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abstract

The n-dimensional Möbius cubeMQn is an important variant of the hypercube Qn, which

possesses some properties superior to the hypercube. This paper investigates the fault-

tolerant edge-pancyclicity of MQn, and shows that if MQn(n ≥ 5) contains at most n−2

faulty vertices and/or edges then, for any fault-free edge uv in MQi
n(i = 0, 1) and any

integer ℓ with 7 − i ⩽ ℓ ⩽ 2n − fv, there is a fault-free cycle of length ℓ containing the

edge uv, where fv is the number of faulty vertices. The result is optimal in some senses.
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1. Introduction

It is well known that interconnection networks are of interest in parallel and distributed

computing systems because they determine the performance of the systems on a large

scale. As topological structures, interconnection networks can be represented by a graph

G = (V,E), where V is the vertex-set of G and E is the edge-set of G. |V (G)| and
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|E(G)| denote the numbers of vertices and edges of G, respectively. A path denoted by

(v1, v2, . . . , vk) is a sequence of vertices where two consecutive vertices are adjacent in

G. A cycle is a path (v1, v2, . . . , vk) where v1 = vk. A graph G is pancyclic if, for every

girth ⩽ ℓ ⩽ |V (G)|, G has a cycle of length ℓ. A graph G is edge-pancyclic if, for any edge

e of G and every girth ⩽ ℓ ⩽ |V (G)|, G has a cycle of length ℓ containing e. A graph G is

vertex-pancyclic if, for any vertex u of G and every girth ⩽ ℓ ⩽ |V (G)|, G has a cycle of

length ℓ containing u. Obviously, if a graph is edge-pancyclic, it is also vertex-pancyclic.

Edge-pancyclic and vertex-pancyclic on various interconnection networks were studied,

including hypercubes, crossed cubes, twisted cubes, locally twisted cubes, augmented

cubes, star graphs, and others.

Edge and/or vertex failures are inevitable when a large parallel and distributed com-

puter system is running. Thus, the fault-tolerant capacity of network is an important is-

sue for parallel and distributed computing. A graph G is k-fault-tolerant pancyclic(resp.,

vertex-pancyclic, edge-pancyclic) if G − F is still pancyclic(resp., vertex-pancyclic, edge-

pancyclic) for any F ⊂ E(G) ∪ V (G) with |F |⩽ k. Pancyclicity and fault-tolerant pan-

cyclicity have been widely studied for many well-known networks, see Xu and Ma [14] for

a detail survey on these topics.

The Möbius cube has many properties superior to the hypercube. Though both the

Möbius cubes and the ordinary hypercube have the same number of vertices and the same

vertex degree, the diameter of the Möbius cube is approximately half that of the ordi-

nary hypercube. Due to nearly half the diameter and better graph embedding capability

as compared with its hypercube counterpart of the same size, the Möbius cubes have

been proposed as promising candidates for interconnection topology, and have received

considerable attention [1, 2, 3, 6, 7, 8, 11, 13, 5, 4].

With regard to the fault-tolerant Hamiltonicity of Möbius cubes, Huang et al. [7]

showed that an n-dimensional Möbius cube is Hamiltonian in the presence of up to n− 2

node and edge faults. As concerns the pancyclicity and fault-tolerant pancyclicity of

Möbius cubes, Fan [3] proved that Möbius cubes are four-pancyclic. Hsieh and Chen [6]

found that an n-dimensional Möbius cube with up to n− 2 edge faults is four-pancyclic.

This paper investigates the fault-tolerant edge-pancyclicity of MQn, and shows that if

MQn(n ≥ 5) contains at most n− 2 faulty vertices and/or edges then, for any fault-free

edge uv in MQi
n(i = 0, 1) and any integer ℓ with 7− i ⩽ ℓ ⩽ 2n − fv, there is a fault-free

cycle of length ℓ containing the edge uv, where fv is the number of faulty vertices.

The remainder of this paper is organized as follows. In Section 2, we recall the de�nition

of MQn, and introduce some properties of MQn to be used in our proofs. In Section 3,

we give the proof of our result. Finally, we give some concluding remarks in Section 4.

2. De�nitions and Properties

The n-dimensional Möbius cube, denoted by MQn, is such an undirected graph, its vertex

set is the same as the vertex set of Qn, the vertex X = x1x2 · · ·xn connects to n other



(n− 2)-Fault-Tolerant Edge-Pancyclicity 31

vertices Yi, (1 ≤ i ≤ n), where each Yi satis�es one of the following equations:

Yi =

{
x1x2 · · ·xi−1x̄ixi+1 · · ·xn when xi−1 = 0,

x1x2 · · ·xi−1x̄ix̄i+1 · · · x̄n when xi−1 = 1.

From the above de�nition, X connects to Yi by complementing the bit xi if xi−1 = 0

or by complementing all bits of xi, · · · , xn if xi−1 = 1. The connection between X and Y1

is unde�ned, so we can assume that x0 is either equal to 0 or equal to 1, which gives us

slightly di�erent network topologies. If we assume x0 = 0, we call the network a ½®0-

Möbius cube½¯; and if we assume x0 = 1, we call the network a ½®1-Möbius cube½¯,

denoted by MQ0
n and MQ1

n, respectively. The graphs shown in Fig.1 are MQ0
4 and MQ1

4,

respectivily.

According to the above de�nition, it is not di�cult to see that MQ0
n (respectively,

MQ1
n) can be recursively constructed from MQ0

n−1 and MQ1
n−1 by adding 2n−1 edges.

MQ0
n is constructed by connecting all pairs of vertices that di�er only in the 1-th bit,

and MQ1
n is constructed by connecting all pairs of vertices that di�er in the 1-th through

the n-th bits. The superscript i of notation MQi
n, i = 0, 1, can be omitted if there is no

ambiguity arise.

For convenience, we say that MQ0
n−1 and MQ1

n−1 are two sub-Möbius cubes of MQn,

where MQ0
n−1 (respectively, MQ1

n−1) is an (n − 1)-dimensional 0-Möbius cube (respec-

tively, 1-Möbius cube) which includes all vertices 0x2 · · ·xn (respectively, 1x2 · · ·xn),

xi ∈ {0, 1}. More simply, let L = MQ0
n−1 and R = MQ1

n−1. In addition, we de�ne the set

of crossing edges of MQn to be EC = {xy ∈ E(MQn)|x ∈ V (MQ0
n−1)∧ y ∈ V (MQ1

n−1)}.
For any edge xy ∈ EC , vertices x and y are crossing vertices of each other. Indeed, there

are 2n−1 crossing edges and 2n−1 pairs of crossing vertices in MQn.

The Möbius cube MQn was �rst proposed by Cull and Larson [1]. Like Qn, MQn is

an n-regular n-connected graph with 2n vertices and n2n−1 edges. Moreover, MQn has

a diameter of ⌈ (n+2)
2

⌉ for MQ0
n−1 and ⌈ (n+1)

2
⌉ for MQ1

n−1. However, for n ≥ 4, MQn is

neither vertex-transitive nor edge-transitive.

