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abstract

In this paper, we present a new combinatorial characterization of Hermitian cones in

PG(3, q2) .
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1. Introduction

Algebraic varieties in a �nite projective space PG(r, q) have few �nite intersection sizes

with all the members of one (or more than one) prescribed family of subspaces. Thus, it is

natural to ask if it is possible to reconstruct their structure starting from these intersection

numbers and possibly other additional arithmetic and/or geoemetric conditions. A �rst

example for such a characterization problem is the famous theorem of B. Segre (1954) [9]

which characterizes the non�degenerate conics of PG(2, q), q odd, as sets of (q+1)�points

intersected by any line in at most two points. There is a wide literature devoted to this

problem, mostly when there are only two possibilities for the intersection sizes (cf e.g. [2,

5, 7, 8, 10] and the references cited therein). Whereas less is known, as regards sets with

more than two intersection sizes, (cf e.g. [3, 4, 10]).

Recently, some papers have been published concerning characterizations of cones with

a Baer subplane or an Hermitian arc as base (director) curve in 3�dimensional �nite

projective spaces, as sets of points of PG(3, q2) with three intersection numbers with

respect to the planes [1, 6, 4, 3]. In [1], using a combination of combinatorial methods
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and algebraic geometry over �nite �elds, the author obtains a characterization of the

Hermitian cone in PG(3, q2) as a surface of degree q + 1 and with intersection sizes with

the planes as those of an Hermitian cone and using this result on cones she gets also a

characterization of (nonsingular) Hermitian surfaces in PG(4, q2).

In this paper, we present a combinatorial characterization ofHermitian cones of PG(3, q2)

starting from slightly weaker conditions than those assumed in [1].

Before to state our result, we recall some de�nitions to which we refer throughout the

paper.

Let P = PG(n, q) be the n�dimensional (desarguesian) projective pace of order q, and

m1, . . . ,ms be s integers such that 0 ≤ m1 < · · · < ms and for any integer h, 1 ≤ h ≤ n−1,

let Ph denote the family of all the h�dimensional subspaces of P. A subset K of k points of

P is a k�set of class [m1, . . . ,ms]h if |K∩π|∈ {m1, . . . ,ms} for every π ∈ Ph. Furthermore,

if for every mj ∈ {m1, . . . ,ms} there is at least one subspace π ∈ Ph such that |K∩π|= mj

K is of type (m1, . . . ,ms)h. The integers m1, . . . ,ms are the intersection numbers of K
(with respect to the dimension h). If h = 1, 2 one says that K is of line (plane)�class

(type) [m1, . . . ,ms]h (resp. (m1, . . . ,ms)h).

Let K be a subset of points of P, a line (plane) intersecting K in exactly i points is

called i�line (plane). If i = 1 a 1-line (plane) is called tangent. An external line is a

0�line.

An Hermitian arc (or unital of PG(2, q2) is a set of points of PG(2, q2) of size q3 + 1

and of line�type (1, q + 1)1.

Let π be a plane of PG(2, q2) and H be a Hermitian arc in π, and V a point not in π.

A Hermitian cone is the set of points of PG(3, q2) which is the union of the lines through

V and any point of H.

We are going to prove the following result.

Theorem 1.1. Let q be a prime power and s ≥ q2 + 1 be an integer. A set K of points

of PG(3, q2) of plane-type (s, (s− 1)q + 1, (s− 1)q + s)2, such that

(i) any line intersecting K in at least q + 2 points is contained in K,

(ii) if π is an ((s − 1)q + 1)�plane with no line contained in K, then at each point of

π ∩ K there is at least one tangent line,

is a Hermitian cone of PG(3, q2).

Let us end this section by recalling the statement of the result in [1] referred to above.

Theorem 1.2 (Aguglia 2019 [1]). Let S be a surface of degree q+1 of PG(3, q2). If S is

of plane�type (q2 + 1, q3 + 1, q3 + q2 + 1)2 then S is a cone projecting a Hermitian curve

in a plane π from a point V not in π.

In this theorem, (q3+1)�planes not containing (q2+1)�lines, for q ̸= 2 are nonsingular

Hermitian curves and so Hermitian arcs and therefore Theorem 1.1 shows that it is not

necessary to assume that all the planar slices of the set are algebraic curves.



On Hermitian Cones in PG(3, q2) 113

2. The proof

Throughout this section, the number of i�lines, (1 ≤ i ≤ q2 + 1), in a plane is denoted

with bi. For i ∈ {q2 + 1, q3 + 1, q3 + q2 + 1} the number of all i�planes of PG(3, q) and

the number of all i�planes passing through a line ℓ of the space are denoted with ci and

ci(ℓ), respectively.

The following Lemmata give the proof of Theorem 1.1.

Lemma 2.1. K is of plane�type (q2 + 1, q3 + 1, q3 + q2 + 1)2.

Proof. If (s− 1)q + s = q4 + q2 + 1, then q + 1|2, which is not possible. Thus, there is a

point of point of π not in K. Then, by Remark 3.21 in [7] either s ≤ q3 + q2 + 1 or q = 2

and 15 = (s−1)2+s = 3s−2. The latter possibilty gives a contradiction and so it follows

that (s− 1)q+ s ≤ q3 + q2 +1. From s ≥ q2 +1 it follows that (s− 1)q+ s = q3 + q2 +1,

s = q2 + 1 and so K is of plane�type (q2 + 1, q3 + 1, q3 + q2 + 1)2.

Lemma 2.2. There is at least one (q2 + 1)�line.

Proof. Let π be a (q3 + q2 + 1)�plane, if there is a point of K, say p, in π not on a

(q2 + 1)�line, then counting the number of points of π ∩ K via the lines of π passing

through p gives q3 + q2 + 1 = vπ ≤ 1 + (q2 + 1)q, a contradiction. Hence, every point of

π ∩ K is on a (q2 + 1)�line.

