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ABSTRACT

In this paper, it is pointed out that the definition of ‘Fibonacci (p, r)-cube’ in many papers
(denoted by ITP™) is incorrect. The graph ITP" is not the same as the original one
(denoted by or®n ) introduced by Egiazarian and Astola. First, it is shown that [ rin)
and OT'?") have different recursive structure. Then, it is proven that all the graphs OT' %"
are partial cubes. However, only a small part of graphs [ ") are partial cube. It is also
shown that IT%" and OI'"") have different medianicity. Finally, several questions are
listed for further investigation.
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1. Introduction

Let B ={0,1} and for n > 1 set
Bn:{blbgbn|bZ€B,Z€]_n}

An element of B, is called a binary word of length n (or simply a word). All words
considered of this paper are binary.

The n-dimensional hypercube @), is the graph whose vertex set is B,,, and two vertices
are adjacent if and only if they differ in precisely one coordinate. The cube ()3 is shown
in Figure 1(a). Hypercubes play an important role in many areas of discrete mathematics
and computer science. An excellent survey on hypercubes can be found in [15].
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The Fibonacci cube Ty, |7] can be obtained from Q,, by removing all vertices that contain
two consecutive 1s. It is a graph family that have been studied as alternatives for the
classical hypercube topology for interconnection networks. The graph I's is shown in
Figure 1 (b). For more results on application and structure of T',,, see the survey [12] and
the recent book [4].

10101 10100
001 000
00101 00100
011 010 10001 10000 *10010
101 100 00001 00000 00010
11 110 01001 01000 01010
(@) O (b) T,

Fig. 1. The hypercube Q3(a), and the Fibonacci cube I's5(b)

When Fibonacci cubes were introduced, they soon became increasingly popular. Nu-
merous variants and generalizations of Fibonacci cubes, the so called Fibonacci-like cube,
are proposed and investigated such as in papers [1, 5, 8, 17, 20, 26]. Recently, many other
Fibonacci-like cubes have also been introduced and studied, such as generalized Fibonacci
cubes |9], generalized Lucas cubes [10], daisy cubes [13], Pell graphs [16]|, Fibonacci-run
graph [3], Fibonacci p-graph [23], Metallic cubes [2] and Lucas-run graph [22].

In the present paper, a special attention is given to the graphs called ‘Fibonacci (p, r)-
cubes’. It was first introduced by Egiazarian and Astola [5]. In many papers, such as [12,
14,18, 19, 25] and others, although it is pointed out that the graphs studied comes from
[5], we find that it is not the same as given in [5]. For convenience, the graphs studied in
[5] are called O-Fibonacci (p,r)-cubes, and the graphs studied in [12, 14, 18, 19, 25] are
called I-Fibonacci (p, r)-cubes.

Letp>1landr > 1. Thenforn > 1, a = ajas . .. a, is called a O-Fibonacci (p, r)-word
(5], where it is called Fibonacci (p, r)-code) if the following hold:

(1) if a; = 1 then a;41 = ... = G4 (p—1) = 0, i.e. there is at least p — 1 0s between two
1s (which is called ‘consecutive’ 1s); and

(2) there are no more than r ‘consecutive’ 1s in «, i.e. ones, between which there are
exactly p — 1 zeroes.

For examples, (100)*03(100)30(100)?10 is a O-Fibonacci (3, 4)-word of length 33, but
(100)*03(100)3010 is not a O-Fibonacci (3,4)-word.

Definition 1.1. [5] Let OF%" be the set of all the O-Fibonacci (p, r)-words of length n.
Then the O-Fibonacci (p,r)-cube OT'P" is the graph defined on the vertex set OFL",
and two vertices being adjacent if they differ exactly in one coordinate.

It is easily seen that if (p,r) = (1,1), then a O-Fibonacci (p,r)-word is a word that
contain no two consecutive 1s. Therefore, the O-Fibonacci (1, 1)-cube oriY is just the
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classical Fibonacci cube I'y,. The graphs OF(52’2) and OFéQ’l) are shown in Figure 2 (a)
and (b), respectively.

