, v6,7, v7,8v8 . . . v1,10, P
5,7
H v5v4v3,4 . . . v1),
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a contradiction. Hence NH0(v7) ⊆ V (Cc(H0)), by symmetry, NH0(v10) ⊆ V (Cc(H0)). Fi-

nally, suppose that NH0(v2)\{v1, v3} ⊆ V (DH0). Then H contains a subgraph S1,7,9 ⊆
S(v4, v5, v3,4v3v1v2P

2,5
H x5

2,5, v6v6,7 . . . v10), a contradiction. Hence NH0(v2) ⊆ V (Cc(H0)), by

symmetry, NH0(v5) ⊆ V (Cc(H0)). Therefore, |V (H0)|= 10, a contradiction.

Subcase 3.2. vq = v6.

Firstly, suppose that NH0(v8)\{v7, v9} ⊆ V (DH0). Then H contains a subgraph

S1,7,9(v1, v2, v3v3,4 . . . v7, v1,10v10 . . . v8P
8,10
H x10

8,10),

S1,7,9(v1, v2, v3v3,4v4v4,5v5v7v7,8, v1,10v10v9,10v9v8,9v8P
6,8
H x6

6,8),

S1,7,9(v8, x
8
4,8, v7,8v7 . . . v4x

4
4,8, v8,9v9 . . . v3,4)

or

S1,7,9(v8, x
8
2,8, v7,8v7 . . . v3,4, v8,9v9 . . . v1v3v2x

2
2,8),

a contradiction. Hence NH0(v8) ⊆ V (Cc(H0)), by symmetry, NH0(v10) ⊆ V (Cc(H0)). Then,

suppose that NH0(v9)\ {v10, v8} ⊆ V (DH0), we have that H contains a subgraph

S1,5,11(v8, v7, v8,9v9P
r,9
H , xr

r,9, v6v5,6 . . . v10) for any possibility r ∈ {2, 4, 5, 7}.

a contradiction. Hence NH0(v9) ⊆ V (Cc(H0)). Finally, suppose that NH0(v2)\{v1, v3} ⊆
V (DH0), we can get that H contains a subgraph

S1,7,9 ⊆ S(v3, v3,4, v2P
2,4
H v4v4,5v5v6, v1v1,10 . . . v7),

or

S1,7,9(v2, x
2
2,6, v3v3,4 . . . v6x

6
2,6, v1v1,10 . . . v7),

a contradiction. Hence NH0(v2) ⊆ V (Cc(H0)), by symmetry, NH0(v6) ⊆ V (Cc(H0)). There-

fore, NH0(v4) ⊆ V (Cc(H0)) and |V (H0)|= 10, a contradiction.

Subcase 3.3. vq = v7.

Suppose that NH0(v9)\{v8, v10} ⊆ V (DH0). Then H contains a subgraph

S1,7,9(v9, x
9
2,9, v9,10v10 . . . v1v3v2x

2
2,9, v8,9v8 . . . v3,4),

S1,7,9(v9, x
9
4,9, v8,9v8 . . . v4,5, v9,10v10v1,10 . . . v4x

4
4,9),

S1,7,9(v9, x
9
5,9, v8,9v8 . . . v5x

5
5,9, v9,10v10 . . . v4,5),

S1,7,9(v1, v2, v3v3,4 . . . v6, v1,10v10v9,10v9P
7,9
H v7v8),

a contradiction. Hence NH0(v9) ⊆ V (Cc(H0)), by symmetry, NH0(v10) ⊆ V (Cc(H0)),

NH0(v5) ⊆ V (Cc(H0)) andNH0(v4) ⊆ V (Cc(H0)). Next, we suppose thatNH0(v2)\{v1, v3} ⊆
V (DH0). Then H contains a subgraph S1,7,9(v2, x

2
2,7, v3v3,4 . . . v6, v1v1,10 . . . v7x

7
2,7), a con-

tradiction. Hence NH0(v2) ⊆ V (Cc(H0)), by symmetry, NH0(v7) ⊆ V (Cc(H0)). Therefore,

|V (H0)|= 10, a contradiction. This proves Claim 3.9.

