Ars Combinatoria www.combinatorialpress.com/ars

On Fibonacci (p, r) -cubes

Jian-Xin Wei^{1, \boxtimes}

¹ School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong, 264025, P.R. China

ABSTRACT

In this paper, it is pointed out that the definition of 'Fibonacci (p, r) -cube' in many papers (denoted by $I\Gamma_n^{(p,r)}$) is incorrect. The graph $I\Gamma_n^{(p,r)}$ is not the same as the original one (denoted by $O\Gamma_n^{(p,r)}$) introduced by Egiazarian and Astola. First, it is shown that $\Gamma_n^{(p,r)}$ and $O\Gamma_n^{(p,r)}$ have different recursive structure. Then, it is proven that all the graphs $O\Gamma_n^{(p,r)}$ are partial cubes. However, only a small part of graphs $I\Gamma _{n}^{(p,r)}$ are partial cube. It is also shown that $I\Gamma_n^{(p,r)}$ and $O\Gamma_n^{(p,r)}$ have different medianicity. Finally, several questions are listed for further investigation.

Keywords: Fibonacci cube, Fibonacci (p, r) -cube, Partial cube, Median graph 2020 Mathematics Subject Classification: 05C75, 68R10.

1[.](#page-0-0) [I](#page-0-3)[n](#page-0-4)troduction

Let $B = \{0, 1\}$ and for $n \geq 1$ set

$$
\mathcal{B}_n = \{b_1b_2\ldots b_n \mid b_i \in B, i \in 1 : n\}.
$$

An element of \mathcal{B}_n is called a *binary word* of length n (or simply a *word*). All words considered of this paper are binary.

The *n*-dimensional *hypercube* Q_n is the graph whose vertex set is \mathcal{B}_n , and two vertices are adjacent if and only if they differ in precisely one coordinate. The cube Q_3 is shown in Figure $1(a)$. Hypercubes play an important role in many areas of discrete mathematics and computer science. An excellent survey on hypercubes can be found in [\[15\]](#page-14-0).

 $\overline{\otimes}$ Corresponding author.

E-mail addresses: wjx0426@163.com (Jian-Xin Wei).

Received 08 July 2024; accepted 20 December 2024; published 31 December 2024.

DOI: [10.61091/ars161-13](https://doi.org/10.61091/ars161-13)

[©] 2024 The Author(s). Published by Combinatorial Press. This is an open access article under the CC BY license [\(https://creativecommons.org/licenses/by/4.0/\)](https://creativecommons.org/licenses/by/4.0/).

The Fibonacci cube Γ_n [\[7\]](#page-13-0) can be obtained from Q_n by removing all vertices that contain two consecutive 1s. It is a graph family that have been studied as alternatives for the classical hypercube topology for interconnection networks. The graph Γ_5 is shown in Figure [1](#page-1-0) (b). For more results on application and structure of Γ_n , see the survey [\[12\]](#page-14-1) and the recent book $|4|$.

Fig. 1. The hypercube $Q_3(a)$, and the Fibonacci cube $\Gamma_5(b)$

When Fibonacci cubes were introduced, they soon became increasingly popular. Numerous variants and generalizations of Fibonacci cubes, the so called Fibonacci-like cube, are proposed and investigated such as in papers [\[1,](#page-13-2) [5,](#page-13-3) [8,](#page-13-4) [17,](#page-14-2) [20,](#page-14-3) [26\]](#page-14-4). Recently, many other Fibonacci-like cubes have also been introduced and studied, such as generalized Fibonacci cubes [\[9\]](#page-13-5), generalized Lucas cubes [\[10\]](#page-13-6), daisy cubes [\[13\]](#page-14-5), Pell graphs [\[16\]](#page-14-6), Fibonacci-run graph [\[3\]](#page-13-7), Fibonacci p-graph [\[23\]](#page-14-7), Metallic cubes [\[2\]](#page-13-8) and Lucas-run graph [\[22\]](#page-14-8).

In the present paper, a special attention is given to the graphs called 'Fibonacci (p, r) cubes'. It was first introduced by Egiazarian and Astola $[5]$. In many papers, such as $[12]$, [14,](#page-14-9) [18,](#page-14-10) [19,](#page-14-11) [25\]](#page-14-12) and others, although it is pointed out that the graphs studied comes from $[5]$, we find that it is not the same as given in $[5]$. For convenience, the graphs studied in [\[5\]](#page-13-3) are called O-Fibonacci (p, r) -cubes, and the graphs studied in [\[12,](#page-14-1) [14,](#page-14-9) [18,](#page-14-10) [19,](#page-14-11) [25\]](#page-14-12) are called *I*-Fibonacci (p, r) -cubes.

Let $p \ge 1$ and $r \ge 1$. Then for $n \ge 1$, $\alpha = a_1 a_2 \ldots a_n$ is called a *O-Fibonacci* (p, r) -word ([\[5\]](#page-13-3), where it is called Fibonacci (p, r) -code) if the following hold:

(1) if $a_i = 1$ then $a_{i+1} = \ldots = a_{i+(p-1)} = 0$, i.e. there is at least $p-1$ 0s between two 1s (which is called `consecutive' 1s); and

(2) there are no more than r 'consecutive' 1s in α , i.e. ones, between which there are exactly $p-1$ zeroes.

For examples, $(100)^{4}0^{3}(100)^{3}0(100)^{2}10$ is a *O*-Fibonacci $(3, 4)$ -word of length 33, but $(100)^4 0^3 (100)^5 010$ is not a *O*-Fibonacci $(3, 4)$ -word.

Definition 1.1. [\[5\]](#page-13-3) Let $OF_n^{(p,r)}$ be the set of all the O -Fibonacci (p, r) -words of length n . Then the O-Fibonacci (p, r) -cube $O\Gamma_n^{(p,r)}$ is the graph defined on the vertex set $O\mathcal{F}_n^{(p,r)}$, and two vertices being adjacent if they differ exactly in one coordinate.

It is easily seen that if $(p, r) = (1, 1)$, then a *O*-Fibonacci (p, r) -word is a word that contain no two consecutive 1s. Therefore, the O-Fibonacci (1,1)-cube $O\Gamma_n^{(1,1)}$ is just the classical Fibonacci cube Γ_n . The graphs $O\Gamma_5^{(2,2)}$ $_{5}^{(2,2)}$ and $O\Gamma_{6}^{(2,1)}$ $_6^{(2,1)}$ $_6^{(2,1)}$ $_6^{(2,1)}$ are shown in Figure 2 (a) and (b), respectively.

Fig. 2. O-Fibonacci (p, r) -cubes $O\Gamma_5^{(2,2)}(a)$ and $O\Gamma_6^{(2,1)}(b)$

As mentioned above, the 'Fibonacci (p, r) -cubes' studied in [\[12,](#page-14-1) [14,](#page-14-9) [18,](#page-14-10) [19,](#page-14-11) [25\]](#page-14-12) will be called I-Fibonacci (p, r) -cubes. They are defined as follows.

Let p, r and n be any positive integers. Then an I-Fibonacci (p, r) -word of length n is a word of length n in which there are at most r consecutive 1s and at least p element 0s between two sub-words composed of (at most r) consecutive 1s.

Definition 1.2. [\[19\]](#page-14-11) Let $IF_n^{(p,r)}$ denote the set of all *I*-Fibonacci (p, r) -words of length *n*. Then the *I*-Fibonacci (p, r) -cube $I\Gamma_n^{(p,r)}$ is the graph defined on the vertex set $I\mathcal{F}_n^{(p,r)}$ and two vertices are adjacent if they differ in exactly one coordinate.

Note that the cubes $I\Gamma_n^{(p,r)}$ is considered for $n \geq p$ and $n \geq r$ in the above papers. As $I\Gamma_n^{(p,r)}$ is not always trivial for the case $n < r$ or $n < p$, we consider the graph $I\Gamma_n^{(p,r)}$ for all $p > 1, r > 1$ and $n > 1$ in this paper.

For examples, the graphs $I\Gamma_5^{(3,2)}$ $_{5}^{(3,2)}$ and $\Gamma_{5}^{(2,2)}$ $_5^{(2,2)}$ are shown in Figure [3](#page-2-1) (a) and (b), respectively. Obviously, *I*-Fibonacci (1,1)-cube $I\Gamma_n^{(1,1)}$ is just the classical Fibonacci cube Γ_n .