00101 010010 000010 100010

10100 00100 000100 | 100100
01001 010000 000000 100000
10000 001000
01000 010001
000001 100001
10010 00010 01010 001001
(a) Org? (®) ore?

Fig. 2. O-Fibonacci (p, r)-cubes OF?’” (a) and OFéz’l)(b)

As mentioned above, the ‘Fibonacci (p, r)-cubes’ studied in [12, 14, 18, 19, 25| will be
called I-Fibonacci (p,r)-cubes. They are defined as follows.

Let p, r and n be any positive integers. Then an [-Fibonacci (p,r)-word of length n is
a word of length n in which there are at most r consecutive 1s and at least p element Os
between two sub-words composed of (at most ) consecutive 1s.

Definition 1.2. [19] Let IFP" denote the set of all I-Fibonacci (p,r)-words of length
n. Then the I-Fibonacci (p,r)-cube ITP") is the graph defined on the vertex set IF"
and two vertices are adjacent if they differ in exactly one coordinate.

Note that the cubes ITP" is considered for n > p and n > r in the above papers. As
ITP") is not always trivial for the case n < r or n < p, we consider the graph IT"") for
all p>1,r > 1 and n > 1 in this paper.

For examples, the graphs IF?’Q) and IF?’Z) are shown in Figure 3 (a) and (b), re-
spectively. Obviously, /-Fibonacci (1, 1)-cube Ty s just the classical Fibonacci cube
r,.

01100 00110 00100 01100
01000
11000 00010 00000, 01000
00100 00110
1001 10000, 11000
10000 00000 00010 ] l
00011 Voooo1 01001
10001 00001 00011 10011 710001 11001
(a) ITG? (b) >

Fig. 3. I-Fibonacci (p,r)-cubes IFS’Q)(a) and IFéz’z)(b)

We think that the main difference between the definitions of OT®™ and IT%"") is the

meaning of ‘consecutive’ 1s: the r ‘consecutive 15’ in a vertex of Or'"") means the sub-
r)

word (10P~1)", but the r ‘consecutive 1s” in a vertex of IT"") means the sub-word 1".
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For a binary word y, we set x° = A\, where \ is the empty word. For convenience, if
n =0, then let OT%") and IT"") be the graphs with only one vertex \.

Many Fibonacci like-cubes and some sub-cubes of hypercubes can be obtained from
hypercubes by some word forbidden to appear in the words of hypercubes. From the
point of view, the following note holds:

Remark 1.3. The cube OT'”") can be obtained from @, by removing all vertices that
contain the words (107~1)"1 or 10°1 for s < p — 2 (if p > 2); and ITP" can be obtained
from (Q,, by removing all vertices that contain the words 1"™! or 10%1 for s < p — 1.

From Remark 1.3 and Definitions 1.1 and 1.2, Ong ") and ITP") are not isomorphic in
general. For example, OFém) (Figure 2 (a)) is not isomorphic to jTéz’Q) (Figure 3 (b)).
This fact can be further illustrated by the results of Sections 3 and 4 in the paper.

The rest of the paper is organized as follows. In Sect. 2, some necessary definitions and
known results are introduced. In Sect. 3, the recursive structures of OT'Y") and IT%"
are given. In Sect. 4, the graphs OT'Y" and ITP") which are partial cube and median

)

graphs are determined. In the last section, some questions on OT'®"™ and ITP") are listed

for further investigation.

2. Preliminaries

In this section, some definitions, notion and results needed in the paper are given. Let A
be a set of some words. Then a.A is the set of the words obtained from A by appending
a fixed word « in front of each of the elements of A. Recall that Fibonacci numbers are
defined as Fop = 0,F; =1, and F,, = F,,_1 + F,,_5 for n > 2. Let F,, be the vertex set of
Fibonacci cube I',,. sThen for n > 2 the well known decomposition of Fibonacci cube can
be obtained as follows [7], where Fy = {\} and F; = {0, 1}:

.IT"n - O-F.nfl U 10.Fn,2. (1)

