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abstract

In this paper, it is pointed out that the de�nition of `Fibonacci (p, r)-cube' in many papers

(denoted by IΓ
(p,r)
n ) is incorrect. The graph IΓ

(p,r)
n is not the same as the original one

(denoted by OΓ
(p,r)
n ) introduced by Egiazarian and Astola. First, it is shown that IΓ

(p,r)
n

and OΓ
(p,r)
n have di�erent recursive structure. Then, it is proven that all the graphs OΓ

(p,r)
n

are partial cubes. However, only a small part of graphs IΓ
(p,r)
n are partial cube. It is also

shown that IΓ
(p,r)
n and OΓ

(p,r)
n have di�erent medianicity. Finally, several questions are

listed for further investigation.
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1. Introduction

Let B = {0, 1} and for n ≥ 1 set

Bn = {b1b2 . . . bn | bi ∈ B, i ∈ 1 : n}.

An element of Bn is called a binary word of length n (or simply a word). All words

considered of this paper are binary.

The n-dimensional hypercube Qn is the graph whose vertex set is Bn, and two vertices

are adjacent if and only if they di�er in precisely one coordinate. The cube Q3 is shown

in Figure 1(a). Hypercubes play an important role in many areas of discrete mathematics

and computer science. An excellent survey on hypercubes can be found in [15].
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The Fibonacci cube Γn [7] can be obtained from Qn by removing all vertices that contain

two consecutive 1s. It is a graph family that have been studied as alternatives for the

classical hypercube topology for interconnection networks. The graph Γ5 is shown in

Figure 1 (b). For more results on application and structure of Γn, see the survey [12] and

the recent book [4].
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Fig. 1. The hypercube Q3(a), and the Fibonacci cube Γ5(b)

When Fibonacci cubes were introduced, they soon became increasingly popular. Nu-

merous variants and generalizations of Fibonacci cubes, the so called Fibonacci-like cube,

are proposed and investigated such as in papers [1, 5, 8, 17, 20, 26]. Recently, many other

Fibonacci-like cubes have also been introduced and studied, such as generalized Fibonacci

cubes [9], generalized Lucas cubes [10], daisy cubes [13], Pell graphs [16], Fibonacci-run

graph [3], Fibonacci p-graph [23], Metallic cubes [2] and Lucas-run graph [22].

In the present paper, a special attention is given to the graphs called `Fibonacci (p, r)-

cubes'. It was �rst introduced by Egiazarian and Astola [5]. In many papers, such as [12,

14, 18, 19, 25] and others, although it is pointed out that the graphs studied comes from

[5], we �nd that it is not the same as given in [5]. For convenience, the graphs studied in

[5] are called O-Fibonacci (p, r)-cubes, and the graphs studied in [12, 14, 18, 19, 25] are

called I-Fibonacci (p, r)-cubes.

Let p ≥ 1 and r ≥ 1. Then for n ≥ 1, α = a1a2 . . . an is called a O-Fibonacci (p, r)-word

([5], where it is called Fibonacci (p, r)-code) if the following hold:

(1) if ai = 1 then ai+1 = . . . = ai+(p−1) = 0, i.e. there is at least p − 1 0s between two

1s (which is called `consecutive' 1s); and

(2) there are no more than r `consecutive' 1s in α, i.e. ones, between which there are

exactly p− 1 zeroes.

For examples, (100)403(100)30(100)210 is a O-Fibonacci (3, 4)-word of length 33, but

(100)403(100)5010 is not a O-Fibonacci (3, 4)-word.

De�nition 1.1. [5] Let OF (p,r)
n be the set of all the O-Fibonacci (p, r)-words of length n.

Then the O-Fibonacci (p, r)-cube OΓ
(p,r)
n is the graph de�ned on the vertex set OF (p,r)

n ,

and two vertices being adjacent if they di�er exactly in one coordinate.

It is easily seen that if (p, r) = (1, 1), then a O-Fibonacci (p, r)-word is a word that

contain no two consecutive 1s. Therefore, the O-Fibonacci (1, 1)-cube OΓ
(1,1)
n is just the
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classical Fibonacci cube Γn. The graphs OΓ
(2,2)
5 and OΓ

(2,1)
6 are shown in Figure 2 (a)

and (b), respectively.

(2,2)

5ΓO

00000

0101010010 00010

01000
10000

10100

10001

00001

01001

00100

00101

(2,1)

6OΓ

100001

001000

100000010000 000000

001001

000100

000001
010001

100100

010010 000010

( )b( )a

100010

Fig. 2. O-Fibonacci (p, r)-cubes OΓ
(2,2)
5 (a) and OΓ

(2,1)
6 (b)

As mentioned above, the `Fibonacci (p, r)-cubes' studied in [12, 14, 18, 19, 25] will be

called I-Fibonacci (p, r)-cubes. They are de�ned as follows.

Let p, r and n be any positive integers. Then an I-Fibonacci (p, r)-word of length n is

a word of length n in which there are at most r consecutive 1s and at least p element 0s

between two sub-words composed of (at most r) consecutive 1s.

De�nition 1.2. [19] Let IF (p,r)
n denote the set of all I-Fibonacci (p, r)-words of length

n. Then the I-Fibonacci (p, r)-cube IΓ
(p,r)
n is the graph de�ned on the vertex set IF (p,r)

n

and two vertices are adjacent if they di�er in exactly one coordinate.