Fig. 3. I-Fibonacci (p, r) -cubes $\text{IT}_5^{(3,2)}(a)$ and $\text{IT}_5^{(2,2)}(b)$

We think that the main difference between the definitions of $\mathcal{O}\Gamma_n^{(p,r)}$ and $\Gamma_n^{(p,r)}$ is the meaning of 'consecutive' 1s: the r 'consecutive 1s' in a vertex of $O\Gamma_n^{(p,r)}$ means the subword $(10^{p-1})^r$, but the r 'consecutive 1s' in a vertex of $\Gamma_n^{(p,r)}$ means the sub-word 1^r.

For a binary word χ , we set $\chi^0 = \lambda$, where λ is the empty word. For convenience, if $n=0$, then let $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ be the graphs with only one vertex λ .

Many Fibonacci like-cubes and some sub-cubes of hypercubes can be obtained from hypercubes by some word forbidden to appear in the words of hypercubes. From the point of view, the following note holds:

Remark 1.3. The cube $O\Gamma_n^{(p,r)}$ can be obtained from Q_n by removing all vertices that contain the words $(10^{p-1})^r1$ or 10^s1 for $s \leq p-2$ (if $p \geq 2$); and $\Gamma_n^{(p,r)}$ can be obtained from Q_n by removing all vertices that contain the words 1^{r+1} or 10^s1 for $s \leq p-1$.

From Remark [1.3](#page-3-0) and Definitions [1.1](#page-1-1) and [1.2,](#page-2-2) $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ are not isomorphic in general. For example, $O\Gamma_5^{(2,2)}$ $_{5}^{(2,2)}$ $_{5}^{(2,2)}$ $_{5}^{(2,2)}$ (Figure 2 (a)) is not isomorphic to $\mathrm{\Gamma^{(2,2)}_{5}}$ $_{5}^{(2,2)}$ (Figure [3](#page-2-1) (b)). This fact can be further illustrated by the results of Sections 3 and 4 in the paper.

The rest of the paper is organized as follows. In Sect. 2, some necessary definitions and known results are introduced. In Sect. 3, the recursive structures of $O\Gamma_n^{(p,r)}$ and $\Gamma_n^{(p,r)}$ are given. In Sect. 4, the graphs $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ which are partial cube and median graphs are determined. In the last section, some questions on $O\Gamma_n^{(p,r)}$ and $\Gamma_n^{(p,r)}$ are listed for further investigation.

2. Preliminaries

In this section, some definitions, notion and results needed in the paper are given. Let $\mathcal A$ be a set of some words. Then αA is the set of the words obtained from A by appending a fixed word α in front of each of the elements of A. Recall that Fibonacci numbers are defined as $F_0 = 0, F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$. Let \mathcal{F}_n be the vertex set of Fibonacci cube Γ_n . sThen for $n \geq 2$ the well known decomposition of Fibonacci cube can be obtained as follows [\[7\]](#page-13-0), where $\mathcal{F}_0 = {\lambda}$ and $\mathcal{F}_1 = \{0, 1\}$:

$$
\mathcal{F}_n = 0\mathcal{F}_{n-1} \cup 10\mathcal{F}_{n-2}.\tag{1}
$$

The name of the cubes Γ_n is justified with the fact that for any $n \geq 0$, $|\mathcal{F}_n| = F_{n+2}$ [\[7\]](#page-13-0). By Eq. [\(1\)](#page-3-1), the size of Γ_n can be shown in Eq. [\(2\)](#page-3-2) for $n \geq 2$, and the recursive structure can be illustrated in Figure [4:](#page-3-3)

Fig. 4. The recursive structure of Γ_n

The distance $d_G(\alpha, \beta)$ between vertices α and β of a graph G is the length of a shortest α, β -path. Given two words α and β of the same length, their Hamming distance $H(\alpha, \beta)$ is the number of coordinates in which they differ. Let H and G be arbitrary (connected) graphs. Then a mapping $f: V(H) \to V(G)$ is an *isometric embedding* if $d_H(u, v) =$ $d_G(f(u), f(v))$ holds for any $u, v \in V(H)$.

A partial cube is a connected graph that admits an isometric embedding into a hyper-cube [\[6\]](#page-13-9). It is well known that if α and β are vertices of Q_n , then $d_{Q_n}(\alpha, \beta) = H(\alpha, \beta)$. So we know that if G is a partial cube, then $d_G(\alpha, \beta) = H(\alpha, \beta)$ for any vertices α and β of G. There are more studies on determining which graphs are partial cubes. For example, some generalized Fibonacci and Lucas cubes [\[9,](#page-13-5) [10\]](#page-13-6) as partial cubes are shown in [\[21,](#page-14-13) [24\]](#page-14-14).

Let $r \geq p+2$ and $n \geq r$. Then for some t with $p \leq t \leq r-2$, there exist vertices α and β of $I\Gamma_n^{(p,r)}$ such that 10^t1 and 11^t1 appear in the same coordinates of α and β , respectively. For convenience, we call there is a *distance-barrier* between the above vertices α and β . It can be shown that $d_{\Pi_n^{(p,r)}}(\alpha,\beta) \neq H(\alpha,\beta)$ by Remark [1.3.](#page-3-0) By the following result we know that not all $I\Gamma_n^{(p,r)}$ are partial cubes.

Lemma 2.1. Let $p \ge 2$, α and β be any vertices of $I\Gamma_n^{(p,r)}$. Then $d_{\Pi_n^{(p,r)}}(\alpha, \beta) = H(\alpha, \beta)$ if and only if there does not exist distance-barrier between α and β .

A median of vertices $u, v, w \in V(G)$ is a vertex of G that simultaneously lies on a shortest u, v-path, a shortest u, w-path, and a shortest v, w-path. The graph G is called a *median graph* if every triple of its vertices has a unique median. It is well known that a median graph must be a partial cube ([\[6\]](#page-13-9), Proposition 12.4), and hypercube Q_n is a median graph for every $n \geq 1$ ([\[6\]](#page-13-9), Proposition 3.7).

A subgraph H of a graph G is median-closed if, with any triple of vertices of H, their median is also in H . The following result gives a useful tool to prove that a graph is a median graph ([\[6\]](#page-13-9), Corollary 14.9).

Theorem 2.2. [\[6\]](#page-13-9) A graph is a median graph if and only if it is a median-closed induced subgraph of a hypercube.

It was shown that all Fibonacci cubes Γ_n are median graphs (of course are partial cubes) [\[11\]](#page-14-15). In this paper, the question for determining which $\mathcal{O}\Gamma_n^{(p,r)}$ and $\Gamma_n^{(p,r)}$ are partial cubes and median graphs is solved completely.

Now we turn to consider some basic properties of $O\Gamma_n^{(p,r)}$ and $\Gamma_n^{(p,r)}$ in the rest of this section. By Definitions 1.1 and 1.2 , the following results hold obviously.

Proposition 2.3. Let r, r', p, p', n, n' be positive integers, $s = \min\{r, r'\}$ and $t = \min\{p, p'\}.$ Then

- (a) $O\Gamma_n^{(1,r)} \cong \Gamma_n^{(1,r)} \cong Q_n$ for $n \leq r$;
- (b) $O\Gamma_n^{(1,1)} \cong \Gamma_n^{(1,1)} \cong \Gamma_n;$
- (c) $O\Gamma_n^{(p,r)} \cong O\Gamma_n^{(p,r')}$ for $n \leq sp$, and $O\Gamma_n^{(p,r)} \cong O\Gamma_n^{(p',r)}$ for $n \leq t$; and
- (d) $I\Gamma_n^{(p,r)} \cong I\Gamma_n^{(p,r')}$ for $n \leq s$, and $I\Gamma_n^{(p,r)} \cong I\Gamma_n^{(p',r)}$ for $n \leq t+1$.