Cull and Larson[1] �rst proved the existence of hamiltonian cycles in MQn by proving

that in MQ0
n or MQ1

n, there are 2n−k disjoint cycles of length 2k for any k ≥ 2.
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Fig. 1. (a) MQ0
4, (b) MQ1

4

We need the following two de�nitions.

De�nition 2.1. For any edge e = (x1x2 · · ·xn, y1y2 · · · yn) ∈ E(MQn), let λ(e) be the

smallest positive integer i ∈ {1, 2, . . . , n} such that xi ̸= yi, then e is called a λ-dimensional

edge.
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According to De�nition 2.1, if we use uL to denote a vertex in L, then uR always

denotes its unique neighbor in R, that is, uLuR is an 1-dimensional edge. Let e = uv

be a i1-dimensional edge, then denote v = ui1 . Let ui1,...,ij−1,ij = (ui1,...,ij−1)
ij for j ≥ 2.

Let P t−1(u0) = (u0, u1, . . . uj . . . ut−1) be a path of length ℓ = t − 1, then uj = u
ij
j−1 for

1 ≤ j ≤ t − 1. We use (i1, i2, . . . , it−1) to denote P t−1(u0) for short. If u0ut−1 ∈ E, then

we use (i1, i2, . . . , it−1) to denote cycle Ct(u0) of length ℓ = t containing edge u0ut−1 for

short.

For example, for C7(000001) = (000001, 001001, 011001, 010110, 110110, 101001, 100001)

in MQ0
n, we use (3, 2, 3, 1, 2, 3) to denote the cycle C7(000001).

De�nition 2.2. If |F |= n− 2 and there exists a vertex w with NMQn−F (w) = {w1, w2},
then w is called a weak 2-degree vertex and {w1, w2} is called a w-weak vertex pair(or a

weak vertex pair, for short).

Since there is no triangle in MQn, we can obtain the Proposition 2.3 as follows.

Proposition 2.3. If xy ∈ E(MQn), then (x, y) is not a weak vertex-pair in MQn − F

with |F |≤ n− 2.

Lemma 2.4. ( Xu et al. [9]) If for any vertex uL ∈ L(uR ∈ R), vL(vR) is a neighbor of

uL(uR) in L(R) then, the distance between uR(uL) and vR(vL) is 1 or 2.

Lemma 2.5. ( Xu et al. [11]) MQn is edge-pancyclic for n ≥ 2.

Lemma 2.6. ( Xu et al. [10]) For any two di�erent vertices x and y with distance d in

MQn(n ≥ 3), there exists an xy-path of every length ℓ from d to 2n − 1 except for d+ 1.

Let F be a set of faulty elements in MQn. We need the following lemmas:

Lemma 2.7. If any edge uLuR ∈ EC in MQ0
n−F for |F |≤ n−2, there exists a fault-free

4-cycle or 5-cycle containing the edge uLuR.

Proof. Let uL = 0x2 . . . xn, we show the lemma according to the following two cases.

Case 1. x2 = 0.

We can �nd (n − 2) disjoint 4-cycles and a 5-cycle except the common edge uLuR as

follows. {
(i+ 2, 1, i+ 2), 1 ≤ i ≤ n− 2,

(2, 1, 3, 2), i = n− 1.

Since |F |≤ n− 2, there exists a fault-free 4-cycle or 5-cycle containing the edge uLuR.

The lemma holds.

Case 2. x2 = 1.

There exist at most n − 2 disjoint 4-cycles as C4
i (uL) = (i, 1, i) = (uL, u

i
L, u

i,1
L , uR) for

3 ≤ i ≤ n except the common edge uLuR.

If one of 4-cycle C4
i (uL)(3 ≤ i ≤ n) is fault-free, the lemma holds.
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If each 4-cycles C4
i (uL)(3 ≤ i ≤ n) contains a faulty vertices. Consider 4-cycles

(3, 1, 3) = (uL, u
3
L, u

3,1
L , uR).

(1) If u3,1
L ∈ F , then u3

L /∈ F . We can �nd a fault free 5-cycle (3, 2, 1, 2) = (uL, u
3
L, u

3,2
L , u3,2,1

L ,

uR) containing the edge uLuR.

(2) If u3
L ∈ F , then u3,1

L /∈ F . We can �nd a fault-free 5-cycle (2, 1, 2, 3) = (uL, u
2
L, u

2,1
L , u3,1

L ,

uR) containing the edge uLuR.

The proof is completed.

Lemma 2.8. If any edge uLuR ∈ EC in MQ1
n−F for |F |≤ n−2, there exists a fault-free

5-cycle containing the edge uLuR.

Proof. Let uL = x1x2 . . . xixi+1 . . . xn. There exist (n− 2) disjoint 5-cycles and a 4-cycle

except the common edge uLuR as follows.
(i+ 1, i+ 2, 1, i+ 1), 1 ≤ i ≤ n− 2 ∧ xi+1 = 0,

(i+ 1, 1, i+ 2, i+ 1), 1 ≤ i ≤ n− 2 ∧ xi+1 = 1,

(n, 1, n), i = n− 1.

Since |F |≤ n− 2, there exists a fault-free 4-cycle or 5-cycle containing the edge uLuR.

By Lemma 2.7 and 2.8, we can obtain the following result.

Corollary 2.9. If any edge uLuR ∈ EC in MQn − F for |F |≤ n − 2, there exists a

fault-free 4-cycle or 5-cycle containing the edge uLuR.

Lemma 2.10. (Xu et al. [9]) If |F |≤ n − 3 and n ≥ 3 then, for any fault-free edge e

in MQn and any integer ℓ with 6 ≤ ℓ ≤ 2n − fv, there is a fault-free cycle of length ℓ

containing the edge e in MQn.

Lemma 2.11. (Xu et al. [12]) If F ⊂ V (MQn)∪E(MQn) and |F |≤ n− 2, then for any

two distinct fault-free vertices u and v, there exists a fault-free path Puv of every length ℓ

with 2n−1−1 ≤ ℓ ≤ 2n−fv−1−α, where α = 0 if vertices u and v is not a weak vertex-pair

in MQn − F and α = 1 if vertices u and v form a weak vertex-pair in MQn − F (n ≥ 5).

Lemma 2.12. If F ⊂ V (MQ1
n) with |F |≤ n − 2(n ≥ 6), then for any edge uLvL ∈ L,

there exists a fault-free 6-cycle containing the edge uLvL in MQ1
n − F .

Proof. By Lemma 2.10, the lemma holds for |F |≤ n− 3. We only need to consider the

case of |F |= n− 2.