Note that the cubes IΓ
(p,r)
n is considered for n ≥ p and n ≥ r in the above papers. As

IΓ
(p,r)
n is not always trivial for the case n < r or n < p, we consider the graph IΓ

(p,r)
n for

all p ≥ 1, r ≥ 1 and n ≥ 1 in this paper.

For examples, the graphs IΓ
(3,2)
5 and IΓ

(2,2)
5 are shown in Figure 3 (a) and (b), re-

spectively. Obviously, I-Fibonacci (1, 1)-cube IΓ
(1,1)
n is just the classical Fibonacci cube

Γn.
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Fig. 3. I-Fibonacci (p, r)-cubes IΓ
(3,2)
5 (a) and IΓ

(2,2)
5 (b)

We think that the main di�erence between the de�nitions of OΓ
(p,r)
n and IΓ

(p,r)
n is the

meaning of `consecutive' 1s: the r `consecutive 1s' in a vertex of OΓ
(p,r)
n means the sub-

word (10p−1)r, but the r `consecutive 1s' in a vertex of IΓ
(p,r)
n means the sub-word 1r.
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For a binary word χ, we set χ0 = λ, where λ is the empty word. For convenience, if

n = 0, then let OΓ
(p,r)
n and IΓ

(p,r)
n be the graphs with only one vertex λ.

Many Fibonacci like-cubes and some sub-cubes of hypercubes can be obtained from

hypercubes by some word forbidden to appear in the words of hypercubes. From the

point of view, the following note holds:

Remark 1.3. The cube OΓ
(p,r)
n can be obtained from Qn by removing all vertices that

contain the words (10p−1)r1 or 10s1 for s ≤ p− 2 (if p ≥ 2); and IΓ
(p,r)
n can be obtained

from Qn by removing all vertices that contain the words 1r+1 or 10s1 for s ≤ p− 1.

From Remark 1.3 and De�nitions 1.1 and 1.2, OΓ
(p,r)
n and IΓ

(p,r)
n are not isomorphic in

general. For example, OΓ
(2,2)
5 (Figure 2 (a)) is not isomorphic to IΓ

(2,2)
5 (Figure 3 (b)).

This fact can be further illustrated by the results of Sections 3 and 4 in the paper.

The rest of the paper is organized as follows. In Sect. 2, some necessary de�nitions and

known results are introduced. In Sect. 3, the recursive structures of OΓ
(p,r)
n and IΓ

(p,r)
n

are given. In Sect. 4, the graphs OΓ
(p,r)
n and IΓ

(p,r)
n which are partial cube and median

graphs are determined. In the last section, some questions on OΓ
(p,r)
n and IΓ

(p,r)
n are listed

for further investigation.

2. Preliminaries

In this section, some de�nitions, notion and results needed in the paper are given. Let A
be a set of some words. Then αA is the set of the words obtained from A by appending

a �xed word α in front of each of the elements of A. Recall that Fibonacci numbers are

de�ned as F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. Let Fn be the vertex set of

Fibonacci cube Γn. sThen for n ≥ 2 the well known decomposition of Fibonacci cube can

be obtained as follows [7], where F0 = {λ} and F1 = {0, 1}:

Fn = 0Fn−1 ∪ 10Fn−2. (1)

The name of the cubes Γn is justi�ed with the fact that for any n ≥ 0, |Fn|= Fn+2 [7].

By Eq. (1), the size of Γn can be shown in Eq. (2) for n ≥ 2, and the recursive structure

can be illustrated in Figure 4:

|E(Γn)|= |E(Γn−1)|+|E(Γn−2)|+Fn. (2)

2
Γ

n-

1
Γ

n-

Fig. 4. The recursive structure of Γn

The distance dG(α, β) between vertices α and β of a graph G is the length of a shortest

α, β-path. Given two words α and β of the same length, their Hamming distance H(α, β)
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is the number of coordinates in which they di�er. Let H and G be arbitrary (connected)

graphs. Then a mapping f : V (H) → V (G) is an isometric embedding if dH(u, v) =

dG(f(u), f(v)) holds for any u, v ∈ V (H).

A partial cube is a connected graph that admits an isometric embedding into a hyper-

cube [6]. It is well known that if α and β are vertices of Qn, then dQn(α, β) = H(α, β). So

we know that if G is a partial cube, then dG(α, β) = H(α, β) for any vertices α and β of

G. There are more studies on determining which graphs are partial cubes. For example,

some generalized Fibonacci and Lucas cubes [9, 10] as partial cubes are shown in [21, 24].

Let r ≥ p+2 and n ≥ r. Then for some t with p ≤ t ≤ r−2, there exist vertices α and β

of IΓ
(p,r)
n such that 10t1 and 11t1 appear in the same coordinates of α and β, respectively.

For convenience, we call there is a distance-barrier between the above vertices α and β.

It can be shown that d
IΓ

(p,r)
n

(α, β) ̸= H(α, β) by Remark 1.3. By the following result we

know that not all IΓ
(p,r)
n are partial cubes.