By Proposition [2.3](#page-4-0) (1) and (2), $O\Gamma_n^{(p,r)} \cong \Gamma_n^{(p,r)}$ for some special p and r. For examples,

 $O\Gamma_{3}^{(1,3)}$ $\Gamma_3^{(1,3)} \cong \Gamma_3^{(1,3)}$ $Q_3^{(1,3)} \cong Q_3$ $Q_3^{(1,3)} \cong Q_3$ $Q_3^{(1,3)} \cong Q_3$ (as shown in Figure 1 (*a*)) and $O\Gamma_5^{(1,1)}$ $I_5^{(1,1)} \cong I\Gamma_5^{(1,1)}$ $\mathcal{L}_5^{(1,1)} \cong \Gamma_5$ (as shown in Figure [1](#page-1-0) (b)). It is obvious that all those graphs are connected. In general, we have the following result.

Proposition 2.4. Let p, r and n be positive integers. Then both the graphs $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$ are connected.

Proof. First we show that $\prod_{n}^{(p,r)}$ is connected. It is obvious that 0^n is a vertex of $\prod_{n}^{(p,r)}$ for any p, r and n. We claim that every vertex α of $\Gamma_n^{(p,r)}$ is connected with 0^n by a $\alpha, 0^n$ -path. In fact, let $\alpha = a_1 a_2 ... a_n$ be any vertex of $\Gamma_n^{(p,r)}$ differing from 0^n , and $a_{i_1} = \ldots = a_{i_t} = 1$, where $t \geq 1$ and $i_1 \leq \ldots \leq i_t$. Then the word α_j obtained from α by changing a_{i_1}, \ldots, a_{i_j} from 1 to 0 is also a vertex of $\text{IT}_n^{(p,r)}$, where $j = 1, \ldots, t$. Obviously, $\alpha_t = 0^n$. If $j = 1$, then α and 0^n are adjacent vertices. Now suppose that $j \geq 2$. Then $\alpha \to \alpha_1 \to \ldots \to \alpha_{j-1} \to 0^n$ is a path in $\Gamma_n^{(p,r)}$, and so $\Gamma_n^{(p,r)}$ is connected.

Similarly, we can show that $\mathcal{O}\Gamma_n^{(p,r)}$ is connected by the facts that 0^n is a vertex of $\overline{O\Gamma}_n^{(p,r)}$, and for any vertex α of $\overline{O\Gamma}_n^{(p,r)}$ differing from 0^n , there exist a $\alpha, 0^n$ -path. This completes the proof. \Box

3. Recursive Structure of $O\Gamma_n^{(p,r)}$ and $\Gamma_n^{(p,r)}$ n

Although some of the structure of $O\Gamma_n^{(p,r)}$ was studied [\[5\]](#page-13-3), we list them here to show they are different from that of $I\Gamma_n^{(p,r)}$.

3.1. Vertex sets of $O\Gamma_n^{(p,r)}$ and $\Gamma_n^{(p,r)}$

Recall that $\mathcal{OF}_n^{(p,r)}$ and $IF_n^{(p,r)}$ are the vertex sets of $\mathcal{OF}_n^{(p,r)}$ and $IF_n^{(p,r)}$, respectively.

3.1.1. Vertex set of $O\Gamma_n^{(p,r)}$. In paper [\[5\]](#page-13-3), it is shown that for $n \geq pr+1$, the set $\mathcal{OF}_n^{(p,r)}$ can be defined recursively by

$$
O\mathcal{F}_n^{(p,r)} = \bigcup_{i=0}^r (10^{p-1})^i 0 O\mathcal{F}_{n-pi-1}^{(p,r)},\tag{3}
$$

with $\mathcal{OF}_0^{(p,r)} = {\lambda}$. For example, the first five (from $n = 1$) sets $\mathcal{OF}_n^{(2,2)}$ are thus: ${0, 1}$,

 $\{00, 01, 10\},\$

{000, 001, 010, 100, 101},

{0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010},

{00000, 00001, 00010, 00100, 00101, 01000, 01001, 01010, 10000, 10001, 10010, 10100}.

If $p = 1$ and $r = 1$, then we have $O\mathcal{F}_n^{(1,1)} = 0 \cdot O\mathcal{F}_{n-1}^{(1,1)} \cup 10 \cdot O\mathcal{F}_{n-2}^{(1,1)}$ by Eq. [\(3\)](#page-5-0). This means that Eq. [\(1\)](#page-3-1) can be obtained from Eq. [\(3\)](#page-5-0) by Proposition [2.3\(](#page-4-0)2).

For convenience, if $n \ge 1$ and $-p \le n - pi - 1 < 0$ for some $i (1 \le i \le r)$, then let $(10^{p-1})^i0O\mathcal{F}_{n-pi-1}^{(p,r)}$ be the set containing only one word, and this word is the prefix of

length *n* of $(10^{p-1})^i 0$; if $n - pi - 1 < -p$, then let $(10^{p-1})^i 0 O \mathcal{F}_{n-pi-1}^{(p,r)} = \emptyset$. This means that Eq. [\(3\)](#page-5-0) also holds for $1 \leq n \leq pr$, and so we have

$$
|O\mathcal{F}_n^{(p,r)}| = \sum_{i=0}^r |O\mathcal{F}_{n-pi-1}^{(p,r)}|,
$$
\n(4)

where $|O\mathcal{F}_{n-m}^{(p,r)}|$ $|_{n-pi-1}^{(p,r)}|$ = 1 if $-p \le n-pi-1 < 0$, and $|O\mathcal{F}_{n-pi}^{(p,r)}|$ $\left| \begin{array}{c} \n\mathbf{p},r \\ \n\mathbf{p},r \\ \n\end{array} \right| = 0$ if $n - pi - 1 < -p$.

In paper [\[5\]](#page-13-3), Fibonacci (p,r) -number $OF_n^{(p,r)}$ is defined as follows with $OF_n^{(p,r)} = 0$ if $n \leq 0$, and $OF_n^{(p,r)} = 1$ if $1 \leq n \leq p+1$:

$$
OF_n^{(p,r)} = \sum_{i=0}^r OF_{n-pi-1}^{(p,r)}.
$$
\n(5)

It is easily seen that if $p = r = 1$, then $OF_n^{(p,r)} = F_n$. By Eqs. [\(4\)](#page-6-0) and [\(5\)](#page-6-1), it is known that $|V(O\Gamma_n^{(p,r)})|=|O\mathcal{F}_n^{(p,r)}|=O\mathcal{F}_{n+p+1}^{(p,r)}$. By this result and Proposition [2.3\(](#page-4-0)2), $|V(\Gamma_n)| = |\mathcal{F}_n| = |O\mathcal{F}_n^{(1,1)}| = O\mathcal{F}_{n+1+1}^{(1,1)} = \mathcal{F}_{n+2}$ holds for the classical Fibonacci cubes [\[7\]](#page-13-0).

3.1.2. Vertex set of $\prod_{n=1}^{(p,r)}$. On the vertex set of $\prod_{n=1}^{(p,r)}$, we have the following result.

Theorem 3.1. Let
$$
p \ge 1, r \ge 1, n \ge p + r
$$
 and $I\mathcal{F}_0^{(p,r)} = {\lambda}$. Then $I\mathcal{F}_n^{(p,r)}$ satisfies:

$$
I\mathcal{F}_n^{(p,r)} = 0 I\mathcal{F}_{n-1}^{(p,r)} \cup 10^p I\mathcal{F}_{n-p-1}^{(p,r)} \cup ... \cup 1^r 0^p I\mathcal{F}_{n-p-r}^{(p,r)}.
$$
(6)

Proof. It is easy to see that $IF_n^{(p,r)} \supseteq 0 \cdot IF_{n-1}^{(p,r)} \cup 10^p \cdot IF_{n-p-1}^{(p,r)} \cup \ldots \cup 1^r 0^p \cdot IF_{n-p}^{(p,r)}$ $r_{n-p-r}^{(p,r)}$. Let $\alpha \in I\mathcal{F}_n^{(p,r)}$ and suppose that the coordinate of the first 0 of α is i. Then $1 \leq i \leq r+1$ by the definition of I-Fibonacci (p, r) -word and then the following holds. If $i = 1$, then $\alpha = 0\beta$ for some $\beta \in I\mathcal{F}_{n-1}^{(p,r)}$ ^{(p,r)}. If $2 \leq i \leq r+1$, then α has the form of $1^{i-1}0^p\gamma$, where $\gamma \in I\mathcal{F}^{(p,r)}_{n-p-(i-1)}$. It implies that $I\mathcal{F}^{(p,r)}_n \subseteq 0 I\mathcal{F}^{(p,r)}_{n-1} \cup 10^p I\mathcal{F}^{(p,r)}_{n-p-1} \cup \ldots \cup 1^r 0^p I\mathcal{F}^{(p,r)}_{n-p}$ $r_{n-p-r}^{(p,r)}$. This completes the proof. \Box

It is easy to see that if $p = 1$ and $r = 1$, then Eq. [\(1\)](#page-3-1) can be obtained from Eq. [\(6\)](#page-6-2) by Proposition [2.3](#page-4-0) (2).