Claim 3.10. Suppose that mH0 = 4 and |V (H0)|= c(H0). Then c(H0) ̸= 10.
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Proof. Assume, to the contrary, that |V (H0)|= c(H0) = 10.

Case 1. G ∈ B2,12.

Firstly, suppose that vq = v5. Since κ′(H0) ≥ 3, NH0(v7)\{v6, v8} ⊆ {v2, v10}. Then H

contains a subgraph

S1,3,13(v7, v2,7, v7,8v8v5,8, v6,7v6 . . . v8,9)

or

S1,3,13(v7, v7,10, v7,8v8v5,8(v2,8), v6,7v6 . . . v8,9),

a contradiction. Therefore dH0(v7) = 2, a contradiction.

Then, suppose that vq = v6. Since κ′(H0) ≥ 3, NH0(v9)\{v8, v10} ⊆ {v2, v4, v6}.
We can get that H contains a subgraph S1,3,13(v9, v2,9, v9,10v10v6,10(v4,10), v8,9v8 . . . v1,10),

S1,3,13(v9, v6,9, v9,10v10v4,10, v8,9v8 . . . v1,10) or S1,3,13(v9, v4,9, v9,10v10vr,10, v8,9v8 . . . v1,10) for

any possibility r ∈ {2, 4, 6}, a contradiction. Therefore dH0(v9) = 2, a contradiction.

Finally, suppose that vq = v7. Since κ
′(H0) ≥ 3, NH0(v7)\{v8, v6} ⊆ {v2, v4, v10}. Then

H contains a subgraph

S1,3,13(v6, v5,6, v7v2,7v2, v8v8,9 . . . v1v3v3,4v4v4,5v5v5,9(v5,10)),

S1,3,13(v4, v4,7, v4,5v5x1, v3,4v3 . . . v5,6) with x1 ∈ {v2,5, v2,9, v2,10},
S1,3,13(v10, v7,10, v9,10v9x2, v1,10v1 . . . v8,9) with x2 ∈ {v2,9, v4,9, v5,9},

a contradiction. Therefore dH0(v7) = 2, a contradiction. This proves Case 1.

Case 2. G ∈ B4,10.

Firstly, suppose that vq = v5. Since κ′(H0) ≥ 3, NH0(v7)\{v6, v8} ⊆ {v2, v10}.Then H

contains a subgraph

S1,5,11(v7, v2,7, v7,8v8 . . . v9v5,9, v6,7v6 . . . v9,10)

or

S1,5,11(v7, v7,10, v7,8v8 . . . v9v5,9(v2,9), v6,7v6 . . . v9,10),

a contradiction. Therefore dH0(v7) = 2, a contradiction.

Then, suppose that vq = v6. Since κ′(H0) ≥ 3, NH0(v10)\{v9, v1} ⊆ {v4, v6}. We

can get that H contains a subgraph S1,5,11(v10, v4,10, v9,10v9v8,9v8v2,8(v4,8), v1,10v1 . . . v7,8) or

S1,5,11(v10, v6,10, v9,10v9 v8,9v8v2,8(v4,8), v1,10v1 . . . v7,8), a contradiction. Therefore dH0(v10) =

2, a contradiction.

Finally, suppose that vq = v7. Since κ
′(H0) ≥ 3, NH0(v9)\{v8, v10} ⊆ {v2, v4, v5}. Then

H contains a subgraph

S1,5,11(v9, v2,9, v8,9v8v6v7v4,7(v7,10), v9,10v10 . . . v5,6),

S1,5,11(v9, v4,9, v8,9v8v6v7u, v9,10v10 . . . v5,6) for any possibility u ∈ {v7,10, v2,7, v4,7}

or

S1,5,11(v9, v5,9, v8,9v8v6v7u, v9,10v10 . . . v5,6) for any possibility u ∈ {v7,10, v2,7, v4,7},
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a contradiction. Therefore dH0(v9) = 2, a contradiction. This proves Case 2.

Case 3. G ∈ B6,8.