Lemma 2.1. Let p ≥ 2, α and β be any vertices of IΓ
(p,r)
n . Then d

IΓ
(p,r)
n

(α, β) = H(α, β)

if and only if there does not exist distance-barrier between α and β.

A median of vertices u, v, w ∈ V (G) is a vertex of G that simultaneously lies on a

shortest u, v-path, a shortest u,w-path, and a shortest v, w-path. The graph G is called

a median graph if every triple of its vertices has a unique median. It is well known that

a median graph must be a partial cube ([6], Proposition 12.4), and hypercube Qn is a

median graph for every n ≥ 1 ([6], Proposition 3.7).

A subgraph H of a graph G is median-closed if, with any triple of vertices of H, their

median is also in H. The following result gives a useful tool to prove that a graph is a

median graph ([6], Corollary 14.9).

Theorem 2.2. [6] A graph is a median graph if and only if it is a median-closed induced

subgraph of a hypercube.

It was shown that all Fibonacci cubes Γn are median graphs (of course are partial cubes)

[11]. In this paper, the question for determining which OΓ
(p,r)
n and IΓ

(p,r)
n are partial cubes

and median graphs is solved completely.

Now we turn to consider some basic properties of OΓ
(p,r)
n and IΓ

(p,r)
n in the rest of this

section. By De�nitions 1.1 and 1.2, the following results hold obviously.

Proposition 2.3. Let r, r′, p, p′, n, n′ be positive integers, s = min {r, r′} and t = min {p, p′}.
Then

(a) OΓ
(1,r)
n

∼= IΓ
(1,r)
n

∼= Qn for n ≤ r;

(b) OΓ
(1,1)
n

∼= IΓ
(1,1)
n

∼= Γn;

(c) OΓ
(p,r)
n

∼= OΓ
(p,r′)
n for n ≤ sp, and OΓ

(p,r)
n

∼= OΓ
(p′,r)
n for n ≤ t; and

(d) IΓ
(p,r)
n

∼= IΓ
(p,r′)
n for n ≤ s, and IΓ

(p,r)
n

∼= IΓ
(p′,r)
n for n ≤ t+ 1.

By Proposition 2.3 (1) and (2), OΓ
(p,r)
n

∼= IΓ
(p,r)
n for some special p and r. For examples,
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OΓ
(1,3)
3

∼= IΓ
(1,3)
3

∼= Q3 (as shown in Figure 1 (a)) and OΓ
(1,1)
5

∼= IΓ
(1,1)
5

∼= Γ5 (as shown in

Figure 1 (b)). It is obvious that all those graphs are connected. In general, we have the

following result.

Proposition 2.4. Let p, r and n be positive integers. Then both the graphs OΓ
(p,r)
n and

IΓ
(p,r)
n are connected.

Proof. First we show that IΓ
(p,r)
n is connected. It is obvious that 0n is a vertex of IΓ

(p,r)
n

for any p, r and n. We claim that every vertex α of IΓ
(p,r)
n is connected with 0n by a

α, 0n-path. In fact, let α = a1a2 . . . an be any vertex of IΓ
(p,r)
n di�ering from 0n, and

ai1 = . . . = ait = 1, where t ≥ 1 and i1 ≤ . . . ≤ it. Then the word αj obtained from α by

changing ai1 , . . . , aij from 1 to 0 is also a vertex of IΓ
(p,r)
n , where j = 1, . . . , t. Obviously,

αt = 0n. If j = 1, then α and 0n are adjacent vertices. Now suppose that j ≥ 2. Then

α → α1 → . . . → αj−1 → 0n is a path in IΓ
(p,r)
n , and so IΓ

(p,r)
n is connected.

Similarly, we can show that OΓ
(p,r)
n is connected by the facts that 0n is a vertex of

OΓ
(p,r)
n , and for any vertex α of OΓ

(p,r)
n di�ering from 0n, there exist a α, 0n-path. This

completes the proof.

3. Recursive Structure of OΓ
(p,r)
n and IΓ

(p,r)
n

Although some of the structure of OΓ
(p,r)
n was studied [5], we list them here to show they

are di�erent from that of IΓ
(p,r)
n .

3.1. Vertex sets of OΓ
(p,r)
n and IΓ

(p,r)
n

Recall that OF (p,r)
n and IF (p,r)

n are the vertex sets of OΓ
(p,r)
n and IΓ

(p,r)
n , respectively.

3.1.1. Vertex set of OΓ
(p,r)
n . In paper [5], it is shown that for n ≥ pr + 1, the set

OF (p,r)
n can be de�ned recursively by

OF (p,r)
n =

r⋃
i=0

(10p−1)i0OF (p,r)
n−pi−1, (3)

with OF (p,r)
0 = {λ}. For example, the �rst �ve (from n = 1) sets OF (2,2)

n are thus:

{0, 1},
{00, 01, 10},
{000, 001, 010, 100, 101},
{0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010},
{00000, 00001, 00010, 00100, 00101, 01000, 01001, 01010, 10000, 10001, 10010, 10100}.
If p = 1 and r = 1, then we have OF (1,1)

n = 0OF (1,1)
n−1 ∪ 10OF (1,1)

n−2 by Eq. (3). This

means that Eq. (1) can be obtained from Eq. (3) by Proposition 2.3(2).