For convenience, if $1 \leq n < p + i$ for some $i \in [r]$, then let $1^i0^p I \mathcal{F}^{(p,r)}_{n-p-i}$ be the set consisting of only the word which is the prefix of length n of 1^i0^p . It can be seen that if $i < j$ and $n < p + i$, then $1^i 0^p I \mathcal{F}^{(p,r)}_{n-p-i} = 1^j 0^p I \mathcal{F}^{(p,r)}_{n-p}$ ^{-(p,r)}</sup> $_{n-p-j}$. So for $n < i$, let $1^{i}0^{p} I \mathcal{F}_{n-p-i}^{(p,r)} = ∅$. Then for $1 \le n < p+r$, the set $IF_n^{(p,r)}$ also can be determined by Eq. [\(6\)](#page-6-2). For example, the first few $I\mathcal{F}_n^{(2,2)}$ are thus:

 $I\mathcal{F}_{1}^{(2,2)} = \{0,1\},\$ $I\mathcal{F}_{2}^{(2,2)} = \{00, 01, 10, 11\},\$ $I\mathcal{F}_{3}^{(2,2)} = \{000, 001, 010, 011, 100, 110\},\$ $IF_4^{(2,2)}$ = {0000, 0001, 0010, 0011, 0100, 0110, 1000, 1001, 1100}, $I\mathcal{F}_5^{(2,2)} = \{00000, 00001, 00010, 00011, 00100, 00110, 01000, 01001, 01100, 10000, 10001,$ 10010, 10011, 11000, 11001}.

By Theorem [3.1](#page-6-3) and the above analysis, the following result holds.

Corollary 3.2. Setting $|I\mathcal{F}_n^{(p,r)}|=0$ for $n < -p$ and $|I\mathcal{F}_n^{(p,r)}|=1$ for $-p \leq n \leq 0$, we have

$$
|I\mathcal{F}_n^{(p,r)}| = |I\mathcal{F}_{n-1}^{(p,r)}| + |I\mathcal{F}_{n-p-1}^{(p,r)}| + \dots + |I\mathcal{F}_{n-p-r}^{(p,r)}|.
$$
 (7)

By Eqs. [\(3\)](#page-5-0) and [\(6\)](#page-6-2), it is easy to see that if $p=1$ or $r=1$, then $O\mathcal{F}_n^{(p,r)}=I\mathcal{F}_n^{(p,r)}$ and so $\mathcal{O}\Gamma_n^{(p,r)} \cong \Gamma_n^{(p,r)}$. For $p > 1$, $r > 1$ and $n = 0$ or 1 , $\mathcal{O}\mathcal{F}_n^{(p,r)} = I\mathcal{F}_n^{(p,r)}$ and $\mathcal{O}\Gamma_n^{(p,r)} \cong \Gamma_n^{(p,r)}$. But for $n > 1$, $|I\mathcal{F}_n^{(p,r)}| > |O\mathcal{F}_n^{(p,r)}|$ by Eqs. [\(4\)](#page-6-0) and [\(7\)](#page-7-0). So the following result holds.

Corollary 3.3. Let $p \geq 1, r \geq 1$ and $n \geq 0$. Then $O\Gamma_n^{(p,r)} \ncong \Gamma_n^{(p,r)}$ if and only if $p > 1, r > 1$ and $n > 1$.

The above result implies that $O\Gamma_n^{(p,r)} \ncong \Gamma_n^{(p,r)}$ from the general sense. However, there are exist some $p > 1$ and $p' > 1$, $r > 1$ and $r' > 1$, and $n > 1$ and $n' > 1$ such that $\widehat{O\Gamma}_n^{(p,r)} \cong \widehat{IV}_{n'}^{(p',r')}$. For example, it can be shown that $\widehat{O\Gamma}_4^{(2,2)}$ $\Gamma_4^{(2,2)} \cong \Pi_4^{(3,2)}$ $\binom{5,2}{4}$, as illustrated in Figure [5.](#page-7-1)

Fig. 5. Graphs $O\Gamma_4^{(2,2)}(a)$ and $\Gamma_4^{(3,2)}(b)$

3.2. Edge sets of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$

The recursive structure on the edge sets of $O\Gamma_n^{(p,r)}$ and $\varPi_n^{(p,r)}$ are studied in this subsection.

3.2.1. Edge set of $O\Gamma_n^{(p,r)}$. We show that the iterative formula of the size of $O\Gamma_n^{(p,r)}$ previously given ([\[5\]](#page-13-3), Property 2) was erroneous and determine its correct expression. First we take $O\Gamma_n^{(2,3)}$ as an example to understand easily the structure of the edge set of $O\Gamma_n^{(p,r)}$. By Eq. [\(3\)](#page-5-0), for $n \ge 7$, $\mathcal{OF}_n^{(2,3)} = 0 \mathcal{OF}_{n-1}^{(2,3)} \cup 100 \mathcal{OF}_{n-3}^{(2,3)} \cup 10100 \mathcal{OF}_{n-5}^{(2,3)} \cup 1010100 \mathcal{OF}_{n-7}^{(2,3)}$ $n-7$. Inside each subgraph of $O\Gamma_n^{(p,r)}$ induced by $(10)^t O O \mathcal{F}_{n-2t}^{(2,3)}$ $n-2t-1$ the edges are inherited from $O\Gamma_{n-2i}^{(2,3)}$ $_{n-2t-1}^{(2,3)}$, $t = 0,1,2$ and 3. We need to determine the edges between these four subgraphs. Let $0 \leq i < j \leq 3$. Then by the fact $0(10)^{j-i-1}0O\mathcal{F}^{(2,3)}_{n-2j-1} \subseteq O\mathcal{F}^{(2,3)}_{n-2j}$ $n-2i-1$, it is known that $(10)^i 00(10)^{j-i-1} 0 O \mathcal{F}^{(2,3)}_{n-2i}$ $n_{n-2j-1}^{(2,3)}$ is a subset of $(10)^i 0 O \mathcal{F}_{n-2i}^{(2,3)}$ $\sum_{n=2i-1}^{(2,3)}$. It is easily seen that $(10)^j 0 O \mathcal{F}_{n-2j-1}^{(2,3)} = (10)^i 10(10)^{j-i-1} 0 O \mathcal{F}_{n-2j}^{(2,3)}$ $\frac{\Gamma(2,3)}{n-2j-1}$. Let α be a vertex of $(10)^j0O\mathcal{F}_{n-2j}^{(2,3)}$ n−2j−1 . Then $\alpha = (10)^i 10(10)^{j-i-1} 0\beta$ for some $\beta \in \mathcal{OF}_{n-2}^{(2,3)}$ $n-2j-1$. Obviously, there exist a vertex $\alpha' = (10)^i 00(10)^{j-i-1} 0\beta \in \mathcal{OF}_{n-2i}^{(2,3)}$ $\alpha^{(2,3)}_{n-2i-1}$, and so α is adjacent to α' . Therefore, there are $|O\mathcal{F}^{(2,3)}_{n-2n}|$ $\frac{1}{10^{(2,3)}}$ edges between the subsets $(10)^{j}0O\mathcal{F}_{n-2j-1}^{(2,3)}$ $\mathcal{F}^{(2,3)}_{n-2j-1}$ and $(10)^i 0 O \mathcal{F}^{(2,3)}_{n-2i}$ $n-2i-1$. So we know that the decomposition of $O\Gamma_n^{(2,3)}$ can be shown as in Figure [6,](#page-8-0) and

$$
|E(OT_n^{(2,3)})| = |E(OT_{n-1}^{(2,3)})| + |E(OT_{n-3}^{(2,3)})| + |E(OT_{n-5}^{(2,3)})| + |E(OT_{n-7}^{(2,3)})| + |OF_n - 3^{(2,3)}| + 2|OF_n - 5^{(2,3)}| + 3|OF_n - 7^{(2,3)}| = \sum_{n=0}^{3} t = 0 \left(|E(IT_{n-2t-1}^{(2,3)})| + t|V(IT_{n-2t-1}^{(2,3)})| \right).
$$