Let uL = x1x2 . . . xj . . . xn. We can assume that |FR|≤ |FL|. Otherwise, if |FL|≤ |FR|,
then |FL|≤ ⌊n−2

2
⌋ ≤ n − 4(n ≥ 6). By Lemma 2.10, there exists a fault-free 6-cycle

containing the edge uLvL in L− FL, and so in MQ1
n − F .
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If |FL|≤ n − 4, by Lemma 2.10, there exists a fault-free 6-cycle containing the edge

uLvL.

If |FL|≥ n − 3, then |FR|≤ 1. We can prove the result according to the relationship

between the vL and uL as follows.

Case 1. vL = uj
L(j = 2).

There exist n − 1 disjoint 6-cycles as C6
i (uL)(1 ≤ i ≤ n − 1) except the common edge

uLvL as follows.

C6
i (uL) =



(1, 3, 1, 2, 3), i = 1,

(i+ 1, 2, 1, 3, 1), i = 2,

(i+ 1, 5, 2, 5, 4), i = 3,

(i+ 1, n, 2, n, i+ 1), 4 ≤ i ≤ n− 2 ∧ x4 = 0,

(i+ 1, 4, 2, 4, i+ 1), 4 ≤ i ≤ n− 2 ∧ x4 = 1,

(i+ 1, 4, 2, 4, n), i = n− 1.

Since |F |≤ n− 2, there exists a fault-free 6-cycle containing the edge uLvL.

Case 2. vL = uj
L(3 ≤ j ≤ n).

Case 2.1. uR, vR /∈ F .

For 3 ≤ j ≤ n − 2, there exist two disjoint uRvR-paths as P 3
i (uR) of length ℓ = 3 in

R− FR as follows.

P 3
i (uR) =


(i+ j − 2, j, j − 1), i = 1,

(i+ j − 2, j + 1, j + 2), i = 2 ∧ xj−1 = xj+1,

(i+ j − 2, j + 2, j + 1), i = 2 ∧ xj−1 ̸= xj+1.

For j ≥ n− 1, there exist two disjoint uRvR-paths as P
3
i (uR) of length ℓ = 3 in R−FR

as follows.

P 3
i (uR) =

{
(2, j, 2), i = 1,

(j − 1, j, j − 1), i = 2.

Since |FR|≤ 1, there exists a fault-free uRvR-path P 3(uR) of length ℓ = 3 in R − FR.

Then C = uLuR + P 3(uR) + vRvL + uLvL is a fault-free 6-cycle containing the edge uLvL.

Case 2.2. |{uR, vR} ∩ F |= 1. Without loss of generality, assume that uR ∈ F . Let

F
′
= F − {uR}, then |F ′|= n− 3.

For j = 3, there exist n− 2 6-cycles as C6
i (uL)(1 ≤ i ≤ n− 2) containing the common

edge uLvL in MQ1
n − F

′
as follows.

C6
i (uL) =



(i+ 1, 1, 3, 1, 2), i = 1,

(i+ 2, 3, 1, 4, 1), i = 2,

(i+ 2, n, 3, n, i+ 2), 3 ≤ i ≤ n− 3 ∧ x2 = 0,

(i+ 2, 3, 1, i+ 2, 1), 3 ≤ i ≤ n− 3 ∧ x2 ̸= 0,

(i+ 2, 3, 1, n, 1), i = n− 2.

For 4 ≤ j ≤ n− 2, there exist n− 2 6-cycles as C6
i (uL)(1 ≤ i ≤ n− 2) containing the
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common edge uLvL in MQ1
n − F

′
as follows:

C6
i (uL) =



(i+ 1, j, j + 1, 2, j + 1), i = 1,

(i+ 1, n, j, n, i+ 1), 2 ≤ i ≤ j − 3 ∧ xi = 0,

(i+ 1, j − 1, j, j − 1, i+ 1), 2 ≤ i ≤ j − 3 ∧ xi ̸= 0,

(i+ 1, j + 1, j + 2, j, j − 1), i = j − 2 ∧ xj−2 = xj ∧ xj−2 = xj+1,

(i+ 1, j + 2, j + 1, j, j − 1), i = j − 2 ∧ xj−2 = xj ∧ xj−2 ̸= xj+1,

(i+ 1, j, j + 2, j + 1, j − 1),

i = j − 2 ∧ xj−2 ̸= xj ∧ ((xj−1 = xj+1 ∧ xj−2 = 0) ∨ (xj−1 ̸= xj+1 ∧ xj−2 = 1)),

(i+ 1, j, j + 1, j + 2, j − 1),

i = j − 2 ∧ xj−2 ̸= xj ∧ ((xj−1 ̸= xj+1 ∨ xj−2 ̸= 0) ∧ (xj−1 = xj+1 ∨ xj−2 ̸= 1)),

(i+ 2, j, 1, j + 1, 1), i = j − 1,

(i+ 2, 2, j, 2, i+ 2), j ≤ i ≤ n− 2 ∧ xj−1 = 0,

(i+ 2, j, 1, i+ 2, 1), j ≤ i ≤ n− 2 ∧ xj−1 ̸= 0.

For j = n − 1, there exist n − 2 6-cycles as C6
i (uL)(1 ≤ i ≤ n − 2) containing the

common edge uLvL in MQ1
n − F

′
as follows.

C6
i (uL) =



(i+ 1, n, j, n, i+ 1), i ≤ n− 4 ∧ xi = 0,

(i+ 1, j − 1, j, j − 1, i+ 1), i ≤ n− 4 ∧ xi ̸= 0,

(i+ 1, n, 1, n− 2, 1), i = n− 3 ∧ xn−2 = 0,

(i+ 1, 1, n− 1, 1, n− 2), i = n− 3 ∧ xn−2 ̸= 0,

(i+ 2, n− 1, 1, n, 1), i = n− 2.

For j = n, there exist n − 2 6-cycles as C6
i (uL) = (i + 1, i, n, i, i + 1)(1 ≤ i ≤ n − 2)

containing the common edge uLvL in MQ1
n − F

′
.

Note that n − 2 6-cycles are disjoint in L and contain no uR in MQ1
n − F

′
. Since

|F ′|= n − 3, we have that there exists a fault-free 6-cycles in MQ1
n − F

′
, and so in

MQ1
n − F .

Take edge uLvL = (001011, 001100) inMQ1
6 for an example. We have uR = 110100,vR =

110011. Assume 110100 ∈ F , then 110011 /∈ F . There exist four disjoint 6-cycles in L

except a common edge uLvL = (001011, 001100) as follows(see Figure 2).
(001011, 011011, 011100, 011111, 001111, 001100),

(001011, 000011, 000010, 000000, 000100, 001100),

(001011, 001001, 001110, 110001, 110011, 001100),

(001011, 001010, 001101, 110010, 110011, 001100).