For convenience, if n ≥ 1 and −p ≤ n − pi − 1 < 0 for some i (1 ≤ i ≤ r), then let

(10p−1)i0OF (p,r)
n−pi−1 be the set containing only one word, and this word is the pre�x of
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length n of (10p−1)i0; if n − pi − 1 < −p, then let (10p−1)i0OF (p,r)
n−pi−1 = ∅. This means

that Eq. (3) also holds for 1 ≤ n ≤ pr, and so we have

|OF (p,r)
n |=

r∑
i=0

|OF (p,r)
n−pi−1|, (4)

where |OF (p,r)
n−pi−1|= 1 if −p ≤ n− pi− 1 < 0, and |OF (p,r)

n−pi−1|= 0 if n− pi− 1 < −p.

In paper [5], Fibonacci (p, r)-number OF
(p,r)
n is de�ned as follows with OF

(p,r)
n = 0 if

n ≤ 0, and OF
(p,r)
n = 1 if 1 ≤ n ≤ p+ 1:

OF (p,r)
n =

r∑
i=0

OF
(p,r)
n−pi−1. (5)

It is easily seen that if p = r = 1, then OF
(p,r)
n = Fn. By Eqs. (4) and (5), it

is known that |V (OΓ
(p,r)
n )|=|OF (p,r)

n |= OF
(p,r)
n+p+1. By this result and Proposition 2.3(2),

|V (Γn)|= |Fn|= |OF (1,1)
n |= OF

(1,1)
n+1+1 = Fn+2 holds for the classical Fibonacci cubes [7].

3.1.2. Vertex set of IΓ
(p,r)
n . On the vertex set of IΓ

(p,r)
n , we have the following result.

Theorem 3.1. Let p ≥ 1, r ≥ 1, n ≥ p+ r and IF (p,r)
0 = {λ}. Then IF (p,r)

n satis�es:

IF (p,r)
n = 0IF (p,r)

n−1 ∪ 10pIF (p,r)
n−p−1 ∪ . . . ∪ 1r0pIF (p,r)

n−p−r. (6)

Proof. It is easy to see that IF (p,r)
n ⊇ 0IF (p,r)

n−1 ∪ 10pIF (p,r)
n−p−1 ∪ . . . ∪ 1r0pIF (p,r)

n−p−r. Let

α ∈ IF (p,r)
n and suppose that the coordinate of the �rst 0 of α is i. Then 1 ≤ i ≤ r + 1

by the de�nition of I-Fibonacci (p, r)-word and then the following holds. If i = 1, then

α = 0β for some β ∈ IF (p,r)
n−1 . If 2 ≤ i ≤ r + 1, then α has the form of 1i−10pγ, where

γ ∈ IF (p,r)
n−p−(i−1). It implies that IF (p,r)

n ⊆ 0IF (p,r)
n−1 ∪10pIF (p,r)

n−p−1∪ . . .∪1r0pIF (p,r)
n−p−r. This

completes the proof.

It is easy to see that if p = 1 and r = 1, then Eq. (1) can be obtained from Eq. (6) by

Proposition 2.3 (2).

For convenience, if 1 ≤ n < p + i for some i ∈ [r], then let 1i0pIF (p,r)
n−p−i be the set

consisting of only the word which is the pre�x of length n of 1i0p. It can be seen that if

i < j and n < p + i, then 1i0pIF (p,r)
n−p−i = 1j0pIF (p,r)

n−p−j. So for n < i, let 1i0pIF (p,r)
n−p−i = ∅.

Then for 1 ≤ n < p+ r, the set IF (p,r)
n also can be determined by Eq. (6).

For example, the �rst few IF (2,2)
n are thus:

IF (2,2)
1 = {0, 1},

IF (2,2)
2 = {00, 01, 10, 11},

IF (2,2)
3 = {000, 001, 010, 011, 100, 110},

IF (2,2)
4 = {0000, 0001, 0010, 0011, 0100, 0110, 1000, 1001, 1100},

IF (2,2)
5 = {00000, 00001, 00010, 00011, 00100, 00110, 01000, 01001, 01100, 10000, 10001,

10010, 10011, 11000, 11001}.
By Theorem 3.1 and the above analysis, the following result holds.
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Corollary 3.2. Setting |IF (p,r)
n |= 0 for n < −p and |IF (p,r)

n |= 1 for −p ≤ n ≤ 0, we have

|IF (p,r)
n |= |IF (p,r)

n−1 |+|IF (p,r)
n−p−1|+ . . .+ |IF (p,r)

n−p−r|. (7)

By Eqs. (3) and (6), it is easy to see that if p = 1 or r = 1, then OF (p,r)
n = IF (p,r)

n and so

OΓ
(p,r)
n

∼= IΓ
(p,r)
n . For p > 1, r > 1 and n = 0 or 1, OF (p,r)

n = IF (p,r)
n and OΓ

(p,r)
n

∼= IΓ
(p,r)
n .

But for n > 1, |IF (p,r)
n |> |OF (p,r)

n | by Eqs. (4) and (7). So the following result holds.

Corollary 3.3. Let p ≥ 1, r ≥ 1 and n ≥ 0. Then OΓ
(p,r)
n ̸∼= IΓ

(p,r)
n if and only if

p > 1, r > 1 and n > 1.

