Ars Combinatoria www.combinatorialpress.com/ars

On Fibonacci (p, r)-cubes

Jian-Xin Wei^{1, \boxtimes}

¹ School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong, 264025, P.R. China

ABSTRACT

In this paper, it is pointed out that the definition of 'Fibonacci (p, r)-cube' in many papers (denoted by $I\Gamma_n^{(p,r)}$) is incorrect. The graph $I\Gamma_n^{(p,r)}$ is not the same as the original one (denoted by $O\Gamma_n^{(p,r)}$) introduced by Egiazarian and Astola. First, it is shown that $I\Gamma_n^{(p,r)}$ and $O\Gamma_n^{(p,r)}$ have different recursive structure. Then, it is proven that all the graphs $O\Gamma_n^{(p,r)}$ are partial cubes. However, only a small part of graphs $I\Gamma_n^{(p,r)}$ are partial cube. It is also shown that $I\Gamma_n^{(p,r)}$ and $O\Gamma_n^{(p,r)}$ have different medianicity. Finally, several questions are listed for further investigation.

Keywords: Fibonacci cube, Fibonacci (p, r)-cube, Partial cube, Median graph 2020 Mathematics Subject Classification: 05C75, 68R10.

1. Introduction

Let $B = \{0, 1\}$ and for $n \ge 1$ set

$$\mathcal{B}_n = \{b_1 b_2 \dots b_n \mid b_i \in B, i \in 1:n\}.$$

An element of \mathcal{B}_n is called a *binary word* of length n (or simply a *word*). All words considered of this paper are binary.

The *n*-dimensional hypercube Q_n is the graph whose vertex set is \mathcal{B}_n , and two vertices are adjacent if and only if they differ in precisely one coordinate. The cube Q_3 is shown in Figure 1(*a*). Hypercubes play an important role in many areas of discrete mathematics and computer science. An excellent survey on hypercubes can be found in [15].

 $[\]boxtimes$ Corresponding author.

E-mail addresses: wjx0426@163.com (Jian-Xin Wei).

Received 08 July 2024; accepted 20 December 2024; published 31 December 2024.

DOI: 10.61091/ars161-13

 $[\]bigcirc$ 2024 The Author(s). Published by Combinatorial Press. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

The Fibonacci cube Γ_n [7] can be obtained from Q_n by removing all vertices that contain two consecutive 1s. It is a graph family that have been studied as alternatives for the classical hypercube topology for interconnection networks. The graph Γ_5 is shown in Figure 1 (b). For more results on application and structure of Γ_n , see the survey [12] and the recent book [4].

Fig. 1. The hypercube $Q_3(a)$, and the Fibonacci cube $\Gamma_5(b)$

When Fibonacci cubes were introduced, they soon became increasingly popular. Numerous variants and generalizations of Fibonacci cubes, the so called *Fibonacci-like cube*, are proposed and investigated such as in papers [1, 5, 8, 17, 20, 26]. Recently, many other Fibonacci-like cubes have also been introduced and studied, such as generalized Fibonacci cubes [9], generalized Lucas cubes [10], daisy cubes [13], Pell graphs [16], Fibonacci-run graph [3], Fibonacci *p*-graph [23], Metallic cubes [2] and Lucas-run graph [22].

In the present paper, a special attention is given to the graphs called 'Fibonacci (p, r)cubes'. It was first introduced by Egiazarian and Astola [5]. In many papers, such as [12, 14, 18, 19, 25] and others, although it is pointed out that the graphs studied comes from [5], we find that it is not the same as given in [5]. For convenience, the graphs studied in [5] are called *O*-Fibonacci (p, r)-cubes, and the graphs studied in [12, 14, 18, 19, 25] are called *I*-Fibonacci (p, r)-cubes.

Let $p \ge 1$ and $r \ge 1$. Then for $n \ge 1$, $\alpha = a_1 a_2 \dots a_n$ is called a *O*-*Fibonacci* (p, r)-word ([5], where it is called Fibonacci (p, r)-code) if the following hold:

(1) if $a_i = 1$ then $a_{i+1} = \ldots = a_{i+(p-1)} = 0$, i.e. there is at least p-1 0s between two 1s (which is called 'consecutive' 1s); and

(2) there are no more than r 'consecutive' 1s in α , i.e. ones, between which there are exactly p-1 zeroes.

For examples, $(100)^4 0^3 (100)^3 0 (100)^2 10$ is a *O*-Fibonacci (3, 4)-word of length 33, but $(100)^4 0^3 (100)^5 010$ is not a *O*-Fibonacci (3, 4)-word.

Definition 1.1. [5] Let $O\mathcal{F}_n^{(p,r)}$ be the set of all the *O*-Fibonacci (p, r)-words of length *n*. Then the *O*-Fibonacci (p, r)-cube $O\Gamma_n^{(p,r)}$ is the graph defined on the vertex set $O\mathcal{F}_n^{(p,r)}$, and two vertices being adjacent if they differ exactly in one coordinate.

It is easily seen that if (p, r) = (1, 1), then a O-Fibonacci (p, r)-word is a word that contain no two consecutive 1s. Therefore, the O-Fibonacci (1, 1)-cube $O\Gamma_n^{(1,1)}$ is just the

classical Fibonacci cube Γ_n . The graphs $O\Gamma_5^{(2,2)}$ and $O\Gamma_6^{(2,1)}$ are shown in Figure 2 (a) and (b), respectively.

Fig. 2. *O*-Fibonacci (p, r)-cubes $O\Gamma_5^{(2,2)}(a)$ and $O\Gamma_6^{(2,1)}(b)$

As mentioned above, the 'Fibonacci (p, r)-cubes' studied in [12, 14, 18, 19, 25] will be called *I*-Fibonacci (p, r)-cubes. They are defined as follows.

Let p, r and n be any positive integers. Then an *I*-Fibonacci (p, r)-word of length n is a word of length n in which there are at most r consecutive 1s and at least p element 0s between two sub-words composed of (at most r) consecutive 1s.

Definition 1.2. [19] Let $I\mathcal{F}_n^{(p,r)}$ denote the set of all *I*-Fibonacci (p, r)-words of length n. Then the *I*-Fibonacci (p, r)-cube $I\Gamma_n^{(p,r)}$ is the graph defined on the vertex set $I\mathcal{F}_n^{(p,r)}$ and two vertices are adjacent if they differ in exactly one coordinate.

Note that the cubes $I\Gamma_n^{(p,r)}$ is considered for $n \ge p$ and $n \ge r$ in the above papers. As $I\Gamma_n^{(p,r)}$ is not always trivial for the case n < r or n < p, we consider the graph $I\Gamma_n^{(p,r)}$ for all $p \ge 1, r \ge 1$ and $n \ge 1$ in this paper.

For examples, the graphs $I\Gamma_5^{(3,2)}$ and $I\Gamma_5^{(2,2)}$ are shown in Figure 3 (a) and (b), respectively. Obviously, *I*-Fibonacci (1,1)-cube $I\Gamma_n^{(1,1)}$ is just the classical Fibonacci cube Γ_n .