Lemma 2.13. If F ⊂ R with |F |= n − 2(n ≥ 6), then for any edge uRvR ∈ R, there

exists a fault-free 6-cycle containing the edge uRvR in MQ1
n − F .

Proof. Let uL, vL be the adjacent vertices of uR, vR respectively in L and uR = x1x2 . . . xi . . . xn.
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001100 001110 000110 000100 110011110001111001111011

001101 001111 000111 000101 110010110000111000111010

001001 001011 000011 000001 110110110100111100111110

001000 001010 000010 000000 110111110101111101111111

011000 011010 010010 010000 100111100101101101101111

011001 011011 010011 010001 100110100100101100101110

011101 011111 010111 010101 100010100000101000101010

011100 011110 010110 010100 100011100001101001101011

Fig. 2. Four disjoint 6-cycles in L except the common edge (001011, 001100)

Since F ⊂ R, FL = 0. There exists a fault-free uLvL-path P of length ℓ = 3 in L as follows.

P =


(2, 4, 3), vR = u2

R ∧ x3 = 0,

(2, 3, 4), vR = u2
R ∧ x3 ̸= 0,

(j − 1, j, j − 1), vR = uj
R(3 ≤ j ≤ n− 1),

(2, n, 2), vR = un
R.

Then C = vRvL + P + uLuR + uRvR is a fault-free 6-cycle containing the edge uRvR in

MQ1
n − F .

Lemma 2.14. For any edge uLuR ∈ EC in MQi
n − F (i = 0, 1)(n ≥ 6) with |F |≤

n − 2, there exists a fault-free cycle of length ℓ = 7 − i, 7, 8 containing the edge uLuR in

MQi
n − F (i = 0, 1).

Proof. Let uL = x1x2x3 . . . xi . . . xn. We prove the lemma according to edge uLuR in

MQ0
n or MQ1

n as follows.

Case 1. uLuR ∈ E(MQ0
n).

Case 1.1. ℓ = 7.

For 1 ≤ i ≤ n − 1, we can �nd n − 1 disjoint 7-cycles as C7
i (uL) except the common
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edge uLuR as follows.

C7
1(uL) =



(2, 3, n− 1, 1, n− 1, 2), x3 = 0 ∧ x2 = 0,

(2, 3, 2, 1, 4, 3), x3 = 0 ∧ x2 ̸= 0,

(2, 1, 2, 5, 4, 3), x3 ̸= 0 ∧ x2 = 0 ∧ x4 = 0,

(2, 1, 5, 2, 4, 3), x3 ̸= 0 ∧ x2 = 0 ∧ x4 ̸= 0,

(2, n, 1, n, 2, 3), x3 ̸= 0 ∧ x2 ̸= 0,

C7
2(uL) =



(3, 2, 3, 1, 2, 3), x3 = 0 ∧ x2 = 0,

(3, 2, 3, 1, 3, 2), x3 = 0 ∧ x2 ̸= 0,

(3, 4, 2, 1, 5, 2), x3 ̸= 0 ∧ x2 = 0 ∧ x4 = 0,

(3, 5, 2, 1, 4, 2), x3 ̸= 0 ∧ x2 = 0 ∧ x4 ̸= 0,

(3, 4, 2, 1, 4, 2), x3 ̸= 0 ∧ x2 ̸= 0 ∧ x4 = 0,

(3, 5, 2, 1, 5, 2), x3 ̸= 0 ∧ x2 ̸= 0 ∧ x4 ̸= 0,

C7
i (uL) =

{
(i+ 1, 2, 3, 1, 2, i+ 1), 3 ≤ i ≤ n− 1 ∧ x2 = 0,

(i+ 1, 3, 2, 1, 2, i+ 1), 3 ≤ i ≤ n− 1 ∧ x2 ̸= 0.

Since |F |≤ n− 2, there exists a fault-free 7-cycle containing the edge uLuR.

Case 1.2. ℓ = 8.

For 1 ≤ i ≤ n − 1, we can �nd n − 1 disjoint 8-cycles as C8
i (uL) except the common

edge uLuR as follows.

C8
1(uL) =

{
(2, 1, n− 1, 3, n− 1, 2), x2 = 0,

(2, 3, 2, 1, 2, 3), x2 ̸= 0,

C8
i (uL) = (i+ 1, 2, n, 2, 1, n), 2 ≤ i ≤ n− 2,

C8
n−1(uL) =


(n, 2, 1, n− 1, 3, n− 1), x2 = 0,

(n, 2, 1, 3, 4, 2), x2 ̸= 0 ∧ x3 = 0,

(n, 2, 1, 4, 3, 2), x2 ̸= 0 ∧ x3 ̸= 0.

Since |F |≤ n− 2, there exists a fault-free 8-cycle containing the edge uLuR.

Take edge (010010, 110010) inMQ0
6 for an example, there exist 5 disjoint 8-cycles except

the common edge (010010, 110010) as follows(see Figure 3).

(010010, 000010, 001010, 011010, 111010, 100101, 101101, 110010),

(010010, 011101, 001101, 001100, 011100, 111100, 111101, 110010),

(010010, 010110, 000110, 000111, 010111, 110111, 110110, 110010),

(010010, 010000, 000000, 000001, 010001, 110001, 110000, 110010),

(010010, 010011, 000011, 100011, 101011, 101100, 110011, 110010).

Case 2. uLuR ∈ E(MQ1
n).

Case 2.1. ℓ = 6.
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001100 001110 000110 000100 101100101110100110100100

001101 001111 000111 000101 101101101111100111100101

001001 001011 000011 000001 101001101011100011100001

001000 001010 000010 000000 101000101010100010100000

011000 011010 010010 010000 111000111010110010110000

011001 011011 010011 010001 111001111011110011110001

011101 011111 010111 010101 111101111111110111110101

011100 011110 010110 010100 111100111110110110110100

Fig. 3. 5 disjoint 8-cycles except the common edge (010010, 110010) in MQ0
6

For 1 ≤ i ≤ n − 1, we can �nd n − 1 disjoint 6-cycles as C6
i (uL) except the common

edge uLuR as follows.

C6
i (uL) =


(i+ 1, 1, i+ 3, i+ 2, i+ 1), 1 ≤ i ≤ n− 4 ∧ xi = xi+2 ∧ xi+1 = 0,

(i+ 1, i+ 2, i+ 3, 1, i+ 1), 1 ≤ i ≤ n− 4 ∧ xi = xi+2 ∧ xi+1 ̸= 0,

(i+ 1, i+ 3, 1, i+ 2, i+ 1), 1 ≤ i ≤ n− 4 ∧ xi ̸= xi+2 ∧ xi+1 = 0,

(i+ 1, i+ 2, 1, i+ 3, i+ 1), 1 ≤ i ≤ n− 4 ∧ xi ̸= xi+2 ∧ xi+1 ̸= 0,

C6
n−3(uL) =

{
(n− 2, n− 1, n− 2, 1, n− 1), xn−2 = 0,

(n− 2, n− 1, 1, n− 2, n), xn−2 ̸= 0,

C6
n−2(uL) =

{
(n− 1, n− 2, 1, n− 2, n), xn−2 = 0,

(n− 1, 1, n− 2, n− 1, n− 2), xn−2 ̸= 0,

C6
n−1(uL) =

{
(n, n− 2, 1, n− 1, n− 2), xn−2 = 0,

(n, n− 2, 1, n− 2, n− 1), xn−2 ̸= 0.