The above result implies that OΓ
(p,r)
n ̸∼= IΓ

(p,r)
n from the general sense. However, there

are exist some p > 1 and p′ > 1, r > 1 and r′ > 1, and n > 1 and n′ > 1 such that

OΓ
(p,r)
n

∼= IΓ
(p′,r′)
n′ . For example, it can be shown that OΓ

(2,2)
4

∼= IΓ
(3,2)
4 , as illustrated in

Figure 5.

(2,2)

4ΓO

0000

01000101

0001 0010

10101001 1000

0000

00010011

0010 1000

11000110 0100

(3,2)

4ΓI( )a ( )b

Fig. 5. Graphs OΓ
(2,2)
4 (a) and IΓ

(3,2)
4 (b)

3.2. Edge sets of OΓ
(p,r)
n and IΓ

(p,r)
n

The recursive structure on the edge sets of OΓ
(p,r)
n and IΓ

(p,r)
n are studied in this subsection.

3.2.1. Edge set of OΓ
(p,r)
n . We show that the iterative formula of the size of OΓ

(p,r)
n

previously given ([5], Property 2) was erroneous and determine its correct expression. First

we take OΓ
(2,3)
n as an example to understand easily the structure of the edge set of OΓ

(p,r)
n .

By Eq. (3), for n ≥ 7, OF (2,3)
n = 0OF (2,3)

n−1 ∪ 100OF (2,3)
n−3 ∪ 10100OF (2,3)

n−5 ∪ 1010100OF (2,3)
n−7 .

Inside each subgraph of OΓ
(p,r)
n induced by (10)t0OF (2,3)

n−2t−1 the edges are inherited

from OΓ
(2,3)
n−2t−1, t = 0, 1, 2 and 3. We need to determine the edges between these four

subgraphs. Let 0 ≤ i < j ≤ 3. Then by the fact 0(10)j−i−10OF (2,3)
n−2j−1 ⊆ OF (2,3)

n−2i−1, it

is known that (10)i00(10)j−i−10OF (2,3)
n−2j−1 is a subset of (10)i0OF (2,3)

n−2i−1. It is easily seen

that (10)j0OF (2,3)
n−2j−1 = (10)i10(10)j−i−10OF (2,3)

n−2j−1. Let α be a vertex of (10)j0OF (2,3)
n−2j−1.

Then α = (10)i10(10)j−i−10β for some β ∈ OF (2,3)
n−2j−1. Obviously, there exist a vertex

α′ = (10)i00(10)j−i−10β ∈ OF (2,3)
n−2i−1, and so α is adjacent to α′. Therefore, there are

|OF (2,3)
n−2j−1| edges between the subsets (10)j0OF (2,3)

n−2j−1 and (10)i0OF (2,3)
n−2i−1. So we know

that the decomposition of OΓ
(2,3)
n can be shown as in Figure 6, and
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|E(OΓ(2,3)
n )| = |E(OΓ

(2,3)
n−1 )|+|E(OΓ

(2,3)
n−3 )|

+ |E(OΓ
(2,3)
n−5 )|+|E(OΓ

(2,3)
n−7 )|

+ |OFn− 3(2,3)|+2|OFn− 5(2,3)|+3|OFn− 7(2,3)|

=
3∑

t = 0
(
|E(IΓ

(2,3)
n−2t−1)|+t|V (IΓ

(2,3)
n−2t−1)|

)
.

(2,3)

7Γ
n

O -

(2,3)

5Γ
n

O -

(2,3)

3Γ
n

O -

(2,3)

1Γ
n

O -

Fig. 6. The decomposition of OΓ
(2,3)
n

In general, we can get the structure of the edge set of OΓ
(p,r)
n as follows. By Eq. (3) we

know that the vertex set of OΓ
(p,r)
n can be decomposed into r+ 1 disjoint subsets for n ≥

pr+1: OF (p,r)
n =

r⋃
t=0

(10p−1)t0OF (p,r)
n−pt−1. So the graph OΓ

(p,r)
n can be decomposed into r+1

disjoint subgraphs isomorphic to OΓ
(p,r)
n−tp−1 for t = 0, 1, . . . , r, respectively. Further, for

0 ≤ i < j ≤ r, it can be found that there are |V (OΓ
(p,r)
n−jp−1)|= |OF (p,r)

n−jp−1| edges connecting

the subgraphs OΓ
(p,r)
n−ip−1 and OΓ

(p,r)
n−jp−1 (of OΓ

(p,r)
n ). So there are

r∑
t=0

(t|OF (p,r)
n−pt−1|) edges

between these r + 1 subgraphs. So we have the following result.

Theorem 3.4. Let n ≥ pr + 1. Then

|E(OΓ(p,r)
n )|=

r∑
t=0

(|E(OΓ
(p,r)
n−pt−1)|+t|OF (p,r)

n−pt−1|). (8)

3.2.2. Edge set of IΓ
(p,r)
n . First, we also take IΓ

(2,3)
n as an example to better under-

stand the structure of the edge set of OΓ
(p,r)
n . By Eq. (6), we know that IF (2,3)

n can be

decomposed into four disjoint subsets for n ≥ 5: 0IF (2,3)
n−1 , 100IF

(2,3)
n−3 , 1100IF

(2,3)
n−4 and

11100IF (2,3)
n−5 .