Fig. 3. *I*-Fibonacci (p, r)-cubes $I\Gamma_5^{(3,2)}(a)$ and $I\Gamma_5^{(2,2)}(b)$

We think that the main difference between the definitions of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ is the meaning of 'consecutive' 1s: the r 'consecutive 1s' in a vertex of $O\Gamma_n^{(p,r)}$ means the sub-word $(10^{p-1})^r$, but the r 'consecutive 1s' in a vertex of $I\Gamma_n^{(p,r)}$ means the sub-word 1^r .

For a binary word χ , we set $\chi^0 = \lambda$, where λ is the empty word. For convenience, if n = 0, then let $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ be the graphs with only one vertex λ .

Many Fibonacci like-cubes and some sub-cubes of hypercubes can be obtained from hypercubes by some word forbidden to appear in the words of hypercubes. From the point of view, the following note holds:

Remark 1.3. The cube $O\Gamma_n^{(p,r)}$ can be obtained from Q_n by removing all vertices that contain the words $(10^{p-1})^r 1$ or 10^{s_1} for $s \leq p-2$ (if $p \geq 2$); and $I\Gamma_n^{(p,r)}$ can be obtained from Q_n by removing all vertices that contain the words 1^{r+1} or 10^{s_1} for $s \leq p-1$.

From Remark 1.3 and Definitions 1.1 and 1.2, $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ are not isomorphic in general. For example, $O\Gamma_5^{(2,2)}$ (Figure 2 (a)) is not isomorphic to $I\Gamma_5^{(2,2)}$ (Figure 3 (b)). This fact can be further illustrated by the results of Sections 3 and 4 in the paper.

The rest of the paper is organized as follows. In Sect. 2, some necessary definitions and known results are introduced. In Sect. 3, the recursive structures of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ are given. In Sect. 4, the graphs $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ which are partial cube and median graphs are determined. In the last section, some questions on $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ are listed for further investigation.

2. Preliminaries

In this section, some definitions, notion and results needed in the paper are given. Let \mathcal{A} be a set of some words. Then $\alpha \mathcal{A}$ is the set of the words obtained from \mathcal{A} by appending a fixed word α in front of each of the elements of \mathcal{A} . Recall that *Fibonacci numbers* are defined as $F_0 = 0, F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$. Let \mathcal{F}_n be the vertex set of Fibonacci cube Γ_n . sThen for $n \geq 2$ the well known decomposition of Fibonacci cube can be obtained as follows [7], where $\mathcal{F}_0 = \{\lambda\}$ and $\mathcal{F}_1 = \{0, 1\}$:

$$\mathcal{F}_n = 0\mathcal{F}_{n-1} \cup 10\mathcal{F}_{n-2}.$$
 (1)

The name of the cubes Γ_n is justified with the fact that for any $n \ge 0$, $|\mathcal{F}_n| = F_{n+2}$ [7]. By Eq. (1), the size of Γ_n can be shown in Eq. (2) for $n \ge 2$, and the recursive structure can be illustrated in Figure 4:

Fig. 4. The recursive structure of Γ_n

The distance $d_G(\alpha, \beta)$ between vertices α and β of a graph G is the length of a shortest α, β -path. Given two words α and β of the same length, their Hamming distance $H(\alpha, \beta)$

is the number of coordinates in which they differ. Let H and G be arbitrary (connected) graphs. Then a mapping $f : V(H) \to V(G)$ is an *isometric embedding* if $d_H(u, v) = d_G(f(u), f(v))$ holds for any $u, v \in V(H)$.

A partial cube is a connected graph that admits an isometric embedding into a hypercube [6]. It is well known that if α and β are vertices of Q_n , then $d_{Q_n}(\alpha, \beta) = H(\alpha, \beta)$. So we know that if G is a partial cube, then $d_G(\alpha, \beta) = H(\alpha, \beta)$ for any vertices α and β of G. There are more studies on determining which graphs are partial cubes. For example, some generalized Fibonacci and Lucas cubes [9, 10] as partial cubes are shown in [21, 24].

Let $r \ge p+2$ and $n \ge r$. Then for some t with $p \le t \le r-2$, there exist vertices α and β of $I\Gamma_n^{(p,r)}$ such that $10^t 1$ and $11^t 1$ appear in the same coordinates of α and β , respectively. For convenience, we call there is a *distance-barrier* between the above vertices α and β . It can be shown that $d_{I\Gamma_n^{(p,r)}}(\alpha,\beta) \ne H(\alpha,\beta)$ by Remark 1.3. By the following result we know that not all $I\Gamma_n^{(p,r)}$ are partial cubes.

Lemma 2.1. Let $p \ge 2$, α and β be any vertices of $I\Gamma_n^{(p,r)}$. Then $d_{I\Gamma_n^{(p,r)}}(\alpha,\beta) = H(\alpha,\beta)$ if and only if there does not exist distance-barrier between α and β .

A median of vertices $u, v, w \in V(G)$ is a vertex of G that simultaneously lies on a shortest u, v-path, a shortest u, w-path, and a shortest v, w-path. The graph G is called a median graph if every triple of its vertices has a unique median. It is well known that a median graph must be a partial cube ([6], Proposition 12.4), and hypercube Q_n is a median graph for every $n \ge 1$ ([6], Proposition 3.7).

A subgraph H of a graph G is *median-closed* if, with any triple of vertices of H, their median is also in H. The following result gives a useful tool to prove that a graph is a median graph ([6], Corollary 14.9).

Theorem 2.2. [6] A graph is a median graph if and only if it is a median-closed induced subgraph of a hypercube.

It was shown that all Fibonacci cubes Γ_n are median graphs (of course are partial cubes) [11]. In this paper, the question for determining which $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ are partial cubes and median graphs is solved completely.

Now we turn to consider some basic properties of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ in the rest of this section. By Definitions 1.1 and 1.2, the following results hold obviously.

Proposition 2.3. Let r, r', p, p', n, n' be positive integers, $s = \min\{r, r'\}$ and $t = \min\{p, p'\}$. Then

- (a) $O\Gamma_n^{(1,r)} \cong I\Gamma_n^{(1,r)} \cong Q_n \text{ for } n \leq r;$
- (b) $O\Gamma_n^{(1,1)} \cong I\Gamma_n^{(1,1)} \cong \Gamma_n;$
- (c) $O\Gamma_n^{(p,r)} \cong O\Gamma_n^{(p,r')}$ for $n \leq sp$, and $O\Gamma_n^{(p,r)} \cong O\Gamma_n^{(p',r)}$ for $n \leq t$; and
- (d) $I\Gamma_n^{(p,r)} \cong I\Gamma_n^{(p,r')}$ for $n \leq s$, and $I\Gamma_n^{(p,r)} \cong I\Gamma_n^{(p',r)}$ for $n \leq t+1$.