Fig. 6. The decomposition of $O\Gamma_n^{(2,3)}$

In general, we can get the structure of the edge set of $O\Gamma_n^{(p,r)}$ as follows. By Eq. [\(3\)](#page-5-0) we know that the vertex set of $O\Gamma_n^{(p,r)}$ can be decomposed into $r+1$ disjoint subsets for $n\geq$ $pr+1$: $\mathcal{OF}_n^{(p,r)} = \bigcup^{r}$ $t=0$ $(10^{p-1})^t0O\mathcal{F}^{(p,r)}_{n-nt}$ $\bar{\Gamma}^{(p,r)}_{n-pt-1}$. So the graph $O\Gamma^{(p,r)}_{n}$ can be decomposed into $r+1$ disjoint subgraphs isomorphic to $O\Gamma_{n-tn}^{(p,r)}$ $_{n-tp-1}^{(p,r)}$ for $t=0,1,\ldots,r$, respectively. Further, for $0 \leq i < j \leq r$, it can be found that there are $|V(O\Gamma^{(p,r)}_{n-i})|$ $|_{n-jp-1}^{(p,r)}\rangle\hspace{-0.1cm} |=|O\mathcal{F}^{(p,r)}_{n-jp}$ $\left| \mathbf{e}_{n-jp-1}^{(p,r)} \right|$ edges connecting the subgraphs $O\Gamma_{n-in}^{(p,r)}$ $_{n-ip-1}^{(p,r)}$ and $O\Gamma _{n-jp}^{(p,r)}$ ${}_{n-jp-1}^{(p,r)}$ (of $O\Gamma_n^{(p,r)}$). So there are \sum_{r} $t=0$ $(t|O\mathcal{F}_{n-nt}^{(p,r)}$ $\binom{p,r}{n-pt-1}$) edges between these $r + 1$ subgraphs. So we have the following result.

Theorem 3.4. Let $n > pr + 1$. Then

$$
|E(O\Gamma_n^{(p,r)})| = \sum_{t=0}^r (|E(O\Gamma_{n-pt-1}^{(p,r)})| + t|O\mathcal{F}_{n-pt-1}^{(p,r)}|). \tag{8}
$$

3.2.2. Edge set of $\Gamma_n^{(p,r)}$. First, we also take $\Gamma_n^{(2,3)}$ as an example to better understand the structure of the edge set of $O\Gamma_n^{(p,r)}$. By Eq. [\(6\)](#page-6-2), we know that $I\mathcal{F}_n^{(2,3)}$ can be decomposed into four disjoint subsets for $n \geq 5$: $0.0 \mathcal{F}_{n-1}^{(2,3)}$ $\mathcal{F}^{(2,3)}_{n-1}, 100$ I $\mathcal{F}^{(2,3)}_{n-3}$ $\mathcal{F}^{(2,3)}_{n-3}, 1100$ $I \mathcal{F}^{(2,3)}_{n-4}$ $n-4$ and $11100 \cdot I\mathcal{F}_{n-5}^{(2,3)}$ $n-5$.

Inside each subgraph of $\prod_{n=1}^{(p,r)}$ induced by $0I\mathcal{F}_{n-1}^{(2,3)}$ $\mathcal{F}_{n-1}^{(2,3)}$ and $1^t00I\mathcal{F}_{n-2}^{(2,3)}$ $t_{n-2-t}^{(2,3)}$ $(t \in [3])$ the edges are inherited from $\Gamma_{n-1}^{(2,3)}$ $_{n-1}^{(2,3)}$ and $I\Gamma_{n-2}^{(2,3)}$ $_{n-2-t}^{(2,3)}$, respectively. Now we consider the edges between the above four subsets. It is easily seen that $01^{t-1}00I\mathcal{F}_{n-2-t}^{(2,3)} \subset 0I\mathcal{F}_{n-1}^{(2,3)}$ $\sum_{n=1}^{(2,3)}$. So for every vertex $\alpha \in 1^t 00 I \mathcal{F}^{(2,3)}_{n-2}$ $n_{n-2-t}^{(2,3)}$, there exist a vertex $\alpha' \in 01^{t-1}001\mathcal{F}_{n-2}^{(2,3)}$ n^{-2-t} such that there is an edge between α and α' . So there are $|I\mathcal{F}^{(2,3)}_{n-2}|$ $\left| \begin{smallmatrix} (2,3) \ n-2-t \end{smallmatrix} \right|$ edges between $1^t00I\mathcal{F}_{n-2}^{(2,3)}$ $\tau^{(2,3)}_{n-2-t}$ and $0I\mathcal{F}^{(2,3)}_{n-1}$ $n-1$ for $t \in [3]$. Suppose $1 \leq i \leq j \leq 3$, $\beta \in 1^j00I\mathcal{F}_{n-2}^{(2,3)}$. $\tau^{(2,3)}_{n-2-j}$ and β' ∈ 1ⁱ00IF_{n-2}. $\prod_{n-2-i}^{(2,3)}$. If $j - i \geq 2$, then β and β' are not adjacent in $\Gamma_n^{(p,r)}$. If $j = i + 1$, then by the fact $1^{j-1}000I\mathcal{F}_{n-2-j}^{(2,3)} \subset 1^i00I\mathcal{F}_{n-2-j}^{(2,3)}$ ^(2,3)_{n−2−i}, we know that there exist a vertex $\beta'' \in 1^i 00 I \mathcal{F}^{(2,3)}_{n-2}$. $n-2-i$ such that β' and β'' are adjacent in $I\Gamma_n^{(p,r)}$. This implies that for $1 \leq i < j \leq 3$, there exist edges between $1^j00I\mathcal{F}_{n-2}^{(2,3)}$ $\tau^{(2,3)}_{n-2-j}$ and $1^i00I\mathcal{F}^{(2,3)}_{n-2-j}$ $\sum_{n=2-i}^{(2,3)}$ only if $j = i + 1$, and there are $|I\mathcal{F}^{(2,3)}_{n-2}$. $\binom{2,3}{n-2-j}$ edges between them. Hence, we know that the decomposition of $I\Gamma_n^{(2,3)}$ can be shown as in Figure [7,](#page-9-0) and $|E(I\Gamma_{n}^{(2,3)})|$ = $|E(I\Gamma_{n-1}^{(2,3)})|$ $\binom{(2,3)}{n-1}$ |+ \sum^3 $t=1$ $(|E($ I $\Gamma_{n-2}^{(2,3)})|$ $\sum_{n=2-t}^{(2,3)}$ |+2|I $\mathcal{F}_{n-2}^{(2,3)}$ $\vert I_{n-2-t}^{(2,3)}\vert\vert)-\vert I\mathcal{F}_{n-3}^{(2,3)}\vert$ $\left| \frac{1}{n-3} \right|$.

Fig. 7. The decomposition of $\Gamma_n^{(2,3)}$

In general, we have the following result.