Inside each subgraph of IΓ
(p,r)
n induced by 0IF (2,3)

n−1 and 1t00IF (2,3)
n−2−t (t ∈ [3]) the edges

are inherited from IΓ
(2,3)
n−1 and IΓ

(2,3)
n−2−t, respectively. Now we consider the edges between

the above four subsets. It is easily seen that 01t−100IF (2,3)
n−2−t ⊂ 0IF (2,3)

n−1 . So for every

vertex α ∈ 1t00IF (2,3)
n−2−t, there exist a vertex α′ ∈ 01t−100IF (2,3)

n−2−t such that there is an

edge between α and α′. So there are |IF (2,3)
n−2−t| edges between 1t00IF (2,3)

n−2−t and 0IF (2,3)
n−1

for t ∈ [3]. Suppose 1 ≤ i < j ≤ 3, β ∈ 1j00IF (2,3)
n−2−j and β′ ∈ 1i00IF (2,3)

n−2−i. If
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j − i ≥ 2, then β and β′ are not adjacent in IΓ
(p,r)
n . If j = i + 1, then by the fact

1j−1000IF (2,3)
n−2−j ⊂ 1i00IF (2,3)

n−2−i, we know that there exist a vertex β′′ ∈ 1i00IF (2,3)
n−2−i such

that β′ and β′′ are adjacent in IΓ
(p,r)
n . This implies that for 1 ≤ i < j ≤ 3, there exist

edges between 1j00IF (2,3)
n−2−j and 1i00IF (2,3)

n−2−i only if j = i + 1, and there are |IF (2,3)
n−2−j|

edges between them. Hence, we know that the decomposition of IΓ
(2,3)
n can be shown as

in Figure 7, and |E(IΓ
(2,3)
n )|= |E(IΓ

(2,3)
n−1 )|+

3∑
t=1

(|E(IΓ
(2,3)
n−2−t)|+2|IF (2,3)

n−2−t)|)− |IF (2,3)
n−3 |.

(2,3)

5IΓ
n-

(2,3)

4IΓ
n-

(2,3)

3IΓ
n-

(2,3)

1IΓ
n-

Fig. 7. The decomposition of IΓ
(2,3)
n

In general, we have the following result.

Theorem 3.5. n ≥ p+ r. Then

|E(IΓ(p,r)
n )|= |E(IΓ

(p,r)
n−1 )|+

r∑
t=1

(|E(IΓ
(p,r)
n−p−t)|+2|IF (p,r)

n−p−t|)− |IF (p,r)
n−p−1|. (9)

Proof. By Eq. (6), IF (p,r)
n = 0IF (p,r)

n−1 ∪ 10pIF (p,r)
n−p−1 ∪ . . . ∪ 1r0pIF (p,r)

n−p−r. So the graph

IΓ
(p,r)
n can be decomposed into r+1 disjoint subgraphs isomorphic to IΓ

(p,r)
n−1 (induced by

the set 0IF (p,r)
n−1 ) and IΓ

(p,r)
n−p−t (induced by the set 1t0p−1IF (p,r)

n−p−t) for t ∈ [r], respectively.

To achieve the desired result, we need to consider the edges between the above subgraphs.

First, we consider 0IF (p,r)
n−1 and 1t0pIF (p,r)

n−p−t, t ∈ [r]. Let α be a vertex of 1t0pIF (p,r)
n−p−t.

Then α = 1t0pα′ for some α′ ∈ IF (p,r)
n−p−t. It can be seen that the vertex β = 01t−10pα′ ∈

0IF (p,r)
n−1 , and so there are |IF (p,r)

n−p−t| edges between 0IF (p,r)
n−1 and 1t0pIF (p,r)

n−p−t. Now we

consider the edges between 1i0pIF (p,r)
n−p−i and 1j0pIF (p,r)

n−p−j for 1 ≤ i < j ≤ r. Obviously, if

j ≥ i+2, then there is not edges between them. Suppose j = i+1 and let α ∈ 1j0pIF (p,r)
n−p−j.

Then α = 1j0pα′ = 1i10pα′ for some α′ ∈ IF (p,r)
n−p−j. As β = 1i00pα′ ∈ 1i0pIF (p,r)

n−p−i and

α and β are adjacent, we know that there are |IF (p,r)
n−p−j| edges between 1i0pIF (p,r)

n−p−i and

1j0pIF (p,r)
n−p−j for j = i+1. Therefore, there are altogether 2

r∑
t=1

|IF (p,r)
n−p−t|−|IF (p,r)

n−p−1| edges

connecting these r + 1 subgraphs. This completes the proof.
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If p = 1 and r = 1, then by Eqs. (8) and (9) we have

|E(OΓ(1,1)
n )|=|E(OΓ

(1,1)
n−1 )|+|E(OΓ

(1,1)
n−2 )|+|OF (1,1)

n−2 |, and

|E(IΓ(1,1)
n )|=|E(IΓ

(1,1)
n−1 )|+|E(IΓ

(1,1)
n−2 )|+|IF (1,1)

n−2 |,

respectively. This means that Eq. (2) can be obtained from both Eqs. (8) and (9).