By Proposition 2.3 (1) and (2), $O\Gamma_n^{(p,r)} \cong I\Gamma_n^{(p,r)}$ for some special p and r. For examples,

 $O\Gamma_3^{(1,3)} \cong I\Gamma_3^{(1,3)} \cong Q_3$ (as shown in Figure 1 (a)) and $O\Gamma_5^{(1,1)} \cong I\Gamma_5^{(1,1)} \cong \Gamma_5$ (as shown in Figure 1 (b)). It is obvious that all those graphs are connected. In general, we have the following result.

Proposition 2.4. Let p, r and n be positive integers. Then both the graphs $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ are connected.

Proof. First we show that $I\Gamma_n^{(p,r)}$ is connected. It is obvious that 0^n is a vertex of $I\Gamma_n^{(p,r)}$ for any p, r and n. We claim that every vertex α of $I\Gamma_n^{(p,r)}$ is connected with 0^n by a $\alpha, 0^n$ -path. In fact, let $\alpha = a_1a_2...a_n$ be any vertex of $I\Gamma_n^{(p,r)}$ differing from 0^n , and $a_{i_1} = \ldots = a_{i_t} = 1$, where $t \ge 1$ and $i_1 \le \ldots \le i_t$. Then the word α_j obtained from α by changing a_{i_1}, \ldots, a_{i_j} from 1 to 0 is also a vertex of $I\Gamma_n^{(p,r)}$, where $j = 1, \ldots, t$. Obviously, $\alpha_t = 0^n$. If j = 1, then α and 0^n are adjacent vertices. Now suppose that $j \ge 2$. Then $\alpha \to \alpha_1 \to \ldots \to \alpha_{j-1} \to 0^n$ is a path in $I\Gamma_n^{(p,r)}$, and so $I\Gamma_n^{(p,r)}$ is connected.

Similarly, we can show that $O\Gamma_n^{(p,r)}$ is connected by the facts that 0^n is a vertex of $O\Gamma_n^{(p,r)}$, and for any vertex α of $O\Gamma_n^{(p,r)}$ differing from 0^n , there exist a $\alpha, 0^n$ -path. This completes the proof.

3. Recursive Structure of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$

Although some of the structure of $O\Gamma_n^{(p,r)}$ was studied [5], we list them here to show they are different from that of $I\Gamma_n^{(p,r)}$.

3.1. Vertex sets of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$

Recall that $O\mathcal{F}_n^{(p,r)}$ and $I\mathcal{F}_n^{(p,r)}$ are the vertex sets of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$, respectively.

3.1.1. Vertex set of $O\Gamma_n^{(p,r)}$. In paper [5], it is shown that for $n \ge pr + 1$, the set $O\mathcal{F}_n^{(p,r)}$ can be defined recursively by

$$O\mathcal{F}_{n}^{(p,r)} = \bigcup_{i=0}^{r} (10^{p-1})^{i} 0 O\mathcal{F}_{n-pi-1}^{(p,r)},$$
(3)

with $O\mathcal{F}_0^{(p,r)} = \{\lambda\}$. For example, the first five (from n = 1) sets $O\mathcal{F}_n^{(2,2)}$ are thus: $\{0,1\},$

 $\{00, 01, 10\},\$

 $\{000, 001, 010, 100, 101\},\$

 $\{0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010\},\$

 $\{00000, 00001, 00010, 00100, 00101, 01000, 01001, 01010, 10000, 10001, 10010, 10100\}.$

If p = 1 and r = 1, then we have $O\mathcal{F}_n^{(1,1)} = 0O\mathcal{F}_{n-1}^{(1,1)} \cup 10O\mathcal{F}_{n-2}^{(1,1)}$ by Eq. (3). This means that Eq. (1) can be obtained from Eq. (3) by Proposition 2.3(2).

For convenience, if $n \ge 1$ and $-p \le n - pi - 1 < 0$ for some i $(1 \le i \le r)$, then let $(10^{p-1})^i 0 O \mathcal{F}_{n-pi-1}^{(p,r)}$ be the set containing only one word, and this word is the prefix of

length n of $(10^{p-1})^i 0$; if n - pi - 1 < -p, then let $(10^{p-1})^i 0 O \mathcal{F}_{n-pi-1}^{(p,r)} = \emptyset$. This means that Eq. (3) also holds for $1 \le n \le pr$, and so we have

$$|O\mathcal{F}_{n}^{(p,r)}| = \sum_{i=0}^{r} |O\mathcal{F}_{n-pi-1}^{(p,r)}|, \qquad (4)$$

where $|O\mathcal{F}_{n-pi-1}^{(p,r)}| = 1$ if $-p \le n - pi - 1 < 0$, and $|O\mathcal{F}_{n-pi-1}^{(p,r)}| = 0$ if n - pi - 1 < -p.

In paper [5], Fibonacci (p,r)-number $OF_n^{(p,r)}$ is defined as follows with $OF_n^{(p,r)} = 0$ if $n \leq 0$, and $OF_n^{(p,r)} = 1$ if $1 \leq n \leq p+1$:

$$OF_n^{(p,r)} = \sum_{i=0}^r OF_{n-pi-1}^{(p,r)}.$$
(5)

It is easily seen that if p = r = 1, then $OF_n^{(p,r)} = F_n$. By Eqs. (4) and (5), it is known that $|V(O\Gamma_n^{(p,r)})| = |O\mathcal{F}_n^{(p,r)}| = OF_{n+p+1}^{(p,r)}$. By this result and Proposition 2.3(2), $|V(\Gamma_n)| = |\mathcal{F}_n| = |O\mathcal{F}_n^{(1,1)}| = OF_{n+1+1}^{(1,1)} = F_{n+2} \text{ holds for the classical Fibonacci cubes [7]}.$

3.1.2. Vertex set of $I\Gamma_n^{(p,r)}$. On the vertex set of $I\Gamma_n^{(p,r)}$, we have the following result.

Theorem 3.1. Let
$$p \ge 1, r \ge 1, n \ge p + r$$
 and $I\mathcal{F}_{0}^{(p,r)} = \{\lambda\}$. Then $I\mathcal{F}_{n}^{(p,r)}$ satisfies:
 $I\mathcal{F}_{n}^{(p,r)} = 0I\mathcal{F}_{n-1}^{(p,r)} \cup 10^{p}I\mathcal{F}_{n-p-1}^{(p,r)} \cup \ldots \cup 1^{r}0^{p}I\mathcal{F}_{n-p-r}^{(p,r)}.$
(6)

Proof. It is easy to see that $I\mathcal{F}_n^{(p,r)} \supseteq 0I\mathcal{F}_{n-1}^{(p,r)} \cup 10^p I\mathcal{F}_{n-p-1}^{(p,r)} \cup \ldots \cup 1^r 0^p I\mathcal{F}_{n-p-r}^{(p,r)}$. Let $\alpha \in I\mathcal{F}_n^{(p,r)}$ and suppose that the coordinate of the first 0 of α is *i*. Then $1 \leq i \leq r+1$ by the definition of *I*-Fibonacci (p, r)-word and then the following holds. If i = 1, then $\alpha = 0\beta$ for some $\beta \in I\mathcal{F}_{n-1}^{(p,r)}$. If $2 \leq i \leq r+1$, then α has the form of $1^{i-1}0^p\gamma$, where $\gamma \in I\mathcal{F}_{n-p-(i-1)}^{(p,r)}$. It implies that $I\mathcal{F}_n^{(p,r)} \subseteq 0I\mathcal{F}_{n-1}^{(p,r)} \cup 10^p I\mathcal{F}_{n-p-1}^{(p,r)} \cup \dots \cup 1^r 0^p I\mathcal{F}_{n-p-r}^{(p,r)}$. This completes the proof.