The name of the cubes I, is justified with the fact that for any n > 0, |F,|= Fn42 [7]-
By Eq. (1), the size of T',, can be shown in Eq. (2) for n > 2, and the recursive structure
can be illustrated in Figure 4:

|E(Ln)|= [E(Tn-) [+ E(Tp—2) |[+Fn. (2)
r’1_2 o o °
le e o +o- e o o+ @

Fig. 4. The recursive structure of I';,

The distance dg(c, ) between vertices o and /3 of a graph G is the length of a shortest
a, f-path. Given two words « and 3 of the same length, their Hamming distance H(«, f3)



ON FIBONACCI (p,7)-CUBES 163

is the number of coordinates in which they differ. Let H and G be arbitrary (connected)
graphs. Then a mapping f : V(H) — V(G) is an isometric embedding if dy(u,v) =
da(f(u), f(v)) holds for any u,v € V(H).

A partial cube is a connected graph that admits an isometric embedding into a hyper-
cube [6]. It is well known that if & and S are vertices of @, then dg, (o, 8) = H(a, 5). So
we know that if G is a partial cube, then dg(a, ) = H(a, §) for any vertices a and 3 of
GG. There are more studies on determining which graphs are partial cubes. For example,
some generalized Fibonacci and Lucas cubes [9, 10] as partial cubes are shown in [21, 24].

Let r > p+2and n > r. Then for some t with p < ¢t < r—2, there exist vertices a and
of IT'"") such that 101 and 11*1 appear in the same coordinates of o and 3, respectively.
For convenience, we call there is a distance-barrier between the above vertices o and f.
It can be shown that d .. (o, B) # H(av, ) by Remark 1.3. By the following result we

know that not all IT*") are partial cubes.

Lemma 2.1. Let p > 2, a and [ be any vertices of 1T Then d, on (o, B) = H(a, B)
if and only if there does not exist distance-barrier between o and 3.

A median of vertices u,v,w € V(G) is a vertex of G that simultaneously lies on a
shortest u, v-path, a shortest u,w-path, and a shortest v, w-path. The graph G is called
a median graph if every triple of its vertices has a unique median. It is well known that
a median graph must be a partial cube (6], Proposition 12.4), and hypercube @, is a
median graph for every n > 1 (|6], Proposition 3.7).

A subgraph H of a graph G is median-closed if, with any triple of vertices of H, their
median is also in H. The following result gives a useful tool to prove that a graph is a
median graph ([6], Corollary 14.9).

Theorem 2.2. 6| A graph is a median graph if and only if it is a median-closed induced
subgraph of a hypercube.

It was shown that all Fibonacci cubes T',, are median graphs (of course are partial cubes)
[11]. In this paper, the question for determining which OT%" and ITP") are partial cubes
and median graphs is solved completely.

Now we turn to consider some basic properties of OT'?" and IT"" in the rest of this
section. By Definitions 1.1 and 1.2, the following results hold obviously.

Proposition 2.3. Letr, 1’ p,p',n,n' be positive integers, s = min {r,r'} andt = min {p, p'}.
Then
(a) OTS = T =~ Q, forn < r;

(b) ort = i ~r,;
(c) or®" o~ or®"™) for n < sp, and OL'¥" = OTP" for n < t; and
(d) ITP" = TP for n < s, and ITP" = TP for n <t + 1.

By Proposition 2.3 (1) and (2), OTP") = TP for some special p and r. For examples,
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Ol“gl’?’) = ]Fgm) = Q3 (as shown in Figure | (a)) and OFS’I) = ]Fél’l) >~ T'5 (as shown in
Figure 1 (b)). It is obvious that all those graphs are connected. In general, we have the
following result.

Proposition 2.4. Let p,r and n be positive integers. Then both the graphs OT%" and
]F,(lp’T) are connected.

Proof. First we show that IT"" is connected. It is obvious that 0" is a vertex of IT""

)

for any p,r and n. We claim that every vertex «a of [ I'"") is connected with 0" by a

a, 0"-path. In fact, let & = ajas...a, be any vertex of IT'"" differing from 07, and

a;, = ...=a; =1, where t > 1 and 4; < ... < 4. Then the word «; obtained from a by
changing a;,, ..., a;, from 1 to 0 is also a vertex of ITP" where j = 1,...,t. Obviously,

ap = 0" If j =1, then a and 0" are adjacent vertices. Now suppose that j > 2. Then
a—a; — ... aj_1 — 0"is a path in ITP" and so IT" is connected.