Theorem 3.5. $n \geq p + r$. Then

$$
|E(IF_n^{(p,r)})| = |E(IF_{n-1}^{(p,r)})| + \sum_{t=1}^r (|E(IF_{n-p-t}^{(p,r)})| + 2|IF_{n-p-t}^{(p,r)}) - |IF_{n-p-1}^{(p,r)}|.
$$
 (9)

Proof. By Eq. (6) , $I\mathcal{F}_n^{(p,r)} = 0I\mathcal{F}_{n-1}^{(p,r)} \cup 10^p I\mathcal{F}_{n-p-1}^{(p,r)} \cup \ldots \cup 1^r 0^p I\mathcal{F}_{n-p}^{(p,r)}$ $r_{n-p-r}^{(p,r)}$. So the graph $I\Gamma_n^{(p,r)}$ can be decomposed into $r+1$ disjoint subgraphs isomorphic to $I\Gamma_{n-1}^{(p,r)}$ $_{n-1}^{\left(p,r\right)}$ (induced by the set $0I\mathcal{F}_{n-1}^{(p,r)}$ $T_{n-1}^{(p,r)}$ and $\varGamma_{n-p}^{(p,r)}$ $_{n-p-t}^{(p,r)}$ (induced by the set $1^t0^{p-1}I\mathcal{F}_{n-p}^{(p,r)}$ $\tau_{n-p-t}^{(p,r)}$ for $t \in [r]$, respectively. To achieve the desired result, we need to consider the edges between the above subgraphs. First, we consider $0I\mathcal{F}_{n-1}^{(p,r)}$ $\tau_{n-1}^{(p,r)}$ and 1 ^t 0 ^p I $\mathcal{F}_{n-p}^{(p,r)}$ $\mathcal{L}_{n-p-t}^{(p,r)}$, $t \in [r]$. Let α be a vertex of $1^t0^p I \mathcal{F}_{n-p}^{(p,r)}$ n−p−t . Then $\alpha = 1^t 0^p \alpha'$ for some $\alpha' \in I \mathcal{F}_{n-p}^{(p,r)}$ $\sum_{n-p-t}^{(p,r)}$. It can be seen that the vertex $\beta = 01^{t-1}0^p\alpha' \in$ $0I\mathcal{F}_{n-1}^{(p,r)}$ $\mathcal{F}_{n-1}^{(p,r)},$ and so there are $|I\mathcal{F}_{n-p}^{(p,r)}|$ $\vert_{n-p-t}^{(p,r)}\vert$ edges between $0I\mathcal{F}_{n-1}^{(p,r)}$ $\tau_{n-1}^{(p,r)}$ and 1 ^t 0 ^p I $\mathcal{F}_{n-p}^{(p,r)}$ $\sum_{n-p-t}^{(p,r)}$. Now we consider the edges between $1^i0^p I \mathcal{F}^{(p,r)}_{n-p}$ $\pi_{n-p-i}^{(p,r)}$ and $1^j0^p I \mathcal{F}_{n-p-i}^{(p,r)}$ $\sum_{n-p-j}^{(p,r)}$ for $1 \leq i < j \leq r$. Obviously, if $j \geq i+2$, then there is not edges between them. Suppose $j = i+1$ and let $\alpha \in 1^{j}0^p I \mathcal{F}_{n-p}^{(p,r)}$ $\frac{(p,r)}{n-p-j}$. Then $\alpha = 1^j 0^p \alpha' = 1^i 10^p \alpha'$ for some $\alpha' \in I \mathcal{F}_{n-p}^{(p,r)}$ ^{-(*p,r*)}</sup> As β = 1^{*i*}00^{*p*}α' ∈ 1^{*i*}0^{*p*}*IF*_{*n*−*p*</sup>} $\prod_{n-p-i}^{(p,r)}$ and α and β are adjacent, we know that there are $|I\mathcal{F}^{(p,r)}_{n-m}|$ $\left. \begin{array}{c} \Gamma^{(p,r)}_{n-p-j} \mid \text{edges between } 1^{i} 0^{p} I \mathcal{F}^{(p,r)}_{n-p}. \end{array} \right.$ $\sum_{n-p-i}^{(p,r)}$ and $\mathbf{r}_{n-p-j}^{(p,r)}$ for $j = i+1$. Therefore, there are altogether $2 \sum_{n}^{r} |I \mathcal{F}_{n-p}^{(p,r)}|$ $1^j0^p I \mathcal{F}_{n-p}^{(p,r)}$ $\vert P_{n-p-t}^{(p,r)}\vert - \vert I \mathcal{F}_{n-p}^{(p,r)}\vert$ $\left| \frac{p,r_{\ell}}{n-p-1} \right|$ edges connecting these $r + 1$ subgraphs. This completes the proof. \Box If $p = 1$ and $r = 1$, then by Eqs. [\(8\)](#page-8-1) and [\(9\)](#page-9-1) we have

$$
|E(OT_n^{(1,1)})|=|E(OT_{n-1}^{(1,1)})|+|E(OT_{n-2}^{(1,1)})|+|OF_{n-2}^{(1,1)}|, and
$$

$$
|E(IT_n^{(1,1)})|=|E(IT_{n-1}^{(1,1)})|+|E(IT_{n-2}^{(1,1)})|+|IF_{n-2}^{(1,1)}|,
$$

respectively. This means that Eq. (2) can be obtained from both Eqs. (8) and (9) .

4. Relation to Hypercubes

Both partial cubes and median graphs are important and well-studied classes of graphs. The graphs $I\Gamma^{(p,r)}_n$ and $O\Gamma^{(p,r)}_n$ which are partial cubes and median graphs are determined.

4.1. $I\Gamma_n^{(p,r)}$ and $O\Gamma_n^{(p,r)}$ as partial cubes

Both graphs $O\Gamma_n^{(p,r)}$ and $\Gamma_n^{(p,r)}$ are induced subgraphs of hypercubes. It is natural to ask whether they can be isometrically embedded into hypercubes. First we consider $O\Gamma_n^{(p,r)}$.

Theorem 4.1. Let $p \ge 1$ and $r \ge 1$. Then for any $n \ge 1$, $O\Gamma_n^{(p,r)}$ is a partial cube.

Proof. Let $\alpha = a_1 a_2 ... a_n$ and $\beta = b_1 b_2 ... b_n$ be any two vertices of $O\Gamma_n^{(p,r)}$. Suppose that the Hamming distance $H(\alpha, \beta)$ between α and β is s, and $a_{i_j} \neq b_{i_j}$ for all $j \in [s]$. The desired result can be obtained by showing $d_{\mathcal{O}\Gamma_n^{(p,r)}}(\alpha,\beta) = H(\alpha,\beta)$ for all $s \geq 1$. This can be shown by using induction on s. Obviously if $s = 1$, then $d_{\text{OT}_n^{(p,r)}}(\alpha, \beta) = 1 = H(\alpha, \beta)$ by Definition [1.1.](#page-1-1) Suppose that $s \geq 2$ and $d_{\text{OT}_n^{(p,r)}}(\mu, \nu) = H(\mu, \nu)$ holds for any two n vertices μ and ν of $O\Gamma_n^{(p,r)}$ with $H(\mu,\nu)=s-1$. Without loss of generality, suppose that $a_{i_1} = 1$ and $b_{i_1} = 0$. Let α' be the word obtained from α by changing a_{i_1} from 1 to 0. Then $H(\alpha, \alpha') = 1$, $H(\alpha', \beta) = s - 1$ and α' is a O-Fibonacci (p, r) -word of length n, that is, $\alpha' \in OF_n^{(p,r)}$. As $d_{\text{OT}_n^{(p,r)}}(\alpha', \beta) = H(\alpha', \beta) = s - 1$ by the induction hypothesis, we know $d_{\text{OT}_n^{(p,r)}}(\alpha,\beta) = H(\alpha,\alpha') + H(\alpha',\beta) = 1 + s - 1 = s$. This completes the proof. $\mathcal{L}_{\mathcal{A}}$

By Theorem [4.1,](#page-10-0) all $O\Gamma_n^{(p,r)}$ are partial cubes. However, this does not hold for $I\Gamma_n^{(p,r)}$. For $n \geq p$ and $n \geq r$, the cubes $I\Gamma_n^{(p,r)}$ which are partial cubes have been determined [\[25\]](#page-14-12). Now for all the cases $n \geq 1$, $p \geq 1$ and $r \geq 1$, the results are listed as follows.

Theorem 4.2. Let $p \geq 1, r \geq 1$ and $n \geq 1$. Then $\prod_{n}^{(p,r)}$ is a partial cube if and only if it is one of the following cases:

(a) $p = 1, r > 1, and n > 1$;

(b) $p \geq 2$, $r \leq p+1$ and $n \geq 1$; and

(c) $p > 2$, $r > p + 2$ and $n < r$.