It is easy to see that if p = 1 and r = 1, then Eq. (1) can be obtained from Eq. (6) by Proposition 2.3 (2).

For convenience, if $1 \leq n < p+i$ for some $i \in [r]$, then let $1^{i}0^{p}I\mathcal{F}_{n-p-i}^{(p,r)}$ be the set consisting of only the word which is the prefix of length n of $1^{i}0^{p}$. It can be seen that if $i < j \text{ and } n < p + i, \text{ then } 1^{i} 0^{p} I \mathcal{F}_{n-p-i}^{(p,r)} = 1^{j} 0^{p} I \mathcal{F}_{n-p-j}^{(p,r)}.$ So for $n < i, \text{ let } 1^{i} 0^{p} I \mathcal{F}_{n-p-i}^{(p,r)} = \emptyset.$ Then for $1 \le n , the set <math>I\mathcal{F}_n^{(p,r)}$ also can be determined by Eq. (6).

For example, the first few $I\mathcal{F}_n^{(2,2)}$ are thus:

 $I\mathcal{F}_1^{(2,2)} = \{0,1\},\$ $I\mathcal{F}_{2}^{(2,2)} = \{00, 01, 10, 11\},\$ $I\mathcal{F}_{3}^{(2,2)} = \{000, 001, 010, 011, 100, 110\},\$ $I\mathcal{F}_{4}^{(2,2)} = \{0000, 0001, 0010, 0011, 0100, 0110, 1000, 1001, 1100\},\$ 10010, 10011, 11000, 11001.

By Theorem 3.1 and the above analysis, the following result holds.

Corollary 3.2. Setting $|I\mathcal{F}_n^{(p,r)}| = 0$ for n < -p and $|I\mathcal{F}_n^{(p,r)}| = 1$ for $-p \le n \le 0$, we have

$$|I\mathcal{F}_{n}^{(p,r)}| = |I\mathcal{F}_{n-1}^{(p,r)}| + |I\mathcal{F}_{n-p-1}^{(p,r)}| + \ldots + |I\mathcal{F}_{n-p-r}^{(p,r)}|.$$
(7)

By Eqs. (3) and (6), it is easy to see that if p = 1 or r = 1, then $O\mathcal{F}_n^{(p,r)} = I\mathcal{F}_n^{(p,r)}$ and so $O\Gamma_n^{(p,r)} \cong I\Gamma_n^{(p,r)}$. For p > 1, r > 1 and n = 0 or 1, $O\mathcal{F}_n^{(p,r)} = I\mathcal{F}_n^{(p,r)}$ and $O\Gamma_n^{(p,r)} \cong I\Gamma_n^{(p,r)}$. But for n > 1, $|I\mathcal{F}_n^{(p,r)}| > |O\mathcal{F}_n^{(p,r)}|$ by Eqs. (4) and (7). So the following result holds.

Corollary 3.3. Let $p \ge 1, r \ge 1$ and $n \ge 0$. Then $O\Gamma_n^{(p,r)} \not\cong I\Gamma_n^{(p,r)}$ if and only if p > 1, r > 1 and n > 1.

The above result implies that $O\Gamma_n^{(p,r)} \not\cong I\Gamma_n^{(p,r)}$ from the general sense. However, there are exist some p > 1 and p' > 1, r > 1 and r' > 1, and n > 1 and n' > 1 such that $O\Gamma_n^{(p,r)} \cong I\Gamma_{n'}^{(p',r')}$. For example, it can be shown that $O\Gamma_4^{(2,2)} \cong I\Gamma_4^{(3,2)}$, as illustrated in Figure 5.

Fig. 5. Graphs $O\Gamma_4^{(2,2)}(a)$ and $I\Gamma_4^{(3,2)}(b)$

3.2. Edge sets of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$

The recursive structure on the edge sets of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ are studied in this subsection.

3.2.1. Edge set of $O\Gamma_n^{(p,r)}$. We show that the iterative formula of the size of $O\Gamma_n^{(p,r)}$ previously given ([5], Property 2) was erroneous and determine its correct expression. First we take $O\Gamma_n^{(2,3)}$ as an example to understand easily the structure of the edge set of $O\Gamma_n^{(p,r)}$. By Eq. (3), for $n \ge 7$, $O\mathcal{F}_n^{(2,3)} = 0O\mathcal{F}_{n-1}^{(2,3)} \cup 100O\mathcal{F}_{n-3}^{(2,3)} \cup 10100O\mathcal{F}_{n-5}^{(2,3)} \cup 101010O\mathcal{F}_{n-7}^{(2,3)}$. Inside each subgraph of $O\Gamma_n^{(p,r)}$ induced by $(10)^{t}O\mathcal{F}_{n-2t-1}^{(2,3)}$ the edges are inherited from $O\Gamma_{n-2t-1}^{(2,3)}$, t = 0, 1, 2 and 3. We need to determine the edges between these four subgraphs. Let $0 \le i < j \le 3$. Then by the fact $O(10)^{j-i-1}O\mathcal{F}_{n-2j-1}^{(2,3)} \subseteq O\mathcal{F}_{n-2i-1}^{(2,3)}$, it is known that $(10)^i 00(10)^{j-i-1} 0O\mathcal{F}_{n-2j-1}^{(2,3)}$ is a subset of $(10)^i 0O\mathcal{F}_{n-2i-1}^{(2,3)}$. It is easily seen that $(10)^j 0O\mathcal{F}_{n-2j-1}^{(2,3)} = (10)^{i} 10(10)^{j-i-1} 0O\mathcal{F}_{n-2j-1}^{(2,3)}$. Let α be a vertex of $(10)^j 0O\mathcal{F}_{n-2j-1}^{(2,3)}$. Then $\alpha = (10)^i 10(10)^{j-i-1} 0\beta$ for some $\beta \in O\mathcal{F}_{n-2j-1}^{(2,3)}$. Obviously, there exist a vertex $\alpha' = (10)^i 00(10)^{j-i-1} 0\beta \in O\mathcal{F}_{n-2i-1}^{(2,3)}$, and so α is adjacent to α' . Therefore, there are $|O\mathcal{F}_{n-2j-1}^{(2,3)}|||$ edges between the subsets $(10)^j 0O\mathcal{F}_{n-2j-1}^{(2,3)}$ and $(10)^i 0O\mathcal{F}_{n-2i-1}^{(2,3)}$. So we know that the decomposition of $O\Gamma_n^{(2,3)}$ can be shown as in Figure 6, and