4. Relation to Hypercubes

Both partial cubes and median graphs are important and well-studied classes of graphs.

The graphs IΓ
(p,r)
n and OΓ

(p,r)
n which are partial cubes and median graphs are determined.

4.1. IΓ
(p,r)
n and OΓ

(p,r)
n as partial cubes

Both graphs OΓ
(p,r)
n and IΓ

(p,r)
n are induced subgraphs of hypercubes. It is natural to ask

whether they can be isometrically embedded into hypercubes. First we consider OΓ
(p,r)
n .

Theorem 4.1. Let p ≥ 1 and r ≥ 1. Then for any n ≥ 1, OΓ
(p,r)
n is a partial cube.

Proof. Let α = a1a2 . . . an and β = b1b2 . . . bn be any two vertices of OΓ
(p,r)
n . Suppose

that the Hamming distance H(α, β) between α and β is s, and aij ̸= bij for all j ∈ [s]. The

desired result can be obtained by showing d
OΓ

(p,r)
n

(α, β) = H(α, β) for all s ≥ 1. This can

be shown by using induction on s. Obviously if s = 1, then d
OΓ

(p,r)
n

(α, β) = 1 = H(α, β)

by De�nition 1.1. Suppose that s ≥ 2 and d
OΓ

(p,r)
n

(µ, ν) = H(µ, ν) holds for any two

vertices µ and ν of OΓ
(p,r)
n with H(µ, ν) = s− 1. Without loss of generality, suppose that

ai1 = 1 and bi1 = 0. Let α′ be the word obtained from α by changing ai1 from 1 to 0.

Then H(α, α′) = 1, H(α′, β) = s− 1 and α′ is a O-Fibonacci (p, r)-word of length n, that

is, α′ ∈ OF (p,r)
n . As d

OΓ
(p,r)
n

(α′, β) = H(α′, β) = s − 1 by the induction hypothesis, we

know d
OΓ

(p,r)
n

(α, β) = H(α, α′) +H(α′, β) = 1 + s− 1 = s. This completes the proof.

By Theorem 4.1, all OΓ
(p,r)
n are partial cubes. However, this does not hold for IΓ

(p,r)
n .

For n ≥ p and n ≥ r, the cubes IΓ
(p,r)
n which are partial cubes have been determined [25].

Now for all the cases n ≥ 1, p ≥ 1 and r ≥ 1, the results are listed as follows.

Theorem 4.2. Let p ≥ 1, r ≥ 1 and n ≥ 1. Then IΓ
(p,r)
n is a partial cube if and only if

it is one of the following cases:

(a) p = 1, r ≥ 1, and n ≥ 1;

(b) p ≥ 2, r ≤ p+ 1 and n ≥ 1; and

(c) p ≥ 2, r ≥ p+ 2 and n < r.

Proof. First we consider the case p = 1 and r ≥ 1. If n ≥ r, then IΓ
(1,r)
n is a partial

cube ([25], Lemma 2.2). If n < r, then IΓ
(p,r)
n

∼= Qn by Proposition 2.3, and so IΓ
(p,r)
n is

a partial cube. It means that if (a) holds, then IΓ
(1,r)
n is a partial cube.

If p ≥ 2 and r ≤ p + 1, then it is obvious that there is not a distance-barrier between

any two vertices of IΓ
(p,r)
n . So if (b) holds, then IΓ

(1,r)
n is partial cube by Lemma 2.1.
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Now we turn to consider the case p ≥ 2 and r ≥ p+2. If n ≥ r, then it was shown that

IΓ
(p,r)
n is not a partial ([25], Lemma 2.5). If n < r, then there is not a distance-barrier

between any two vertices of IΓ
(p,r)
n , and so IΓ

(p,r)
n is a partial cube by Lemma 2.1.

According to the above analysis, IΓ
(p,r)
n is a partial cube if and only if one of (a), (b)

and (c) holds.

4.2. OΓ
(p,r)
n and IΓ

(p,r)
n as median graphs

It is well known that a median graph must be a partial cube. In this subsection, we show

that OΓ
(p,r)
n (resp. IΓ

(p,r)
n ) being median graphs is only a small part of the OΓ

(p,r)
n (resp.

IΓ
(p,r)
n ) which are partial cubes.

Note that for n ≥ p and n ≥ r, the graphs IΓ
(p,r)
n which are median graphs has been

determined [18]. For the cases p ≥ 1, r ≥ 1 and n ≥ 1, graphs IΓ
(p,r)
n as median graphs

are list as follows.

Theorem 4.3. Let p ≥ 1, r ≥ 1 and n ≥ 1. Then IΓ
(p,r)
n is a median graph if and only if

it is one of the following cases:

(a) p = 1, r ≥ 2 and r ≥ n ≥ 1;

(b) p ≥ 2, r ≥ 3 and 2 ≥ n ≥ 1; and

(c) r ≤ p, r ≤ 2 and n ≥ 1.

Proof. We distinguish three cases: (1) p = 1 and r ≥ 2, (2) p ≥ 2 and r ≥ 3, and (3)

r ≤ p and r ≤ 2. It has been shown that if (1) or (3) holds for n ≥ p and n ≥ r, or (2)

hold for n ≥ 3, then IΓ
(p,r)
n is not a median graph ([25], Lemma 4.2 and Corollary 4.4).