Similarly, we can show that OT'”") is connected by the facts that 0" is a vertex of
OTP") and for any vertex a of OT'\"") differing from 07, there exist a «, 0"-path. This

completes the proof. O

3. Recursive Structure of Orgp ™) and I D(zp )

Although some of the structure of OT"") was studied [5], we list them here to show they
are different from that of T,

3.1. Vertez sets of OTY" and ITP"
Recall that OFP" and IFP" are the vertex sets of OT'P") and IT'P" | respectively.

3.1.1. Vertex set of OI'""). In paper [5], it is shown that for n > pr + 1, the set
OFP" can be defined recursively by

T

OFPr) — U(lop—l)z‘oo]_—(w) (3)

n n—pi—1>
=0

with OFP" = {\}. For example, the first five (from n = 1) sets OF\” are thus:

{07 1}7

{00,01, 10},

{000,001, 010, 100, 101},

{0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010},

{00000, 00001, 00010, 00100, 00101, 01000, 01001, 01010, 10000, 10001, 10010, 10100}.

If p=1andr = 1, then we have OF"" = OOF,(Zl_’ll) U 100}",(11_’? by Eq. (3). This
means that Eq. (1) can be obtained from Eq. (3) by Proposition 2.3(2).

For convenience, if n > 1 and —p < n —pi —1 < 0 for some i (1 < i < r), then let

(10p_1)"00]:7(fﬁ;1_1 be the set containing only one word, and this word is the prefix of
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length n of (10°71)%0; if n — pi — 1 < —p, then let (10P~1)* OOF,SLP;Z . = 0. This means
that Eq. (3) also holds for 1 < n < pr, and so we have

(OFPI|=3"JoFP |, (4)

where |O.7-"np;Z J=1if —=p<n—pi—1<0,and |O.7-"(ppZ 1=
In paper [5], Fibonacci (p,r)-number OFF" is defined as follows with OF" = 0 if
n <0, andOFqu’T)zliflgngp%—l:

Oifn—pi—1< —p.

OF®) =" 0FP")_. (5)

It is easily seen that if p = r = 1, then OF®" = F,. By Eqs. (4) and (), it
is known that [V (OT%")|=|0FF" |= OF&’;LT By this result and Proposition 2.3(2),
V(L) |= | Ful= |OF"Y |= OFT(LH)Jrl = [, 42 holds for the classical Fibonacci cubes [7].

3.1.2. Vertex set of IT"". On the vertex set of IT'"") we have the following result.

Theorem 3.1. Letp>1,r>1,n>p-+r and ]]:ép’r) = {A}. Then IFPn) satisfies:

[FPD) = 0IFPY U10PIFS) ULTOPIERY) (6)

npl n—p—r-

Proof. Tt 1s easy to see that JEL" D 0IFPY U 10PIFP p JU.. U 1701’[an; .. Let
a € IFP" and suppose that the coordinate of the first 0 of @ is . Then 1 <7 <r+1
by the definition of I-Fibonacci (p,r)-word and then the following holds. If ¢ = 1, then
a = 08 for some 8 € IFP7D If2 <i < r+1, then o has the form of 17107y, where
v e IFPD . Tt implies that IFP") C 01FY DULPIE ) UL UTTOPTFEST) L This

n—p—r-
completes the proof. O

It is easy to see that if p =1 and r = 1, then Eq. (1) can be obtained from Eq. (6) by
Proposition 2.3 (2).

For convenience, if 1 < n < p+ i for some ¢ € [r], then let 1* Op]]-"(p_; . be the set
consisting of only the word which is the prefix of length n of 1°0P. It can be seen that if
i <jand n < p+i, then 1@”[.7—"&24 = 1j0prT(LIfT) So for n < i, let 1 O”I]—"np; .= 0.
Then for 1 < n < p +r, the set IFP" also can be determined by Eq. (6).