$$\begin{split} |E(O\Gamma_n^{(2,3)})| &= |E(O\Gamma_{n-1}^{(2,3)})| + |E(O\Gamma_{n-3}^{(2,3)})| \\ &+ |E(O\Gamma_{n-5}^{(2,3)})| + |E(O\Gamma_{n-7}^{(2,3)})| \\ &+ |O\mathcal{F}n - 3^{(2,3)}| + 2|O\mathcal{F}n - 5^{(2,3)}| + 3|O\mathcal{F}n - 7^{(2,3)}| \\ &= \sum_{n=1}^{3} t = 0 \left(|E(I\Gamma_{n-2t-1}^{(2,3)})| + t|V(I\Gamma_{n-2t-1}^{(2,3)})| \right). \end{split}$$

Fig. 6. The decomposition of $O\Gamma_n^{(2,3)}$

In general, we can get the structure of the edge set of $O\Gamma_n^{(p,r)}$ as follows. By Eq. (3) we know that the vertex set of $O\Gamma_n^{(p,r)}$ can be decomposed into r+1 disjoint subsets for $n \ge pr+1$: $O\mathcal{F}_n^{(p,r)} = \bigcup_{t=0}^r (10^{p-1})^t 0 O\mathcal{F}_{n-pt-1}^{(p,r)}$. So the graph $O\Gamma_n^{(p,r)}$ can be decomposed into r+1disjoint subgraphs isomorphic to $O\Gamma_{n-tp-1}^{(p,r)}$ for $t = 0, 1, \ldots, r$, respectively. Further, for $0 \le i < j \le r$, it can be found that there are $|V(O\Gamma_{n-jp-1}^{(p,r)})| = |O\mathcal{F}_{n-jp-1}^{(p,r)}|$ edges connecting the subgraphs $O\Gamma_{n-ip-1}^{(p,r)}$ and $O\Gamma_{n-jp-1}^{(p,r)}$ (of $O\Gamma_n^{(p,r)}$). So there are $\sum_{t=0}^r (t|O\mathcal{F}_{n-pt-1}^{(p,r)}|)$ edges between these r+1 subgraphs. So we have the following result.

Theorem 3.4. Let $n \ge pr + 1$. Then

$$|E(O\Gamma_n^{(p,r)})| = \sum_{t=0}^r (|E(O\Gamma_{n-pt-1}^{(p,r)})| + t|O\mathcal{F}_{n-pt-1}^{(p,r)}|).$$
(8)

3.2.2. Edge set of $I\Gamma_n^{(p,r)}$. First, we also take $I\Gamma_n^{(2,3)}$ as an example to better understand the structure of the edge set of $O\Gamma_n^{(p,r)}$. By Eq. (6), we know that $I\mathcal{F}_n^{(2,3)}$ can be decomposed into four disjoint subsets for $n \geq 5$: $0I\mathcal{F}_{n-1}^{(2,3)}$, $100I\mathcal{F}_{n-3}^{(2,3)}$, $1100I\mathcal{F}_{n-4}^{(2,3)}$ and $11100I\mathcal{F}_{n-5}^{(2,3)}$.

Inside each subgraph of $I\Gamma_n^{(p,r)}$ induced by $0I\mathcal{F}_{n-1}^{(2,3)}$ and $1^t 00I\mathcal{F}_{n-2-t}^{(2,3)}$ $(t \in [3])$ the edges are inherited from $I\Gamma_{n-1}^{(2,3)}$ and $I\Gamma_{n-2-t}^{(2,3)}$, respectively. Now we consider the edges between the above four subsets. It is easily seen that $01^{t-1}00I\mathcal{F}_{n-2-t}^{(2,3)} \subset 0I\mathcal{F}_{n-1}^{(2,3)}$. So for every vertex $\alpha \in 1^t 00I\mathcal{F}_{n-2-t}^{(2,3)}$, there exist a vertex $\alpha' \in 01^{t-1}00I\mathcal{F}_{n-2-t}^{(2,3)}$ such that there is an edge between α and α' . So there are $|I\mathcal{F}_{n-2-t}^{(2,3)}|$ edges between $1^t 00I\mathcal{F}_{n-2-t}^{(2,3)}$ and $0I\mathcal{F}_{n-1}^{(2,3)}$ for $t \in [3]$. Suppose $1 \leq i < j \leq 3$, $\beta \in 1^j 00I\mathcal{F}_{n-2-j}^{(2,3)}$ and $\beta' \in 1^i 00I\mathcal{F}_{n-2-i}^{(2,3)}$.

 $j-i \geq 2$, then β and β' are not adjacent in $I\Gamma_n^{(p,r)}$. If j = i+1, then by the fact $1^{j-1}000I\mathcal{F}_{n-2-j}^{(2,3)} \subset 1^{i}00I\mathcal{F}_{n-2-i}^{(2,3)}$, we know that there exist a vertex $\beta'' \in 1^{i}00I\mathcal{F}_{n-2-i}^{(2,3)}$ such that β' and β'' are adjacent in $I\Gamma_n^{(p,r)}$. This implies that for $1 \leq i < j \leq 3$, there exist edges between $1^{j}00I\mathcal{F}_{n-2-j}^{(2,3)}$ and $1^{i}00I\mathcal{F}_{n-2-i}^{(2,3)}$ only if j = i+1, and there are $|I\mathcal{F}_{n-2-j}^{(2,3)}|$ edges between them. Hence, we know that the decomposition of $I\Gamma_n^{(2,3)}$ can be shown as in Figure 7, and $|E(I\Gamma_n^{(2,3)})| = |E(I\Gamma_{n-1}^{(2,3)})| + \sum_{t=1}^3 (|E(I\Gamma_{n-2-t}^{(2,3)})| + 2|I\mathcal{F}_{n-2-t}^{(2,3)})|) - |I\mathcal{F}_{n-3}^{(2,3)}|$.

Fig. 7. The decomposition of $I\Gamma_n^{(2,3)}$

In general, we have the following result.