If (1) holds and n < r, then IΓ
(p,r)
n

∼= Qn by Proposition 2.3(1). It is obvious that if (2)

happens and 2 ≥ n ≥ 1, then IΓ
(p,r)
n

∼= Qn. It is well known that Qn is a median graph.

If n < p and (3) holds, then IΓ
(p,r)
n

∼= IΓ
(n,r)
n by Proposition 2.3 (3). It has been known

that IΓ
(n,r)
n is a median graph if (3) happens ([25], Corollary 4.4). According to the above

analysis, IΓ
(p,r)
n is a median graph if and only if (a), (b), or (c) holds.

The following result determines the graphs OΓ
(p,r)
n which are median graphs.

Theorem 4.4. Let p ≥ 1, r ≥ 1 and n ≥ 1. Then OΓ
(p,r)
n is a median graph if and only

if one of the following cases holds:

(a′) p ≥ 1, r = 1 and n ≥ 1;

(b′) p = 1, r ≥ 2 and r ≥ n ≥ 1; and

(c′) p ≥ 2, r ≥ 2 and n ≤ pr.

Proof. We also distinguish three cases by p and r: (1′) p ≥ 1 and r = 1, (2′) p = 1 and

r ≥ 2, and (3′) p ≥ 2 and r ≥ 2. By Corollary 3.3, we know that OΓ
(1,r)
n

∼= IΓ
(1,r)
n and

OΓ
(p,1)
n

∼= IΓ
(p,1)
n . So if (a′) or (b′) holds, then OΓ

(p,r)
n is a median graph by Theorem 4.3

(a) and (c). Now we turn to consider case (3′). For the case p ≥ 2, r ≥ 2 and n ≤ pr, let
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χ =x1x2 . . . xn,

η =y1y2 . . . yn,

ρ =p1p2 . . . pn,

and

ω =w1w2 . . . wn,

where χ, η and ρ are vertices of OΓ
(p,r)
n , and ω is the median of χ, η and ρ. It is well known

that the median of the triple in Qn is obtained by the majority rule ([6], Proposition 3.7):

the ith coordinate of the median is equal to the element that appears at least twice among

the xi, yi, and pi. Without loss of generality, suppose that among x1, y1 and p1 there

at least two 1s. Then w1 = 1. Suppose the second 1 contained in ω is wi. As χ, η are

vertices of OΓ
(p,r)
n and there are at least two 1 among xi, yi and pi, we know i ≥ p+1. By

considering the coordinate of the next element 1 in ω, we can �nd that the number of 0s

between two 1 is at least p− 1 in ω. Since the length of ω is not more than pr, there are

at most r continue `1' in ω. Therefore, ω is a vertex of OΓ
(p,r)
n , and so OΓ

(p,r)
n is a median

graph for this case.

For any p ≥ 2, r ≥ 2 and n > pr, let

α =10p−110p−10(0p−11)r−20n−pr−1,

β =10p−100p−11(0p−11)r−20n−pr−1,

and

γ =00p−110p−11(0p−11)r−20n−pr−1.

Then α, β and γ are vertices of OΓ
(p,r)
n . Set

µ = 10p−110p−11(0p−11)r−20n−pr−1.

It is easy to see that α, β and γ are pairwise at distance 2 in OΓ
(p,r)
n . By the majority

rule, the unique candidate for their median is µ. Since there are r + 1 `consecutive' 1s

in µ, it does not belong to OΓ
(p,r)
n and so OΓ

(p,r)
n is not median-closed induced subgraph

of hypercube. Hence, OΓ
(p,r)
n is not a median graph by Theorem 2.2 for this case. This

completes the proof.

5. Concluding Remarks

In this section, two questions are listed for further study of OΓ
(p,r)
n and IΓ

(p,r)
n .

Corollary 3.3 shows that OΓ
(p,r)
n ̸∼= IΓ

(p,r)
n for almost all of p and r. However, there may

be some p, r, n and p′, r′, n′ such that OΓ
(p,r)
n

∼= IΓ
(p′,r′)
n′ . As an example, OΓ

(2,2)
4

∼= IΓ
(3,2)
4

is shown in Figure 5. A natural question that arises is the following:

Question 5.1. For which values of p, r, n and p′, r′, n′, OΓ
(p,r)
n

∼= IΓ
(p′,r′)
n′ ?
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The eccentricity e(v) of a vertex v of a graph G is the maximum of its distances to other

vertices in G, and the diameter d(G) of G are the maximum of the vertex eccentricities.

The diameter of OΓ
(p,r)
n was determined ([5], Property 4). But the diameter of IΓ

(p,r)
n has

not been studied. So the following questions are listed.

Question 5.2. What is the diameter of IΓ
(p,r)
n ?

As mentioned above the diameter of a graph G is the greatest distance between any two

vertices in G. Theorem 4.1 shows that every graph OΓ
(p,r)
n is a partial cube, and so the

distance between any two vertices of OΓ
(p,r)
n is the Hamming distance of them. However,

Theorem 4.2 shows that only a small part of all graphs IΓ
(p,r)
n are partial cube. Therefore,

it seems that determining the diameter of IΓ
(p,r)
n is a rather di�cult task.
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