For example, the first few [ F2? are thus:

IF®Y = {0,1},

me) {00,01,10, 11},

If(2 2 = {000, 001,010,011, 100, 110},

I]-"42 2 = {0000, 0001, 0010,0011,0100, 0110, 1000, 1001, 1100},

IF2? = {00000, 00001, 00010,00011,00100,00110,01000, 01001, 01100, 10000, 10001,

10010, 10011, 11000, 11001}.
By Theorem 3.1 and the above analysis, the following result holds.
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Corollary 3.2. Setting |[IF¥"|=0for n < —p and [IFF"|=1for —p < n < 0, we have

[LFPD | = [IFED |+ TFP) | [TFPD . (7)

By Egs. (3) and (6), it is easy to see that if p = 1 or r = 1, then OFP") = IFP" and so
O™ = TP For p> 1,7 > land n =0 or 1, OFF" = [FP" and OTP" = [T,
But for n > 1, [IFP"|> |OFP"| by Egs. (1) and (7). So the following result holds.

Corollary 3.3. Let p > 1, > 1 and n > 0. Then or®r * TP if and only if
p>1,r>1andn > 1.

The above result implies that OT'"") 2 IT%") from the general sense. However, there
are exist some p > 1l and p’ > 1, r > 1 and v > 1, and n > 1 and n’ > 1 such that
oren ~ IFgff/’Tl). For example, it can be shown that OFf’Q) = IFEE”Q), as illustrated in
Figure 5.

1010 0110 0100 1100
! .

0010 Toom 0000 1000

(b) ITG?

Fig. 5. Graphs OT'*? (a) and IT{(*? (b)

3.2. Edge sets of OT'"") and IT%"

The recursive structure on the edge sets of OT'¥" and IT'"" are studied in this subsection.

3.2.1. Edge set of OT'P"), We show that the iterative formula of the size of OI'%"

previously given ([5], Property 2) was erroneous and determine its correct expression. First

we take OT'?®) as an example to understand easily the structure of the edge set of orwn.

By Eq. (3), for n > 7, OFZ¥ = 00F*3 U1000F%Y U 101000F%Y U 10101000F > |

Inside each subgraph of O induced by (10)'00F >3 | the edges are inherited
from Of‘ff’z)t_l, t =0,1,2 and 3. We need to determine the edges between these four
subgraphs. Let 0 < i < j < 3. Then by the fact O(lO)j_i_IOO‘Fﬁ%fl C OF_ it
is known that (10)i00(10)3'*1‘*100]—"722;:;)]-71 is a subset of (10)'00F*3) | It is easily seen
that (10)j00.7:752_’32_1 = (10)i10(10)j_i_100f,s2;?;)]~_1. Let a be a vertex of (10)3'00?,(12_’2_1.
Then o = (10)"10(10)7~~108 for some 3 € O.7-"752_’32)j_1. Obviously, there exist a vertex

o = (10)'00(10)"~"108 € OF>?)_ | and so « is adjacent to o/. Therefore, there are

n

|O]-"7§2_’3)j_1| edges between the subsets (10Y/00F Y. and (10)100F™>% . So we know

n—2j—1
that the decomposition of OFg’?’) can be shown as in Figure 6, and
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|E(OT2)| = |E(OTY)|[+|E(OTEY)]
+ BT+ B(OTEY))|
+|0Fn — 33 |42|0Fn — 539 |+3|0Fn — 739

3
=Y t=0(1BUTEY ) l+av ey ).

23 |
or,; \\\

ory? || ’\’\’le'i’ils\

\

(2.3) | |
ores | |

orey .o

Fig. 6. The decomposition of orE?®

In general, we can get the structure of the edge set of OTP") as follows. By Eq. (3) we
know that the Vertex set of OT'"") can be decomposed into r + 1 disjoint subsets for n >

pr+1: OFP" = U (10°-1)'00FP")_ . So the graph OT™ can be decomposed into r+1

n—pt—1-
t=0

disjoint subgraphs isomorphic to OT'®")

notp—1 tor t = 0,1,... 7, respectively. Further, for

0 <i < j <r,it can be found that there are |V (OT®” Zp 1)\— OF" ]L 1| edges connecting
the subgraphs OT " ZL . and Or"” TJ)p . (of OTP™). So there are t;)(ﬂO]—"np ;t 1) edges

between these r + 1 subgraphs. So we have the following result.