Theorem 3.5. $n \ge p + r$. Then

$$|E(I\Gamma_{n}^{(p,r)})| = |E(I\Gamma_{n-1}^{(p,r)})| + \sum_{t=1}^{r} (|E(I\Gamma_{n-p-t}^{(p,r)})| + 2|I\mathcal{F}_{n-p-t}^{(p,r)}|) - |I\mathcal{F}_{n-p-1}^{(p,r)}|.$$
(9)

Proof. By Eq. (6), $I\mathcal{F}_{n}^{(p,r)} = 0I\mathcal{F}_{n-1}^{(p,r)} \cup 10^{p}I\mathcal{F}_{n-p-1}^{(p,r)} \cup \ldots \cup 1^{r}0^{p}I\mathcal{F}_{n-p-r}^{(p,r)}$. So the graph $I\Gamma_{n}^{(p,r)}$ can be decomposed into r+1 disjoint subgraphs isomorphic to $I\Gamma_{n-1}^{(p,r)}$ (induced by the set $0I\mathcal{F}_{n-1}^{(p,r)}$) and $I\Gamma_{n-p-t}^{(p,r)}$ (induced by the set $1^{t}0^{p-1}I\mathcal{F}_{n-p-t}^{(p,r)}$) for $t \in [r]$, respectively. To achieve the desired result, we need to consider the edges between the above subgraphs. First, we consider $0I\mathcal{F}_{n-1}^{(p,r)}$ and $1^{t}0^{p}I\mathcal{F}_{n-p-t}^{(p,r)}$, $t \in [r]$. Let α be a vertex of $1^{t}0^{p}I\mathcal{F}_{n-p-t}^{(p,r)}$. Then $\alpha = 1^{t}0^{p}\alpha'$ for some $\alpha' \in I\mathcal{F}_{n-p-t}^{(p,r)}$. It can be seen that the vertex $\beta = 01^{t-1}0^{p}\alpha' \in 0I\mathcal{F}_{n-p-t}^{(p,r)}$, and $1^{j}0^{p}I\mathcal{F}_{n-p-t}^{(p,r)}$ and $1^{t}0^{p}I\mathcal{F}_{n-p-t}^{(p,r)}$ and $1^{t}0^{p}I\mathcal{F}_{n-p-t}^{(p,r)}$. Now we consider the edges between $1^{i}0^{p}I\mathcal{F}_{n-p-t}^{(p,r)}$ and $1^{j}0^{p}I\mathcal{F}_{n-p-j}^{(p,r)}$ for $1 \leq i < j \leq r$. Obviously, if $j \geq i+2$, then there is not edges between them. Suppose j = i+1 and let $\alpha \in 1^{j}0^{p}I\mathcal{F}_{n-p-j}^{(p,r)}$. Then $\alpha = 1^{j}0^{p}\alpha' = 1^{i}10^{p}\alpha'$ for some $\alpha' \in I\mathcal{F}_{n-p-j}^{(p,r)}$. As $\beta = 1^{i}00^{p}\alpha' \in 1^{i}0^{p}I\mathcal{F}_{n-p-j}^{(p,r)}$ and $1^{j}0^{p}I\mathcal{F}_{n-p-j}^{(p,r)}$ for j = i+1. Therefore, there are altogether $2\sum_{t=1}^{r}|I\mathcal{F}_{n-p-t}^{(p,r)}| - |I\mathcal{F}_{n-p-1}^{(p,r)}|$ edges connecting these r+1 subgraphs. This completes the proof.

If p = 1 and r = 1, then by Eqs. (8) and (9) we have

$$\begin{split} |E(O\Gamma_{n}^{(1,1)})| &= |E(O\Gamma_{n-1}^{(1,1)})| + |E(O\Gamma_{n-2}^{(1,1)})| + |O\mathcal{F}_{n-2}^{(1,1)}|, and \\ |E(I\Gamma_{n}^{(1,1)})| &= |E(I\Gamma_{n-1}^{(1,1)})| + |E(I\Gamma_{n-2}^{(1,1)})| + |I\mathcal{F}_{n-2}^{(1,1)}|, \end{split}$$

respectively. This means that Eq. (2) can be obtained from both Eqs. (8) and (9).

4. Relation to Hypercubes

Both partial cubes and median graphs are important and well-studied classes of graphs. The graphs $I\Gamma_n^{(p,r)}$ and $O\Gamma_n^{(p,r)}$ which are partial cubes and median graphs are determined.

4.1. $I\Gamma_n^{(p,r)}$ and $O\Gamma_n^{(p,r)}$ as partial cubes

Both graphs $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ are induced subgraphs of hypercubes. It is natural to ask whether they can be isometrically embedded into hypercubes. First we consider $O\Gamma_n^{(p,r)}$.

Theorem 4.1. Let $p \ge 1$ and $r \ge 1$. Then for any $n \ge 1$, $O\Gamma_n^{(p,r)}$ is a partial cube.

Proof. Let $\alpha = a_1 a_2 \dots a_n$ and $\beta = b_1 b_2 \dots b_n$ be any two vertices of $O\Gamma_n^{(p,r)}$. Suppose that the Hamming distance $H(\alpha, \beta)$ between α and β is s, and $a_{ij} \neq b_{ij}$ for all $j \in [s]$. The desired result can be obtained by showing $d_{O\Gamma_n^{(p,r)}}(\alpha, \beta) = H(\alpha, \beta)$ for all $s \geq 1$. This can be shown by using induction on s. Obviously if s = 1, then $d_{O\Gamma_n^{(p,r)}}(\alpha, \beta) = 1 = H(\alpha, \beta)$ by Definition 1.1. Suppose that $s \geq 2$ and $d_{O\Gamma_n^{(p,r)}}(\mu, \nu) = H(\mu, \nu)$ holds for any two vertices μ and ν of $O\Gamma_n^{(p,r)}$ with $H(\mu, \nu) = s - 1$. Without loss of generality, suppose that $a_{i_1} = 1$ and $b_{i_1} = 0$. Let α' be the word obtained from α by changing a_{i_1} from 1 to 0. Then $H(\alpha, \alpha') = 1$, $H(\alpha', \beta) = s - 1$ and α' is a O-Fibonacci (p, r)-word of length n, that is, $\alpha' \in O\mathcal{F}_n^{(p,r)}$. As $d_{O\Gamma_n^{(p,r)}}(\alpha', \beta) = H(\alpha', \beta) = s - 1$ by the induction hypothesis, we know $d_{O\Gamma_n^{(p,r)}}(\alpha, \beta) = H(\alpha, \alpha') + H(\alpha', \beta) = 1 + s - 1 = s$. This completes the proof. \Box

By Theorem 4.1, all $O\Gamma_n^{(p,r)}$ are partial cubes. However, this does not hold for $I\Gamma_n^{(p,r)}$. For $n \ge p$ and $n \ge r$, the cubes $I\Gamma_n^{(p,r)}$ which are partial cubes have been determined [25]. Now for all the cases $n \ge 1$, $p \ge 1$ and $r \ge 1$, the results are listed as follows.

Theorem 4.2. Let $p \ge 1, r \ge 1$ and $n \ge 1$. Then $I\Gamma_n^{(p,r)}$ is a partial cube if and only if it is one of the following cases:

(a) $p = 1, r \ge 1, and n \ge 1;$

- (b) $p \ge 2$, $r \le p+1$ and $n \ge 1$; and
- (c) $p \ge 2, r \ge p+2$ and n < r.