Proof. First we consider the case $p = 1$ and $r \ge 1$. If $n \ge r$, then $I\Gamma_n^{(1,r)}$ is a partial cube ([\[25\]](#page-14-12), Lemma 2.2). If $n < r$, then $I\Gamma_n^{(p,r)} \cong Q_n$ by Proposition [2.3,](#page-4-0) and so $I\Gamma_n^{(p,r)}$ is a partial cube. It means that if (a) holds, then $I\Gamma_n^{(1,r)}$ is a partial cube.

If $p \geq 2$ and $r \leq p+1$, then it is obvious that there is not a distance-barrier between any two vertices of $\Gamma_n^{(p,r)}$. So if (b) holds, then $\Gamma_n^{(1,r)}$ is partial cube by Lemma [2.1.](#page-4-1)

Now we turn to consider the case $p > 2$ and $r > p+2$. If $n > r$, then it was shown that $I\Gamma_n^{(p,r)}$ is not a partial ([\[25\]](#page-14-12), Lemma 2.5). If $n < r$, then there is not a distance-barrier between any two vertices of $I\Gamma_n^{(p,r)}$, and so $I\Gamma_n^{(p,r)}$ is a partial cube by Lemma [2.1.](#page-4-1)

According to the above analysis, $I\Gamma_n^{(p,r)}$ is a partial cube if and only if one of (a) , (b) and (c) holds. \Box

$1.2.$ $_{n}^{(p,r)}$ and $\mathit{\Pi_{n}^{(p,r)}}$ as median graphs

It is well known that a median graph must be a partial cube. In this subsection, we show that $O\Gamma_n^{(p,r)}$ (resp. $I\Gamma_n^{(p,r)}$) being median graphs is only a small part of the $O\Gamma_n^{(p,r)}$ (resp. $I\Gamma_n^{(p,r)}$ which are partial cubes.

Note that for $n \geq p$ and $n \geq r$, the graphs $\textit{IF}_n^{(p,r)}$ which are median graphs has been determined [\[18\]](#page-14-10). For the cases $p \geq 1$, $r \geq 1$ and $n \geq 1$, graphs $I\Gamma_n^{(p,r)}$ as median graphs are list as follows.

Theorem 4.3. Let $p \geq 1, r \geq 1$ and $n \geq 1$. Then $\prod_{n=1}^{(p,r)}$ is a median graph if and only if it is one of the following cases:

- (a) $p = 1, r > 2$ and $r > n > 1$;
- (b) $p \geq 2$, $r \geq 3$ and $2 \geq n \geq 1$; and
- (c) $r \leq p, r \leq 2$ and $n \geq 1$.

Proof. We distinguish three cases: (1) $p = 1$ and $r \ge 2$, (2) $p \ge 2$ and $r \ge 3$, and (3) $r \leq p$ and $r \leq 2$. It has been shown that if (1) or (3) holds for $n \geq p$ and $n \geq r$, or (2) hold for $n \geq 3$, then $I\Gamma_n^{(p,r)}$ is not a median graph ([\[25\]](#page-14-12), Lemma 4.2 and Corollary 4.4).

If (1) holds and $n < r$, then $I\Gamma_n^{(p,r)} \cong Q_n$ by Proposition [2.3\(](#page-4-0)1). It is obvious that if (2) happens and $2 \ge n \ge 1$, then $\Gamma_n^{(p,r)} \cong Q_n$. It is well known that Q_n is a median graph. If $n < p$ and (3) holds, then $I\Gamma_n^{(p,r)} \cong I\Gamma_n^{(n,r)}$ by Proposition [2.3](#page-4-0) (3). It has been known that $I\Gamma_n^{(n,r)}$ is a median graph if (3) happens ([\[25\]](#page-14-12), Corollary 4.4). According to the above analysis, $I\Gamma_n^{(p,r)}$ is a median graph if and only if (a) , (b) , or (c) holds. \Box

The following result determines the graphs $O\Gamma_n^{(p,r)}$ which are median graphs.

Theorem 4.4. Let $p \geq 1, r \geq 1$ and $n \geq 1$. Then $O\Gamma_n^{(p,r)}$ is a median graph if and only if one of the following cases holds:

- (*a'*) $p \ge 1, r = 1$ and $n \ge 1$;
- (b') $p = 1, r \geq 2$ and $r \geq n \geq 1$; and
- (c') $p \geq 2$, $r \geq 2$ and $n \leq pr$.

Proof. We also distinguish three cases by p and r: (1') $p \ge 1$ and $r = 1$, (2') $p = 1$ and $r \geq 2$, and (3') $p \geq 2$ and $r \geq 2$. By Corollary [3.3,](#page-7-2) we know that $O\Gamma_n^{(1,r)} \cong I\Gamma_n^{(1,r)}$ and $\mathcal{O}\Gamma_n^{(p,1)} \cong \Gamma_n^{(p,1)}$. So if (a') or (b') holds, then $\mathcal{O}\Gamma_n^{(p,r)}$ is a median graph by Theorem 4.3 (a) and (c). Now we turn to consider case (3'). For the case $p \ge 2$, $r \ge 2$ and $n \le pr$, let

$$
\chi = x_1 x_2 \dots x_n,
$$

\n
$$
\eta = y_1 y_2 \dots y_n,
$$

\n
$$
\rho = p_1 p_2 \dots p_n,
$$

and

$\omega = w_1w_2\ldots w_n,$

where χ, η and ρ are vertices of $O\Gamma_n^{(p,r)},$ and ω is the median of χ, η and ρ . It is well known that the median of the triple in Q_n is obtained by the majority rule ([\[6\]](#page-13-9), Proposition 3.7): the ith coordinate of the median is equal to the element that appears at least twice among the x_i , y_i , and p_i . Without loss of generality, suppose that among x_1 , y_1 and p_1 there at least two 1s. Then $w_1 = 1$. Suppose the second 1 contained in ω is w_i . As χ, η are vertices of $O\Gamma_n^{(p,r)}$ and there are at least two 1 among x_i, y_i and p_i , we know $i \geq p+1$. By considering the coordinate of the next element 1 in ω , we can find that the number of 0s between two 1 is at least $p-1$ in ω . Since the length of ω is not more than pr, there are at most r continue '1' in ω . Therefore, ω is a vertex of $O\Gamma_n^{(p,r)}$, and so $O\Gamma_n^{(p,r)}$ is a median graph for this case.

For any $p \geq 2$, $r \geq 2$ and $n > pr$, let

$$
\alpha = 10^{p-1} 10^{p-1} 0 (0^{p-1} 1)^{r-2} 0^{n-pr-1},
$$

$$
\beta = 10^{p-1} 00^{p-1} 1 (0^{p-1} 1)^{r-2} 0^{n-pr-1},
$$

and

$$
\gamma = 00^{p-1} 10^{p-1} 1 (0^{p-1} 1)^{r-2} 0^{n-pr-1}.
$$

Then α, β and γ are vertices of $O\Gamma_n^{(p,r)}$. Set

$$
\mu = 10^{p-1} 10^{p-1} 1 (0^{p-1} 1)^{r-2} 0^{n-pr-1}.
$$

It is easy to see that α, β and γ are pairwise at distance 2 in $O\Gamma_n^{(p,r)}$. By the majority rule, the unique candidate for their median is μ . Since there are $r + 1$ 'consecutive' 1s in μ , it does not belong to $O\Gamma_n^{(p,r)}$ and so $O\Gamma_n^{(p,r)}$ is not median-closed induced subgraph of hypercube. Hence, $O\Gamma_n^{(p,r)}$ is not a median graph by Theorem [2.2](#page-4-2) for this case. This completes the proof. \Box

5. Concluding Remarks

In this section, two questions are listed for further study of $O\Gamma_n^{(p,r)}$ and $I\Gamma_n^{(p,r)}$.

Corollary [3.3](#page-7-2) shows that $O\Gamma_n^{(p,r)} \not\cong \Gamma_n^{(p,r)}$ for almost all of p and r. However, there may be some p, r, n and p', r', n' such that $O\Gamma_n^{(p,r)} \cong \Gamma_{n'}^{(p',r')}$. As an example, $O\Gamma_4^{(2,2)}$ $\Gamma_4^{(2,2)} \cong \Gamma_4^{(3,2)}$ 4 is shown in Figure [5.](#page-7-1) A natural question that arises is the following:

Question 5.1. For which values of p, r, n and p', r', n', $O\Gamma_n^{(p,r)} \cong \Gamma_{n'}^{(p',r')}$?