Theorem 3.4. Letn > pr+ 1. Then

T

[E(OTPD)|= Y (BT, )|+OF 1 ]): (8)

t=0

3.2.2. Edge set of IT""), First, we also take IT'?® as an example to better under-

stand the structure of the edge set of O™, By Eq. (G)7 we know that I75>% can be
decomposed into four disjoint subsets for n > 5: O[]-",(L2 1001 F,” 23) 1100[.7:”2_3) and
111007 F>Y).

Inside each subgraph of IT' induced by 0IF*® and 11001F>%), (t € [3]) the edges
are inherited from [ F(2 31) and [ F ) _;, respectively. Now we consider the edges between
the above four subsets. It is easﬂy seen that 01°'0071F,” 23) C OIF 23) So for every
vertex a € 1'001.F, 232') ;, there exist a Vertex o € 01 100[.7 2 ;. such that there is an
edge between o and o'. So there are \I 2 t\ edges between 1tOOIF(2§ ' and 0[.7-" 2_‘?
for t € [3]. Suppose 1 < i < j < 3, 6 € 1900/F*Y . and B € 1000IF* If

n—=2—j —1°
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j—i > 2 then 8 and 3 are not adjacent in IT""”. If j = i + 1, then by the fact
19720007 F*3) . 10001 F* . we know that there exist a vertex 87 € 1900/ F*3) . such

n2] n—2—1’ n—2—1i

that 8" and 8" are adjacent in IT'""). This implies that for 1 < i < j < 3, there exist

edges between 17001F, 2_3) ;and 1' OO]]—"n2 2) ;only if j = ¢+ 1, and there are |]]—"7§23 l

edges between them. Hence, we know that the decomposition of IF(2’3) can be shown as

in Figure 7, and |[E(ITY)|= rE<fr“>>|+z<|E<frn2t>\+2|f Loh — [IFEY).

s ]
[ran

w2 | &\'\L&J\

(2.3)
e | |

e .

(2,3)

Fig. 7. The decomposition of IT,

In general, we have the following result.

Theorem 3.5. n > p+r. Then

|E(ITPD)|= |BITE)) \+Z\E (TP 2L FED ) — [TFED . 9)

npt

Proof. By Eq. (6), [FP"” = 0IFPY ULPIFPD UL UTTOPIFP! . So the graph

n—p—r-
IF(p ") can be decomposed mto r + 1 disjoint subgraphs 1som0rphlc to IF(p { (induced by
the set 0/F")) and ITP") "' (induced by the set 1707~ LFPD Y fort € [r }, respectively.

n—p—t
To achieve the desired result we need to consider the edges between the above subgraphs.

First, we consider 0IF"7 and 1'0PIFP") .t € [r]. Let a be a vertex of 1t0p]]:,(ﬁ;)_t

n—p—t’

Then o = 1'0Pa’ for some o/ € [.F,(Lp; .- It can be seen that the vertex 3 = 01:710Pa/ €

0IF""  and so there are |IF\ \ edges between OI]:p’i and 1'0PIFP") . Now we

n—p—t*

consider the edges between 1"0p].7-'pT and VOPTFP")  for 1 <i < j <r. Obviously, if

npz npj

j > i+2, then there is not edges between them. Suppose j = i+1and let a € 1301’[.7:“)
Then o = V0P = 19107/ for some o/ € I}"p’r . As B = 1i00Pa/ € 1i0P L FPT) d

—j n—p—i
a and (3 are adjacent, we know that there are |I.7-"p7") | edges between 1’ Opl]-",(Lp; ; and
190PTFP ;) ; for j =i+ 1. Therefore, there are altogether 2 Z|]]—"(p m - |]]—"np; 1| edges

connecting these r + 1 subgraphs. This completes the proof O
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If p=1and r =1, then by Egs. (8) and (9) we have
|E(OTED)|=|BOT ) |+ E(OT ) [+ OFEY), and

n—2

|E(ITED) = BT+ BAT ) [+ 1FEY),

respectively. This means that Eq. (2) can be obtained from both Eqgs. (8) and (9).