Proof. First we consider the case p = 1 and $r \ge 1$. If $n \ge r$, then $I\Gamma_n^{(1,r)}$ is a partial cube ([25], Lemma 2.2). If n < r, then $I\Gamma_n^{(p,r)} \cong Q_n$ by Proposition 2.3, and so $I\Gamma_n^{(p,r)}$ is a partial cube. It means that if (a) holds, then $I\Gamma_n^{(1,r)}$ is a partial cube.

If $p \ge 2$ and $r \le p+1$, then it is obvious that there is not a distance-barrier between any two vertices of $I\Gamma_n^{(p,r)}$. So if (b) holds, then $I\Gamma_n^{(1,r)}$ is partial cube by Lemma 2.1. Now we turn to consider the case $p \ge 2$ and $r \ge p+2$. If $n \ge r$, then it was shown that $I\Gamma_n^{(p,r)}$ is not a partial ([25], Lemma 2.5). If n < r, then there is not a distance-barrier between any two vertices of $I\Gamma_n^{(p,r)}$, and so $I\Gamma_n^{(p,r)}$ is a partial cube by Lemma 2.1.

According to the above analysis, $I\Gamma_n^{(p,r)}$ is a partial cube if and only if one of (a), (b) and (c) holds.

4.2. $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ as median graphs

It is well known that a median graph must be a partial cube. In this subsection, we show that $O\Gamma_n^{(p,r)}$ (resp. $I\Gamma_n^{(p,r)}$) being median graphs is only a small part of the $O\Gamma_n^{(p,r)}$ (resp. $I\Gamma_n^{(p,r)}$) which are partial cubes.

Note that for $n \ge p$ and $n \ge r$, the graphs $I\Gamma_n^{(p,r)}$ which are median graphs has been determined [18]. For the cases $p \ge 1$, $r \ge 1$ and $n \ge 1$, graphs $I\Gamma_n^{(p,r)}$ as median graphs are list as follows.

Theorem 4.3. Let $p \ge 1, r \ge 1$ and $n \ge 1$. Then $I\Gamma_n^{(p,r)}$ is a median graph if and only if it is one of the following cases:

- (a) $p = 1, r \ge 2$ and $r \ge n \ge 1$;
- (b) $p \ge 2$, $r \ge 3$ and $2 \ge n \ge 1$; and
- (c) $r \le p, r \le 2$ and $n \ge 1$.

Proof. We distinguish three cases: (1) p = 1 and $r \ge 2$, (2) $p \ge 2$ and $r \ge 3$, and (3) $r \le p$ and $r \le 2$. It has been shown that if (1) or (3) holds for $n \ge p$ and $n \ge r$, or (2) hold for $n \ge 3$, then $I\Gamma_n^{(p,r)}$ is not a median graph ([25], Lemma 4.2 and Corollary 4.4).

If (1) holds and n < r, then $I\Gamma_n^{(p,r)} \cong Q_n$ by Proposition 2.3(1). It is obvious that if (2) happens and $2 \ge n \ge 1$, then $I\Gamma_n^{(p,r)} \cong Q_n$. It is well known that Q_n is a median graph. If n < p and (3) holds, then $I\Gamma_n^{(p,r)} \cong I\Gamma_n^{(n,r)}$ by Proposition 2.3 (3). It has been known that $I\Gamma_n^{(n,r)}$ is a median graph if (3) happens ([25], Corollary 4.4). According to the above analysis, $I\Gamma_n^{(p,r)}$ is a median graph if and only if (a), (b), or (c) holds.

The following result determines the graphs $O\Gamma_n^{(p,r)}$ which are median graphs.

Theorem 4.4. Let $p \ge 1, r \ge 1$ and $n \ge 1$. Then $O\Gamma_n^{(p,r)}$ is a median graph if and only if one of the following cases holds:

- $(a') p \ge 1, r = 1 \text{ and } n \ge 1;$
- $(b') p = 1, r \ge 2$ and $r \ge n \ge 1$; and
- $(c') p \ge 2, r \ge 2 \text{ and } n \le pr.$

Proof. We also distinguish three cases by p and r: $(1') p \ge 1$ and r = 1, (2') p = 1 and $r \ge 2$, and $(3') p \ge 2$ and $r \ge 2$. By Corollary 3.3, we know that $O\Gamma_n^{(1,r)} \cong I\Gamma_n^{(1,r)}$ and $O\Gamma_n^{(p,1)} \cong I\Gamma_n^{(p,1)}$. So if (a') or (b') holds, then $O\Gamma_n^{(p,r)}$ is a median graph by Theorem 4.3 (a) and (c). Now we turn to consider case (3'). For the case $p \ge 2$, $r \ge 2$ and $n \le pr$, let

$$\chi = x_1 x_2 \dots x_n,$$

$$\eta = y_1 y_2 \dots y_n,$$

$$\rho = p_1 p_2 \dots p_n,$$

and

$$\omega = w_1 w_2 \dots w_n,$$

where χ, η and ρ are vertices of $O\Gamma_n^{(p,r)}$, and ω is the median of χ, η and ρ . It is well known that the median of the triple in Q_n is obtained by the majority rule ([6], Proposition 3.7): the *i*th coordinate of the median is equal to the element that appears at least twice among the x_i, y_i , and p_i . Without loss of generality, suppose that among x_1, y_1 and p_1 there at least two 1s. Then $w_1 = 1$. Suppose the second 1 contained in ω is w_i . As χ, η are vertices of $O\Gamma_n^{(p,r)}$ and there are at least two 1 among x_i, y_i and p_i , we know $i \ge p+1$. By considering the coordinate of the next element 1 in ω , we can find that the number of 0s between two 1 is at least p-1 in ω . Since the length of ω is not more than pr, there are at most r continue '1' in ω . Therefore, ω is a vertex of $O\Gamma_n^{(p,r)}$, and so $O\Gamma_n^{(p,r)}$ is a median graph for this case.

For any $p \ge 2$, $r \ge 2$ and n > pr, let

$$\alpha = 10^{p-1} 10^{p-1} 0 (0^{p-1} 1)^{r-2} 0^{n-pr-1},$$

$$\beta = 10^{p-1} 00^{p-1} 1 (0^{p-1} 1)^{r-2} 0^{n-pr-1}.$$

and

$$\gamma = 00^{p-1} 10^{p-1} 1 (0^{p-1} 1)^{r-2} 0^{n-pr-1}$$

Then α, β and γ are vertices of $O\Gamma_n^{(p,r)}$. Set

$$\mu = 10^{p-1} 10^{p-1} 1(0^{p-1}1)^{r-2} 0^{n-pr-1}.$$

It is easy to see that α, β and γ are pairwise at distance 2 in $O\Gamma_n^{(p,r)}$. By the majority rule, the unique candidate for their median is μ . Since there are r + 1 'consecutive' 1s in μ , it does not belong to $O\Gamma_n^{(p,r)}$ and so $O\Gamma_n^{(p,r)}$ is not median-closed induced subgraph of hypercube. Hence, $O\Gamma_n^{(p,r)}$ is not a median graph by Theorem 2.2 for this case. This completes the proof.