The eccentricity $e(v)$ of a vertex v of a graph G is the maximum of its distances to other vertices in G , and the *diameter* $d(G)$ of G are the maximum of the vertex eccentricities. The diameter of $O\Gamma_n^{(p,r)}$ was determined ([\[5\]](#page-13-3), Property 4). But the diameter of $I\Gamma_n^{(p,r)}$ has not been studied. So the following questions are listed.

Question 5.2. What is the diameter of $I\Gamma_n^{(p,r)}$?

As mentioned above the diameter of a graph G is the greatest distance between any two vertices in G. Theorem [4.1](#page-10-0) shows that every graph $O\Gamma_n^{(p,r)}$ is a partial cube, and so the distance between any two vertices of $O\Gamma_n^{(p,r)}$ is the Hamming distance of them. However, Theorem [4.2](#page-10-1) shows that only a small part of all graphs $\Gamma_{n}^{(p,r)}$ are partial cube. Therefore, it seems that determining the diameter of $\mathit{\Gamma}^{(p,r)}_n$ is a rather difficult task.

Conflict of interest

The author declares no conflict of interest.

References

- [1] E. Aragno and N. Z. Salvi. Widened fibonacci cubes. Rivista di Matematica della Università di Parma, $3:25-35$, 2000 . [https://www.rivmat.unipr.it/fulltext/2000-3/03.pdf.](https://www.rivmat.unipr.it/fulltext/2000-3/03.pdf)
- [2] T. Došlić and L. Podrug. Metallic cubes. *Discrete Mathematics*, 347:113851, 2024. [https:](https://doi.org/10.1016/j.disc.2023.113851) [//doi.org/10.1016/j.disc.2023.113851.](https://doi.org/10.1016/j.disc.2023.113851)
- [3] Ö. Eğecioğlu and V. Iršič. Fibonacci-run graphs i: basic properties. *Discrete Applied Math*ematics, 295:7084, 2021. [https://doi.org/10.1016/j.dam.2021.02.025.](https://doi.org/10.1016/j.dam.2021.02.025)
- [4] Ö. Egecioglu, S. Klavžar, and M. Mollard. Fibonacci cubes with applications and variations. World Scientific, 2023.
- [5] K. Egiazarian and J. Astola. On generalized fibonacci cubes and unitary transforms. Ap plicable Algebra in Engineering, Communication and Computing, $8:371-377$, 1997. [https:](https://doi.org/10.1007/s002000050074) [//doi.org/10.1007/s002000050074.](https://doi.org/10.1007/s002000050074)
- [6] R. Hammack, W. Imrich, and S. Klavžar. Handbook of product graphs. CRC Press, Boca Raton, FL, 2nd edition, 2011.
- $|7|$ W. J. Hsu. Fibonacci cubes—a new interconnection topology. IEEE Transactions on Parallel and Distributed Systems, 4:312, 1993. [https://doi.org/10.1109/71.205649.](https://doi.org/10.1109/71.205649)
- [8] W. J. Hsu, M. J. Chung, and A. Das. Linear recursive networks and their applications in distributed systems. IEEE Transactions on Parallel and Distributed Systems, $6(8):1-8$, 1997. [https://doi.org/10.1109/71.598343.](https://doi.org/10.1109/71.598343)
- [9] A. Ilić, S. Klavžar, and Y. Rho. Generalized fibonacci cubes. *Discrete Mathematics*, $312:2-$ 11, 2012. [https://doi.org/10.1016/j.disc.2011.02.015.](https://doi.org/10.1016/j.disc.2011.02.015)
- $[10]$ A. Ilić, S. Klavžar, and Y. Rho. Generalized lucas cubes. Applicable Analysis and Discrete $Mathematics, 6:82-94, 2012. <http://www.jstor.org/stable/43666158>.$
- [11] S. Klavžar. On median nature and enumerative properties of fibonacci-like cubes. Discrete $Mathematics, 299:145-153, 2005. <https://doi.org/10.1016/j.disc.2004.02.023>.$
- [12] S. Klavžar. Structure of fibonacci cubes: a survey. Journal of Combinatorial Optimization, 25:505522, 2013. [https://doi.org/10.1007/s10878-011-9433-z.](https://doi.org/10.1007/s10878-011-9433-z)
- [13] S. Klavžar and M. Mollard. Daisy cubes and distance cube polynomial. *European Journal* of Combinatorics, 80:214223, 2019. [https://doi.org/10.1016/j.ejc.2018.02.019.](https://doi.org/10.1016/j.ejc.2018.02.019)
- [14] S. Klavžar and Y. Rho. Fibonacci (p, r) -cubes as cartesian products. *Discrete Mathematics*, 328:2326, 2014. [https://doi.org/10.1016/j.disc.2014.03.027.](https://doi.org/10.1016/j.disc.2014.03.027)
- [15] F. T. Leighton. Introduction to parallel algorithms and architectures: arrays, trees, hypercubes. Morgan Kaufmann, San Mateo, California, 1992.
- [16] E. Munarini. Pell graphs. Discrete Mathematics, 342:2415-2428, 2019. [https://doi.org/](https://doi.org/10.1016/j.disc.2019.05.008) [10.1016/j.disc.2019.05.008.](https://doi.org/10.1016/j.disc.2019.05.008)
- [17] E. Munarini, C. P. Cippo, and N. Z. Salvi. On the lucas cubes. The Fibonacci Quarterly, 39:1221, 2001. [https://doi.org/10.1080/00150517.2001.12428753.](https://doi.org/10.1080/00150517.2001.12428753)
- [18] L. Ou and H. Zhang. Fibonacci (p, r) -cubes which are median graphs. Discrete Applied $Mathematics, 161:441-444, 2013. <https://doi.org/10.1016/j.dam.2012.09.008>.$
- [19] L. Ou, H. Zhang, and H. Yao. Determining which fibonacci (p, r) -cubes can be z-transformation graphs. Discrete Mathematics, $311:1681-1692$, $2011.$ [https://doi.org/10.1016/j.disc.](https://doi.org/10.1016/j.disc.2011.04.002) [2011.04.002.](https://doi.org/10.1016/j.disc.2011.04.002)
- [20] H. Qian and J. Wu. Enhanced fibonacci cubes. The Computer Journal, $39:331-345$, 1996. [https://doi.org/10.1093/comjnl/39.4.331.](https://doi.org/10.1093/comjnl/39.4.331)
- [21] J. Wei. Proof of a conjecture on 2-isometric words. Theoretical Computer Science, 855:68– 73, 2021. [https://doi.org/10.1016/j.tcs.2020.11.026.](https://doi.org/10.1016/j.tcs.2020.11.026)
- [22] J. Wei. Lucas-run graphs. Bulletin of the Malaysian Mathematical Sciences Society, 47:178, 2024. [https://doi.org/10.1007/s40840-024-01776-3.](https://doi.org/10.1007/s40840-024-01776-3)
- [23] J. Wei and Y. Yang. Fibonacci and lucas p-cubes. Discrete Applied Mathematics, 322:365 383, 2022. [https://doi.org/10.1016/j.dam.2022.09.004.](https://doi.org/10.1016/j.dam.2022.09.004)
- [24] J. Wei, Y. Yang, and G. Wang. Circular embeddability of isometric words. *Discrete Math*ematics, 343:112024, 2020. [https://doi.org/10.1016/j.disc.2020.112024.](https://doi.org/10.1016/j.disc.2020.112024)
- [25] J. Wei and H. Zhang. Fibonacci (p, r) -cubes which are partial cubes. Ars Combinatoria, 115:197209, 2014.
- [26] J. Wu and Y. Yang. The postal network: a recursive network for parameterized communication model. Journal of Supercomputing, $19:143-161$, 2001 . [https://doi.org/10.1023/A:](https://doi.org/10.1023/A:1011171605490) [1011171605490.](https://doi.org/10.1023/A:1011171605490)