4. Relation to Hypercubes

Both partial cubes and median graphs are important and well-studied classes of graphs.
The graphs [ I'"" and OT'"" which are partial cubes and median graphs are determined.

4.1. 1T and OTY") as partial cubes

Both graphs OT¥" and IT%" are induced subgraphs of hypercubes. It is natural to ask

whether they can be isometrically embedded into hypercubes. First we consider OI'"".

Theorem 4.1. Let p > 1 and r > 1. Then for any n > 1, OTY" is a partial cube.

Proof. Let o = ajay...a, and 3 = biby...b, be any two vertices of OT%". Suppose
that the Hamming distance H (o, 3) between « and (3 is s, and a;; # b;, for all j € [s]. The
desired result can be obtained by showing dor%p,ﬂ(a, B) = H(a, ) for all s > 1. This can
be shown by using induction on s. Obviously if s = 1, then dorgp,r)(a,ﬁ) =1=H(a,p)
by Definition 1.1. Suppose that s > 2 and dorslpm) (u,v) = H(p,v) holds for any two

vertices p and v of OT%" with H(p,v) = s—1. Without loss of generality, suppose that
a;, = 1 and b;; = 0. Let o’ be the word obtained from a by changing a;, from 1 to 0.
Then H(a,a') =1, H(d/, ) = s—1 and ¢ is a O-Fibonacci (p, r)-word of length n, that
is, o/ € OFP". As dppwn (', 8) = H(c/,3) = s — 1 by the induction hypothesis, we
know dorgp,r)(a,ﬁ) = H(ot, o)+ H(/,5) =1+ s—1=s. This completes the proof. [

By Theorem 4.1, all OT%" are partial cubes. However, this does not hold for IT\"".
For n > p and n > r, the cubes ITP") which are partial cubes have been determined [25].
Now for all the cases n > 1, p > 1 and r > 1, the results are listed as follows.

Theorem 4.2. Letp > 1,r > 1 andn > 1. Then IF,(lp’T) 15 a partial cube if and only if
it s one of the following cases:

(@) p=1,r>1, andn > 1;

b)p>2,r<p+1andn>1; and

(c)p>2,r>p+2andn<r.
Proof. First we consider the case p = 1 and r > 1. If n > r, then ]F,(ll’r) is a partial
cube ([25], Lemma 2.2). If n < r, then ITP™ = Q,, by Proposition 2.3, and so IT"") is
a partial cube. It means that if (a) holds, then ITS’T) is a partial cube.

If p>2and r < p+ 1, then it is obvious that there is not a distance-barrier between
any two vertices of IT'?". So if (b) holds, then IT;"" is partial cube by Lemma 2.1.
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Now we turn to consider the case p > 2 and r > p+2. If n > r, then it was shown that
IT™) is not a partial ([25], Lemma 2.5). If n < r, then there is not a distance-barrier
between any two vertices of ITP" and so IT"" is a partial cube by Lemma 2.1.

According to the above analysis, IT'"") is a partial cube if and only if one of (a), (b)
and (c) holds. O

4.2. OT?") and IT?" as median graphs

It is well known that a median graph must be a partial cube. In this subsection, we show
that OF%p’T) (resp. [F,(f’r)) being median graphs is only a small part of the OF%p’T) (resp.
IT"") which are partial cubes.

Note that for n > p and n > 7, the graphs IT%" which are median graphs has been
determined [18]. For the cases p > 1, r > 1 and n > 1, graphs IF%D’T) as median graphs
are list as follows.

Theorem 4.3. Letp>1,r>1 andn > 1. Then ITP") s a median graph if and only if
it s one of the following cases:

(a) p=1,r>2andr >n>1;

(b) p>2,r>3and 2>n>1; and

(¢c)r<p,r<2andn>1.