Firstly, suppose that vq = v5. Since κ′(H0) ≥ 3, NH0(v7)\{v6, v8} ⊆ {v2, v10}. Then H

contains a subgraph

S1,7,9(v7, v2,7, v7,8v8 . . . v10v5,10(v7,10), v6,7v6 . . . v1,10)

or

S1,7,9(v7, v7,8, v7,10v10v9,10v9v8,9v8 v5,8(v2,8), v6,7v6 . . . v1,10),

a contradiction. Therefore dH0(v7) = 2, a contradiction.

Then, suppose that vq = v6. Since κ′(H0) ≥ 3, NH0(v10)\{v9, v1} ⊆ {v4, v6}. We

can get that H contains a subgraph S1,7,9(v6, v6,10, v5v4,5 . . . v2v2,8(v2,9), v6,7v7 . . . v1) or

S1,7,9(v10, v4,10, v1,10v1 . . . v4,5, v9,10v9 . . . v7v5v6u) for any possibility u ∈ {v2,6, v6,9, v6,10},
a contradiction. Therefore dH0(v10) = 2, a contradiction.

Finally, suppose that vq = v7. Since κ′(H0) ≥ 3, NH0(v9)\{v8, v10} ⊆ {v2, v4, v5}. If

v4v9 ∈ E(H0) or v5v9 ∈ E(H0), then H contains a subgraphs

S1,7,9(v9, v4,9(v5,9), v9,10v10v1,10v1v3v2u, v8,9v8 . . . v3,4)

for any possibility u ∈ {v2,5, v2,9, v2,7}, a contradiction. Therefore v4v9 /∈ E(H0) and

v5v9 /∈ E(H0). By symmetry, v4v10 /∈ E(H0) and v5v10 /∈ E(H0). Therefore v2v9 ∈ E(H0)

and v7v10 ∈ E(H0), we can get that dH0(v4) = 2, a contradiction. This proves Claim 3.10.

By Claims 3.1 and 3.4-3.10, we have that |V (H0)|= c(H0) ≥ 11 and mH0 = 4. By

(2), |V (C)|= 2c(H0) − 2 ≥ 18. Since κ′(H0) ≥ 3, vr ∈ NH0(v2)\{v1, v3}. We can get

that H contains subgraphs S1,3,13 ⊆ S(v2, v2,r, v1v1,c(H0)vc(H0), v3v3,4 . . . vc(H0)−1), S1,5,11 ⊆
S(v2, v2,r, v1v1,c(H0)vc(H0) . . . vc(H0)−1, v3v3,4v4v4,5 . . . vc(H0)−2) and

S1,7,9 ⊆ S(v2, v2,r, v1v1,c(H0) . . . vc(H0)−2, v3v3,4 . . . vc(H0)−3),

a contradiction. This completes the proof of Theorem 1.6.

4. Concluding remark

Remark 4.1. We construct a family of 3-connected non-Hamilton-connected graph in

Figure 5 with integer m1 ≥ 3, and there is no Hamiltonian (a, b)-path in Figure 5. Then

we can easily �nd that these graphs are {K1,3,Γ0}-free and B2i+1,2j-free, these graphs are

also B2i,2j+1-free with positive integers i+j = 7. Thus this example shows that our results

of Theorem 1.6 are sharp.
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Km1

a

b

Fig. 5. A family of 3-connected non-Hamilton-connected graph

Remark 4.2. We can now update the discussion of potential triples K1,3, Γ0 and X of

connected graphs that might imply Hamilton-connectedness of a 3-connected {K1,3,Γ0, X}-
free graph, summarized in [21] and [22]. In this paper, we focus on inducing the hourglass

on the result of forbidden subgraph pairs, there are the following possibilities for X (see

Figure 1 for the graphs Zi, Bi,j and Ni,j,k). We summarize the current status of the

problem in the following table, where integer i, j, k ≥ 1, and we can get that

The graph X Possible Best Known Reference Open

Pi i ≤ 16 P16 [19], [12] −

Z2i i ≤ 7 Z14 [22] −

B2i,2j i+ j ≤ 7 i+ j ≤ 7 This paper −

N2i,2j,2k i+ j + k ≤ 7 i+ j + k ≤ 7 [21] −

The proof of results in [19] depends on the pairs of forbidden subgraphs, while this

method of the present paper does not depend on the results of a pair of forbidden sub-

graphs and we may prove the results directly.
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