Since |F |≤ n− 2, there exists a fault-free 6-cycle containing the edge uLuR.

Case 2.2. ℓ = 7.

For 1 ≤ i ≤ n − 1, we can �nd n − 1 disjoint 7-cycles as C7
i (uL) except the common

edge uLuR as follows.

C7
i (uL) =

{
(i+ 1, i+ 3, i+ 2, 1, i+ 3, i+ 1), 1 ≤ i ≤ n− 4 ∧ xi+1 = 0,

(i+ 1, i+ 3, 1, i+ 2, i+ 3, i+ 1), 1 ≤ i ≤ n− 4 ∧ xi+1 ̸= 0,

C7
n−3(uL) =

{
(n− 2, 1, n, n− 2, n, n− 1), xn−2 = 0,

(n− 2, 1, n, n− 1, n− 2, n), xn−2 ̸= 0,
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C7
n−2(uL) =


(n− 1, n− 2, n− 3, 1, n− 3, n), xn−2 = 0 ∧ xn−3 = 0,

(n− 1, n, n− 3, 1, n− 3, n− 2), xn−2 = 0 ∧ xn−3 ̸= 0 ∧ xn−4 = 0,

(n− 1, n− 3, n− 2, 1, n− 3, n), xn−2 = 0 ∧ xn−3 ̸= 0 ∧ xn−4 ̸= 0,

(n− 1, 2, n− 2, 2, 1, n− 2), xn−2 ̸= 0,

C7
n−1(uL) =


(n, n− 3, 1, n− 3, n, n− 2), xn−2 = 0 ∧ xn−3 = 0,

(n, n− 2, n− 3, 1, n− 3, n), xn−2 = 0 ∧ xn−3 ̸= 0 ∧ xn−4 = 0,

(n, n− 2, n− 1, 1, n, n− 2), xn−2 = 0 ∧ xn−3 ̸= 0 ∧ xn−4 ̸= 0,

(n, 2, n− 1, 2, 1, n− 1), xn−2 ̸= 0.

Since |F |≤ n− 2, there exists a fault-free 7-cycle containing the edge uLuR.

Case 2.3. ℓ = 8.

For 1 ≤ i ≤ n − 1, we can �nd n − 1 disjoint 8-cycles as C8
i (uL) except the common

edge uLuR as follows.

C8
i (uL) =


(i+ 1, n, 1, n, i+ 3, i+ 2), 1 ≤ i ≤ n− 4 ∧ xi = xi+2 ∧ xi+1 = 0,

(i+ 1, i+ 2, i+ 3, n, 1, n), 1 ≤ i ≤ n− 4 ∧ xi = xi+2 ∧ xi+1 ̸= 0,

(i+ 1, i+ 3, n, 1, n, i+ 2), 1 ≤ i ≤ n− 4 ∧ xi ̸= xi+2 ∧ xi+1 = 0,

(i+ 1, i+ 2, n, 1, n, i+ 3), 1 ≤ i ≤ n− 4 ∧ xi ̸= xi+2 ∧ xi+1 ̸= 0,

C8
n−3(uL) =

{
(n− 2, 1, n− 1, 1, n, 1), xn−2 = 0,

(n− 2, 1, n, 1, n− 1, 1), xn−2 ̸= 0,

C8
n−2(uL) =

{
(n− 1, 2, n, 3, 1, 2), x2 = 0,

(n− 1, 2, n, 1, 3, 2), x2 ̸= 0,

C8
n−1(uL) =



(n, n− 2, 1, 2, n− 2, 2), x2 = 0 ∧ xn−2 = 0,

(n, n− 1, n− 2, n− 3, 1, n− 3), x2 = 0 ∧ xn−2 ̸= 0 ∧ xn−3 = 0,

(n, n− 1, n− 3, 1, n− 3, n− 2), x2 = 0 ∧ xn−2 ̸= 0 ∧ xn−3 ̸= 0,

(n, 2, 3, 2, 1, 3), x2 ̸= 0 ∧ x3 = 0,

(n, 2, 4, 3, 1, 2), x2 ̸= 0 ∧ x3 ̸= 0.

Since |F |≤ n− 2, there exists a fault-free 8-cycle containing the edge uLuR.

Take edge (010010, 101101) inMQ1
6 for an example, there exist 5 disjoint 8-cycles except

the common edge (010010, 101101) as follows (see Figure 4):

(010010, 000010, 001010, 001101, 001100, 110011, 110010, 101101),

(010010, 011101, 011110, 011111, 100000, 100001, 100101, 101101),

(010010, 010110, 101001, 101011, 010100, 010101, 101010, 101101),

(010010, 010000, 000000, 000001, 111110, 110001, 101110, 101101),

(010010, 010011, 000011, 001011, 011011, 100100, 101100, 101101).
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001100 001110 000110 000100 110011110001111001111011

001101 001111 000111 000101 110010110000111000111010

001001 001011 000011 000001 110110110100111100111110

001000 001010 000010 000000 110111110101111101111111

011000 011010 010010 010000 100111100101101101101111

011001 011011 010011 010001 100110100100101100101110

011101 011111 010111 010101 100010100000101000101010

011100 011110 010110 010100 100011100001101001101011

Fig. 4. 5 disjoint 8-cycles except the common edge (010010, 101101) in MQ1
6

3. Fault-Tolerant Edge-Pancyclicity of MQn

In this section, we investigate the fault-tolerant edge-Pancyclicity of MQn and show that

MQn is (n− 2)-fault-tolerant edge-Pancyclic.

Let F be a set of faulty elements in MQn, FL = F ∩ L, FR = F ∩ R, FC = F ∩ EC ,

F v = F ∩V (MQn), F
e = F ∩E(MQn) F

v
L = FL ∩V (L) and F v

R = FR ∩V (R), fv = |F v|,
fe = |F e|.

Theorem 3.1. If fv+fe ≤ n−2 and n ≥ 5 then, for any fault-free edge e in MQi
n(i = 0, 1)

and any integer ℓ with 7− i ≤ ℓ ≤ 2n−fv, there is a fault-free cycle of length ℓ containing

the edge e.

In this section, we will give the proof of Theorem 3.1. The theorem follows from Lemma

2.10 if |F |⩽ n− 3. We only need to consider |F |= n− 2. Start with the following lemma.