5. Concluding Remarks

In this section, two questions are listed for further study of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$.

Corollary 3.3 shows that $O\Gamma_n^{(p,r)} \not\cong I\Gamma_n^{(p,r)}$ for almost all of p and r. However, there may be some p, r, n and p', r', n' such that $O\Gamma_n^{(p,r)} \cong I\Gamma_{n'}^{(p',r')}$. As an example, $O\Gamma_4^{(2,2)} \cong I\Gamma_4^{(3,2)}$ is shown in Figure 5. A natural question that arises is the following:

Question 5.1. For which values of p, r, n and $p', r', n', O\Gamma_n^{(p,r)} \cong I\Gamma_{n'}^{(p',r')}$?

The eccentricity e(v) of a vertex v of a graph G is the maximum of its distances to other vertices in G, and the diameter d(G) of G are the maximum of the vertex eccentricities. The diameter of $O\Gamma_n^{(p,r)}$ was determined ([5], Property 4). But the diameter of $I\Gamma_n^{(p,r)}$ has not been studied. So the following questions are listed.

Question 5.2. What is the diameter of $I\Gamma_n^{(p,r)}$?

As mentioned above the diameter of a graph G is the greatest distance between any two vertices in G. Theorem 4.1 shows that every graph $O\Gamma_n^{(p,r)}$ is a partial cube, and so the distance between any two vertices of $O\Gamma_n^{(p,r)}$ is the Hamming distance of them. However, Theorem 4.2 shows that only a small part of all graphs $I\Gamma_n^{(p,r)}$ are partial cube. Therefore, it seems that determining the diameter of $I\Gamma_n^{(p,r)}$ is a rather difficult task.

Conflict of interest

The author declares no conflict of interest.

References

- [1] E. Aragno and N. Z. Salvi. Widened fibonacci cubes. *Rivista di Matematica della Università di Parma*, 3:25-35, 2000. https://www.rivmat.unipr.it/fulltext/2000-3/03.pdf.
- T. Došlić and L. Podrug. Metallic cubes. Discrete Mathematics, 347:113851, 2024. https: //doi.org/10.1016/j.disc.2023.113851.
- [3] Ö. Eğecioğlu and V. Iršič. Fibonacci-run graphs i: basic properties. Discrete Applied Mathematics, 295:70-84, 2021. https://doi.org/10.1016/j.dam.2021.02.025.
- [4] Ö. Eğecioğlu, S. Klavžar, and M. Mollard. Fibonacci cubes with applications and variations. World Scientific, 2023.
- [5] K. Egiazarian and J. Astola. On generalized fibonacci cubes and unitary transforms. Applicable Algebra in Engineering, Communication and Computing, 8:371–377, 1997. https: //doi.org/10.1007/s002000050074.
- [6] R. Hammack, W. Imrich, and S. Klavžar. Handbook of product graphs. CRC Press, Boca Raton, FL, 2nd edition, 2011.
- W. J. Hsu. Fibonacci cubes—a new interconnection topology. IEEE Transactions on Parallel and Distributed Systems, 4:3-12, 1993. https://doi.org/10.1109/71.205649.
- [8] W. J. Hsu, M. J. Chung, and A. Das. Linear recursive networks and their applications in distributed systems. *IEEE Transactions on Parallel and Distributed Systems*, 6(8):1-8, 1997. https://doi.org/10.1109/71.598343.
- [9] A. Ilić, S. Klavžar, and Y. Rho. Generalized fibonacci cubes. Discrete Mathematics, 312:2–11, 2012. https://doi.org/10.1016/j.disc.2011.02.015.
- [10] A. Ilić, S. Klavžar, and Y. Rho. Generalized lucas cubes. Applicable Analysis and Discrete Mathematics, 6:82-94, 2012. http://www.jstor.org/stable/43666158.

- [11] S. Klavžar. On median nature and enumerative properties of fibonacci-like cubes. *Discrete Mathematics*, 299:145–153, 2005. https://doi.org/10.1016/j.disc.2004.02.023.
- S. Klavžar. Structure of fibonacci cubes: a survey. Journal of Combinatorial Optimization, 25:505-522, 2013. https://doi.org/10.1007/s10878-011-9433-z.
- [13] S. Klavžar and M. Mollard. Daisy cubes and distance cube polynomial. European Journal of Combinatorics, 80:214-223, 2019. https://doi.org/10.1016/j.ejc.2018.02.019.
- S. Klavžar and Y. Rho. Fibonacci (p, r)-cubes as cartesian products. Discrete Mathematics, 328:23-26, 2014. https://doi.org/10.1016/j.disc.2014.03.027.
- [15] F. T. Leighton. Introduction to parallel algorithms and architectures: arrays, trees, hypercubes. Morgan Kaufmann, San Mateo, California, 1992.
- [16] E. Munarini. Pell graphs. Discrete Mathematics, 342:2415-2428, 2019. https://doi.org/ 10.1016/j.disc.2019.05.008.
- [17] E. Munarini, C. P. Cippo, and N. Z. Salvi. On the lucas cubes. The Fibonacci Quarterly, 39:12-21, 2001. https://doi.org/10.1080/00150517.2001.12428753.
- [18] L. Ou and H. Zhang. Fibonacci (p, r)-cubes which are median graphs. Discrete Applied Mathematics, 161:441-444, 2013. https://doi.org/10.1016/j.dam.2012.09.008.
- [19] L. Ou, H. Zhang, and H. Yao. Determining which fibonacci (p, r)-cubes can be z-transformation graphs. Discrete Mathematics, 311:1681-1692, 2011. https://doi.org/10.1016/j.disc.
 2011.04.002.
- H. Qian and J. Wu. Enhanced fibonacci cubes. The Computer Journal, 39:331-345, 1996. https://doi.org/10.1093/comjnl/39.4.331.
- J. Wei. Proof of a conjecture on 2-isometric words. Theoretical Computer Science, 855:68-73, 2021. https://doi.org/10.1016/j.tcs.2020.11.026.
- J. Wei. Lucas-run graphs. Bulletin of the Malaysian Mathematical Sciences Society, 47:178, 2024. https://doi.org/10.1007/s40840-024-01776-3.
- [23] J. Wei and Y. Yang. Fibonacci and lucas p-cubes. Discrete Applied Mathematics, 322:365– 383, 2022. https://doi.org/10.1016/j.dam.2022.09.004.
- [24] J. Wei, Y. Yang, and G. Wang. Circular embeddability of isometric words. Discrete Mathematics, 343:112024, 2020. https://doi.org/10.1016/j.disc.2020.112024.
- [25] J. Wei and H. Zhang. Fibonacci (p, r)-cubes which are partial cubes. Ars Combinatoria, 115:197–209, 2014.
- J. Wu and Y. Yang. The postal network: a recursive network for parameterized communication model. Journal of Supercomputing, 19:143-161, 2001. https://doi.org/10.1023/A: 1011171605490.