Proof. We distinguish three cases: (1) p =1 and r > 2, (2) p > 2 and r > 3, and (3)
r < pand r < 2. It has been shown that if (1) or (3) holds for n > p and n > r, or (2)
hold for n > 3, then IT"") is not a median graph (|25], Lemma 4.2 and Corollary 4.4).
If (1) holds and nn < r, then ITP" = @, by Proposition 2.3(1). Tt is obvious that if (2)
happens and 2 > n > 1, then IT"") 2 (.. It is well known that @, is a median graph.
If n < p and (3) holds, then IT"" = IT{"" by Proposition 2.3 (3). It has been known
that IT{"" is a median graph if (3) happens ([25], Corollary 4.4). According to the above

analysis, IT'"") is a median graph if and only if (), (b), or (¢) holds. O

The following result determines the graphs OI'?") which are median graphs.

Theorem 4.4. Letp > 1,7 > 1 andn > 1. Then OT%") s a median graph if and only
if one of the following cases holds:

(@)yp>1,r=1and n > 1,

W)yp=1,r>2and r >n > 1; and

()yp>2,r>2and n < pr.

Proof. We also distinguish three cases by pand r: (1') p>1andr =1, (2') p=1 and
r > 2, and (3') p > 2 and r > 2. By Corollary 3.3, we know that ord =~ i and
or® ~ b so if (a") or (b') holds, then OI'"" is a median graph by Theorem 4.3
(a) and (c). Now we turn to consider case (3'). For the case p > 2,7 > 2 and n < pr, let
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X =122 ...Tny,
n=y1y2-.-Yn,
P =Pip2 . .- Pn,

and

W =wW1wWy . .. Wy,

where x, 7 and p are vertices of OT'""), and w is the median of v, 7 and p. It is well known
that the median of the triple in @, is obtained by the majority rule (|6], Proposition 3.7):
the 7th coordinate of the median is equal to the element that appears at least twice among
the z;, y;, and p;. Without loss of generality, suppose that among z1, y; and p; there
at least two 1s. Then w; = 1. Suppose the second 1 contained in w is w;. As x,n are
vertices of OT'") and there are at least two 1 among z;,y; and p;, we know i > p+ 1. By
considering the coordinate of the next element 1 in w, we can find that the number of Os
between two 1 is at least p — 1 in w. Since the length of w is not more than pr, there are
at most r continue ‘1" in w. Therefore, w is a vertex of OT'?" and so OT¥") is a median
graph for this case.
For any p > 2, r > 2 and n > pr, let

a =10°~1 10}7*10(0]1*11)7“720nfp7“717
B :1017_10017—11(0]0—11)7“—2071—1)7"—17

and
v =00P~110P~ (0P~ ) 20

Then a, 8 and ~ are vertices of OT¥"). Set

po=10P"11oP~ (0P t) 2ot

"), By the majority

It is easy to see that «, 8 and v are pairwise at distance 2 in OFSLP’
rule, the unique candidate for their median is p. Since there are r» + 1 ‘consecutive’ 1s
in 1, it does not belong to OT'”") and so OT'P" is not median-closed induced subgraph
of hypercube. Hence, OT'"" is not a median graph by Theorem 2.2 for this case. This

completes the proof. O

5. Concluding Remarks
In this section, two questions are listed for further study of OT¥") and IT®".

Corollary 3.3 shows that OT¥") % IT'"" for almost all of p and r. However, there may
be some p,r,n and p/,7’,n’ such that OT'P") = IFfff ™) As an example, OT'*? = 732

is shown in Figure 5. A natural question that arises is the following:

Question 5.1. For which values of p,r,n and p',r",n/, orP™) o Ifg’i,’rl)?
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The eccentricity e(v) of a vertex v of a graph G is the maximum of its distances to other
vertices in G, and the diameter d(G) of G are the maximum of the vertex eccentricities.
The diameter of OT'?" was determined ([5], Property 4). But the diameter of IT"" has
not been studied. So the following questions are listed.

Question 5.2. What is the diameter of ITP") 2

As mentioned above the diameter of a graph G is the greatest distance between any two
vertices in G. Theorem /.1 shows that every graph OF%W) is a partial cube, and so the

T)

distance between any two vertices of OT%") is the Hamming distance of them. However,

Theorem 4.2 shows that only a small part of all graphs [ TP are partial cube. Therefore,

it seems that determining the diameter of IT"") is a rather difficult task.
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