Lemma 3.2. If Theorem 3.1 holds for any subset F ⊂ V (MQn) with |F |= n − 2, then

Theorem 3.1 also holds for any subset F
′ ⊂ V (MQn) ∪ E(MQn) with |F ′ |= n− 2.

Proof. The lemma holds for fe = 0 by hypothesis of Lemma 3.2. Assume that the lemma

holds for any t with 0 < t ≤ n− 3 and fe = t. We prove the lemma holds for fe = t+ 1.

Let xy be an edge in F .

Case 1. x ∈ F or y ∈ F .

Without loss of generality, assume x ∈ F . Let F
′
= F − xy, then |F ′ |= n − 3. By

Lemma 2.10, this result has been proved.
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Case 2. x, y /∈ F .

Let F
′
= F + {x}−{xy}, then |F ′ |= n− 2, and F

′
contains at most t edges and fv +1

vertices. By induction hypothesis, for every integer ℓ with 7− i ≤ ℓ ≤ 2n−fv−1, there is

a fault-free ℓ-cycle containing the edge e in MQi
n − F

′
(i = 0, 1). By Proposition 2.1, for

any e = uv ∈ E(MQn−F ), (u, v) is not a weak vertex-pair in MQn−F . For ℓ = 2n−fv,

by Lemma 2.11, there is a fault-free uv-hamiltonian path in MQn − F , i.e., there is a

fault-free ℓ-cycle containing the edge e in MQn − F .

The proof of lemma is completed. Proof of Theorem 3.1. By Lemma 3.2,

we only need to prove the theorem with F ⊂ V (MQn). The proof proceeds by induction

on n ⩾ 5. The result holds for n = 5 by developing computer program using depth �rst

searching technique combining with backtracking and branch and bound algorithm.

Assume that the theorem holds for any k with 6 ≤ k < n. Then we must show the

theorem holds for n.

Let e = uv be a fault-free edge in MQn. By Proposition 2.3, (u, v) is not a weak vertex-

pair in MQn−F . Let 2n−1 ≤ ℓ ≤ 2n−fv and ℓ = ℓ′+1, where 2n−1−1 ≤ ℓ′ ≤ 2n−fv−1

then, by Lemma 2.11, there exists a fault-free uv-path P of length ℓ′ in MQn. Then

P +uv is a fault-free cycle of length ℓ containing the edge e in MQn. Thus, we only need

to consider ℓ with 7− i ≤ ℓ ≤ 2n−1 − 1 in MQi
n(i = 0, 1)(n ≥ 6).

Case 1. |FR|≤ |FL|.
Case 1.1. e ∈ E(L− FL). Let e = uLvL.

By Lemma 2.12, there exists a fault-free 6-cycle containing the edge e in MQ1
n − F .

Thus, we only need to consider the length of 7 ≤ ℓ ≤ 2n−1 − 1.

Case 1.1.1. |FL|≤ n− 3. Then |FR|≤ n− 4.

Case 1.1.1.1. 7 ≤ ℓ ≤ 2n−1 − |F v
L|.

By induction hypothesis, there is a fault-free cycle of length ℓ containing the edge e in

L, so in MQn.

Case 1.1.1.2. 2n−1 − |F v
L|+1 ≤ ℓ ≤ 2n−1 − 1.

Write ℓ = ℓ1 + 1 + ℓ2, where 2n−2 − |F v
L|+1 ≤ ℓ1 ≤ 2n−2 − 1 and ℓ2 = 2n−2 − 1. Since

2n−2−|F v
L|+1 ≥ 2n−2−|FL|+1 ≥ 2n−2−n+4 > 7 for n ≥ 6 and |FL|≤ n−3, by induction

hypothesis, there is a fault-free cycle C of length ℓ1 containing the edge uLvL in L. Note

that a cycle of length ℓ1 contains a matching M with |M |= ⌊ ℓ1
2
⌋. Consider the following

inequality. ⌊
ℓ1
2

⌋
− |FC |−|FR|−|{e}| ≥

⌊
2n−2−|F v

L|+1

2

⌋
− |FC |−|FR|−1

≥ 2n−3 − |F |−1 ≥ 2n−3 − n+ 1.

Let f(x) = 2x−3−x+1. Since f ′(x) = 2x−3 ln 2− 1 ≥ 0 for x ≥ 6, f(x) is an increasing

function, which implies that ⌊ ℓ1
2
⌋ − |FC |−|FR|≥ f(6) = 26−3 − 6 + 1 = 3. It follows that,

there is such an edge, say xLyL, inM that xLyL ̸= uLvL and |{xR, yR, xLxR, yLyR}∩F |= 0.

By Lemma 2.11, there is a fault-free xRyR-path P of length ℓ2 in R. Then C − xLyL +

yLyR +P + xRxL is a fault-free cycle of length ℓ (= ℓ1 +1+ ℓ2) containing e (see Figure 5

(a)).
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Case 1.1.2. |FL|= n− 2. In this case, |FR|= 0.

Let uR and vR be neighbors of uL and vL in R, respectively.

Let ℓ = ℓ′ + 3, where 4 ≤ ℓ′ ≤ 2n−1 − 4. By Lemma 2.4, duRvR ≤ 2. Since |FR|=
|FC |= 0, by Lemma 2.6, there is a fault-free uRvR-path P of length ℓ′ in R, and so

P + vRvL + vLuL + uLuR is a fault-free cycle of length ℓ containing the edge uLvL (see

Figure 5 (b)).
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Fig. 5. The illustrations of Case 1.1

Case 1.2. e ∈ E(R− FR). Let e = uRvR.

Case 1.2.1. |FL|≤ n− 3. Then |FR|≤ n− 4.

Case 1.2.1.1. 7− i ≤ ℓ ≤ 2n−1 − |F v
R| in MQi

n(i = 0, 1).

By induction hypothesis, there is a fault-free cycle of length ℓ containing the edge e in

R, so in MQi
n(i = 0, 1).

Case 1.2.1.2. 2n−1 − |F v
R|+1 ≤ ℓ ≤ 2n−1 − 1.

The proof is similar to Case 1.1.1.2.

Case 1.2.2. |FL|= n− 2. In this case, |FR|= 0.

Since |FR|= 0, by Lemma 2.5, there exists a fault-free cycle of length ℓ with 7 − i ≤
ℓ ≤ 2n−1 − 1 containing the edge e in R, and so in MQi

n − F (i = 0, 1).

Case 1.3. e ∈ (EC − FC). Let e = uLuR.

By Lemma 2.14, there exists a fault-free cycle of length ℓ = 7−i, 7, 8 containing the edge

uLuR in MQi
n −F (i = 0, 1). Thus, we only need to consider the length 9 ≤ ℓ ≤ 2n−1 − 1.

Case 1.3.1. |FL|≤ n− 3. Then |FR|≤ n− 4.

By Corollary 2.1., there exists a fault-free 4-cycle C (or 5-cycle) containing the edge

uLuR.

Case 1.3.1.1. C = C4 = (uL, sL, sR, uR).

For 9 ≤ ℓ ≤ 2n−1−|F v
R|−1. Let ℓ = ℓ′+2, where 7 ≤ ℓ′ ≤ 2n−1−|F v

R|−3. By induction

hypothesis, there is a fault-free cycle C ′ of length ℓ′ containing the edge uRsR in R. Then

C = C ′ − uRsR + sRsL + sLuL + uLuR is a fault-free cycle of length ℓ containing the edge

e = uLuR.

For 2n−1 − |F v
R|≤ ℓ ≤ 2n−1 − 1. Let ℓ = ℓ1 + ℓ2, where ℓ1 = 2n−2 and 2n−2 − |F v

R|≤ ℓ2 ≤
2n−2−1. Since 2n−2 > 7 and 2n−2−|F v

R|> 7 for n ≥ 6, by induction hypothesis, there exists

a fault-free cycle C1 of length ℓ1 containing the edge uLsL in L and a fault-free cycle C2 of

length ℓ2 containing the edge uRsR in R. Then C = C1−uLsL+sLsR+C2−sRuR+uRuL

is a fault-free cycle of length ℓ containing the edge e = uLuR in MQn (see Figure 6(a)).

Case 1.3.1.2. C = C5 = (uL, wL, wR, x, uR).

Since |FR|≤ n− 4. Let F 1
R = FR − {wR}, then |F 1

R|= |FR|−1 ≤ n− 3.

For 9 ≤ ℓ ≤ 2n−1 − |F v
R|−1. Let ℓ = ℓ′ + 3, where 6 ≤ ℓ′ ≤ 2n−1 − |F v

R|−4. By
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induction hypothesis, there is a fault-free cycle C ′ of length ℓ′ containing the edge uRx in

R−F 1
R. Then C = C ′ − uRx+ xwR +wRwL +wLuL + uLuR is a fault-free cycle of length

ℓ containing the edge e = uLuR.

For 2n−1 − |F v
R|≤ ℓ ≤ 2n−1 − 1. Let ℓ = ℓ1 + ℓ2 + 2, where ℓ1 = 2n−2 − 1 and

2n−2 − |F v
R|−1 ≤ ℓ2 ≤ 2n−2 − 2. Since 2n−2 − |F v

R|−1 > 7 for n ≥ 6, by induction

hypothesis, there exists a fault-free cycle C1 of length ℓ2 containing the edge xuR in

R − F 1
R and, by Lemma 2.11, there exists a fault-free uLwL-path P of length ℓ1 in L.

Then C = C1−uRx+xwR+wRwL+P +uLuR is a fault-free cycle of length ℓ containing

the edge e = uLuR in MQn (see Figure 6(b)).
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Fig. 6. The illustration of Case 1.3.1.1. and Case 1.3.1.2.

Case 1.3.1.3. C = C5 = (uL, x, wL, wR, uR).

For 9 ≤ ℓ ≤ 2n−1−|F v
R|−1. Let ℓ = ℓ′+3, where 6 ≤ ℓ′ ≤ 2n−1−|F v

R|−4. By induction

hypothesis, there is a fault-free cycle C ′ of length ℓ′ containing the edge uRwR in R. Then

C = C ′ − uRwR + wRwL + wLx + xuL + uLuR is a fault-free cycle of length ℓ containing

the edge e = uLuR.

For 2n−1−|F v
R|≤ ℓ ≤ 2n−1−1. Let ℓ = ℓ1+ℓ2+1, where ℓ1 = 2n−2 and 2n−2−|F v

R|−1 ≤
ℓ2 ≤ 2n−2 − 2. Since 2n−2 − |F v

R|−1 > 7 for n ≥ 6, by induction hypothesis, there exists a

fault-free cycle C1 of length ℓ2 containing the edge uRwR in R and, by Lemma 2.11, there

exists a fault-free uLwL-path P of length ℓ1 in L. Then C = C1−uRwR+wRwL+P+uLuR

is a fault-free cycle of length ℓ containing the edge uLuR in MQn (see Figure 7(a)).

Case 1.3.2. |FL|= n− 2. In this case, |FR|= 0.

Since |FL|= n− 2, there exists a fault-free neighbor vL of uL in L. Let vR be neighbors

of vL in R.

Let ℓ = ℓ′ + 3, where 6 ≤ ℓ′ ≤ 2n−1 − 4. By Lemma 2.4, duRvR ≤ 2. By Lemma 2.6,

there is a fault-free uRvR-path P of length ℓ′ in R. So P + uRuL + uLvL + vLvR is a

fault-free cycle of length ℓ containing the edge uLuR.

Case 2. |FL|≤ |FR|.
Case 2.1. e ∈ E(R− FR). Let e = uRvR.

Case 2.1.1. |FR|≤ n− 3. Then |FL|≤ n− 4.

For 7 − i ≤ ℓ ≤ 2n−1 − |F v
R| in MQi

n(i = 0, 1). By induction hypothesis, there is a

fault-free cycle of length ℓ containing the edge e in R, so in MQi
n(i = 0, 1).

For 2n−1 − |F v
R|+1 ≤ ℓ ≤ 2n−1 − 1. The proof is similar to Case 1.1.1.2.

Case 2.1.2. |FR|= n− 2. In this case, |FL|= 0.

By Lemma 2.13, there exists a fault-free 6-cycle containing the edge e in MQ1
n − F .

Thus, we only need to consider the length of 7 ≤ ℓ ≤ 2n−1 − 1.

Let uL and vL be neighbors of uR and vR in L, respectively.
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Let ℓ = ℓ′ + 3, where 4 ≤ ℓ′ ≤ 2n−1 − 4. By Lemma 2.4, duLvL ≤ 2. Since |FL|=
|FC |= 0, by Lemma 2.6, there is a fault-free uLvL-path P of length ℓ′ in L, and so

P + vLvR + vRuR + uRuL is a fault-free cycle of length ℓ containing the edge uRvR.

Case 2.2. e ∈ E(L− FL). Let e = uLvL.

Case 2.2.1. |FR|≤ n− 3. Then |FL|≤ n− 4.

For 7− i ≤ ℓ ≤ 2n−1 − |F v
L| in MQi

n − F (i = 0, 1). Since |FL|≤ n− 4, by Lemma 2.10,

there exists a fault-free cycle of length ℓ containing the edge e in MQi
n − F (i = 0, 1).

For 2n−1 − |F v
L|+1 ≤ ℓ ≤ 2n−1 − 1. The proof is similar to Case 1.1.1.2.

Case 2.2.2. |FR|= n− 2. In this case, |FL|= 0.

Since |FL|= 0, by Lemma 2.5, there exists a fault-free cycle of length ℓ with 7 − i ≤
ℓ ≤ 2n−1 − 1 containing the edge e in L, and so in MQi

n(i = 0, 1).

Case 2.3. e ∈ (EC − FC). Let e = uLuR.

By Lemma 2.14, there exists a fault-free cycle of length ℓ = 7−i, 7, 8 containing the edge

uLuR in MQi
n −F (i = 0, 1). Thus, we only need to consider the length 9 ≤ ℓ ≤ 2n−1 − 1.

Case 2.3.1. |FR|≤ n− 3. Then |FL|≤ n− 4.

By Corollary 2.1., there exists a fault-free 4-cycle C (or 5-cycle) containing the edge

uLuR.

Case 2.3.1.1. C = C4 = (uL, sL, sR, uR).

The proof is similar to Case 1.3.1.1.

Case 2.3.1.2. C = C5 = (uL, wL, wR, x, uR).

For 9 ≤ ℓ ≤ 2n−1 − |F v
L|−1. Let ℓ = ℓ′ + 3, where 6 ≤ ℓ′ ≤ 2n−1 − |F v

L|−4. Since

|FL|≤ n− 4, by Lemma 2.10, there is a fault-free cycle C ′ of length ℓ′ containing the edge

uLwL in L− FL. Then C = C ′ − uLwL +wLwR +wRx+ xuR + uRuL is a fault-free cycle

of length ℓ containing the edge e = uLuR.

For 2n−1−|F v
L|≤ ℓ ≤ 2n−1−1. Let ℓ = ℓ1+ℓ2+1, where 2n−2−|F v

L|−1 ≤ ℓ1 ≤ 2n−2−2 and

ℓ2 = 2n−2. Since 2n−2−|F v
L|−1 > 7 for n ≥ 6, by induction hypothesis, there exists a fault-

free cycle C1 of length ℓ1 containing the edge uLwL in L−FL and, by Lemma 2.11, there

exists a fault-free uRwR-path P of length ℓ2 in R. Then C = C1−uLwL+wLwR+P+uRuL

is a fault-free cycle of length ℓ containing the edge e = uLuR in MQn (see Figure 7(b)).
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Fig. 7. The illustration of Case 1.3.1.3. and Case 2.3.1.2.

Case 2.3.1.3. C = C5 = (uL, x, wL, wR, uR).

The proof is similar to Case 1.3.1.3.

Case 2.3.2. |FR|= n− 2. In this case, |FL|= 0.

Since |FR|= n−2, there exists a fault-free neighbor vR of uR in R. Let vL be the neighbor

of vR in L. Let ℓ = ℓ′+3, where 6 ≤ ℓ′ ≤ 2n−1−4. By Lemma 2.4, duLvL ≤ 2. By Lemma

2.6, there is a fault-free uLvL-path P of length ℓ′ in L. So P + uLuR + uRvR + vRvL is a
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fault-free cycle of length ℓ containing the edge uLuR.

The proof of the theorem is completed.

4. Conclusion and Remarks

As one of the most fundamental networks for parallel and distributed computation, cy-

cles are suitable for developing simple algorithms with low communication cost. Edge

and/or vertex failures are inevitable when a large parallel computer system is put in use.

Therefore, the fault-tolerant capacity of a network is a critical issue in parallel computing.

The fault-tolerant edge-pancyclicity of an interconnection network is a measure of its ca-

pability of implementing ring-structured parallel algorithms in a communication-e�cient

fashion in the presence of faults.

In view of the fact that the hypercube network Qn contains only even cycles, MQn is

superior to Qn in fault-tolerant pancyclicity. This shows that, when the MQn is used

to model the topological structure of a large-scale parallel processing system, our result

implies that the system has larger capability of implementing ring-structured parallel

algorithms in a communication-e�cient fashion in the hybrid presence of edge and vertex

failures than one of the hypercube network.

We make some remarks on the optimality of our result in the following sense.

(1) For ℓ = 4, inMQ0
5, taking e = (11011, 11100), there are only two cycles: (11011, 11010,

11101, 11100), (11011, 01011, 01100, 11100) of length 4 containing the edge e (we cal-

culate it by computer).

If F = {01011, 11101}, then there exists no fault-free cycle of length 4 containing

the edge e in MQ0
5 − F . In MQ1

5, taking e = (11101, 11110), there exists only one

cycle (11101, 11100, 11111, 11110) of length 4 containing the edge e. If F = {11100}
or F = {11111}, then there exists no fault-free cycle of length 4 containing the edge

e in MQ1
5 − F .

(2) For ℓ = 5, in MQ5, taking e = (11110, 11111), the cycles of length 5 containing the

edge e are as Table 1 and Table 2(we calculate it by computer):

(11110 11101 11010 11000 11111) (11110 11101 10010 10000 11111)

(11110 11001 11011 11100 11111) (11110 10001 10011 11100 11111)

Table 1. Cycles of length 5 containing the edge e = (11110, 11111) in MQ0
5

(11110 11101 11010 11000 11111) (11110 11101 10010 10000 11111)

(11110 11101 00010 00000 11111) (11110 11001 11011 11100 11111)

(11110 10001 10011 11100 11111) (11110 00001 00011 11100 11111)

Table 2. Cycles of length 5 containing the edge e = (11110, 11111) in MQ1
5

If F = {11100, 11101}, then there exists no fault-free cycle of length 5 containing

the edge e in MQ5 − F .
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(3) For ℓ = 6, in MQ0
n, taking e = (01011, 01100), the cycles of length 6 containing the

edge e are as Table 3(we calculate it by computer):

(01011 01010 01000 00000 00100 01100) (01011 01010 01101 01110 01111 01100)

(01011 01010 01101 00101 00100 01100) (01011 01010 01101 11101 11100 01100)

(01011 01010 00010 00000 00100 01100) (01011 01010 11010 11011 11100 01100)

(01011 01010 11010 11101 11100 01100) (01011 01010 11010 11101 01101 01100)

(01011 01001 01000 01010 01101 01100) (01011 01001 01000 00000 00100 01100)

(01011 01001 00001 00000 00100 01100) (01011 01001 00001 00101 00100 01100)

(01011 01001 00001 00101 01101 01100) (01011 01001 11001 11011 11100 01100)

(01011 00011 00010 00000 00100 01100) (01011 00011 00010 01010 01101 01100)

(01011 00011 00001 00000 00100 01100) (01011 00011 00001 00101 00100 01100)

(01011 00011 00001 00101 01101 01100) (01011 11011 11010 11101 11100 01100)

(01011 11011 11010 11101 01101 01100) (01011 11011 11010 01010 01101 01100)

(01011 11011 11100 11101 01101 01100) (01011 11011 11100 11111 01111 01100)

Table 3. Cycles of length 6 containing the vertex e = (01011, 01100) in MQ0
5

If F = {00100, 01101, 11100}, then there exists no fault-free cycle of length 6 containing

the edge e in MQ0
5 − F .
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