In particular, (q2 + 1)�lines do exist and a (q3 + q2 + 1)�plane π contains no external

line.

Lemma 2.3. A (q3+1)�plane which contains no (q2+1)�line intersects K in a Hermitian

arc, and so contains no external line.

Proof. Let π be a (q3 + 1)�plane with no line contained in K, then every point of π ∩ K
belongs to exactly one tangent line and q2 (q+1)�lines. Double counting gives b1 = q3+1

and (q + 1)bq+1 = (q3 + 1)q2, thus bq+1 = (q2 − q + 1)q2 = q4 − q3 + q2 and so the slice

K∩ π is a set of points of π of size q3 + 1 and of line type (1, q + 1)1 that is an hermitian

arc.

Lemma 2.4. There is no external line to K.

1 Remark 3.2 in [7]: Let πn be a projective plane of square order n and let X be a subset of points of πn

such that

• there is at least a point of πn outside X,

• every line ℓ of πn with |ℓ ∩X|≥
√
n+ 2 is contained in X,

then either |X|≤ n
√
n + n + 1 or n = 4 (and so πn is desarguesian) |X|= 15 and X is the complement

of a set of line�type (0, 2)1 in PG(2, 4), that is of a 6�arc.
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Proof. Assume on the contrary, that there is an external line, say ℓ. All the planes on

ℓ are (q2 + 1)�planes, and so k = |K|= (q2 + 1)2. Let t be a tangent line, counting the

number of points of K via the planes on t, yields

q4 + 2q2 + 1 = k = 1 + cq2+1(t)q
2 + cq3+1(t)q

3 + cq3+q2+1(t)(q
3 + q2),

q4 + 2q2 = (q2 + 1− cq3+1(t)− cq3+q2+1(t))q
2 + cq3+1(t)q

3 + cq3+q2+1(t)(q
3 + q2),

q2 = cq3+1(t)q
2(q − 1) + cq3+q2+1(t)q

3,

1 = cq3+1(t)(q − 1) + cq3+q2+1(t)q,

thus cq3+1(t) = 1, q = 2 and cq3+q2+1 = 0.

So, q = 2 and no 13�plane contains a tangent line. Let π be a 13�plane, on each point

of π∩K there are at most two 5�lines, and there exists a point, say p0, of π∩K on exactly

two 5�lines, one 3�line and two 2�lines. Let p1, p2 be the other two points of the 3�line on

p0. Since on each point of π there is at least one 5�line, p1 belongs to at least one 5�line,

and since any 5�line not on p0 has to intersect the two 2�lines on p0, it follows that on p2
there is no 5�line, a contradiction.

Hence, K is a blocking set2. Thus, (q2 +1)�planes intersects K in exactly one (q2 +1)�

line.

If there is no (q + 1)�line, let π be a (q3 + q2 + 1)�plane, then counting its number of

points via the lines on a point of π not in K gives q3+ q2+1 ≤ (q2+1)q, a contradiction.

Thus, (q + 1)�lines do exist.

Lemma 2.5. |K|= q5 + q2 + 1.

Proof. Let k = |K|. If π is a (q2+1)�plane and ℓ is the (q2+1)�line π∩K, then counting

the number of points of K via the planes on ℓ gives k ≤ q2 + 1 + q2 · q3 = q5 + q2 + 1.

Let ℓ be a (q + 1)�line, counting the number of points of K via the planes on ℓ gives

q + 1 + cq3+1(ℓ)(q
3 − q) + (q2 + 1− cq3+1(ℓ))(q

3 + q2 − q) =q5 + q4 + q2 + 1− cq3+1(ℓ)q
2

=k ≤ q5 + q2 + 1

and so

cq3+1(ℓ) ≥ q2.

It follows that either cq3+1(ℓ) = q2+1 and k = q5+1 or cq3+1(ℓ) = q2 and k = q5+q2+1.

If k = q5+1, any (q3+q2+1)�plane contains no (q+1)�line, and so if π is a (q3+q2+1)�

plane and p is a point of π \ K, then q3 + q2 + 1 ≤ (q2 + 1)q = q3 + q, which is not

possible. Therefore, k = q5 + q2 + 1 and on a (q + 1)�line there passes exactly one

(q3 + q2 + 1)�plane.

Lemma 2.6. Any line intersects K in 1, q, q + 1 or q2 + 1 points.

2 Note that now we are in the conditions of Theorem 1.2 in [3]. However, we prefer to give an independent

proof of our result.
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Proof. Let ℓ be an h�line, with 2 ≤ h ≤ q, then on ℓ there is no (q2 + 1)�plane. So,

q5 + q2 + 1 = h+ cq3+1(ℓ)(q
3 + 1− h) + (q2 + 1− cq3+1)(ℓ))(q

3 + q2 + 1− h),

cq3+1(ℓ) + h = q2 + q + 1,

but

q2 + 1 + h ≥ cq3+1(ℓ) + h = q2 + q + 1,

and so h = q and cq3+1(ℓ) = q2 + 1.

Hence every line of PG(3, q2) intersects K in 1, q, q + 1 or q2 + 1 points.

By the above proof, it follows that all the planes through a q�line are (q3 + 1)�planes.

The basic equations for k�sets of points of PG(3, q2) of plane�type (q2 + 1, q3 + 1, q3 +

q2 + 1)2 are

cq2+1 + cq3+1 + cq3+q2+1 =(q2 + 1)(q4 + 1),

(q2 + 1)cq2+1 + (q3 + 1)cq3+1 + (q3 + q2 + 1)cq3+q2+1 =k(q4 + q2 + 1),

q2(q2 + 1)cq2+1 + q3(q3 + 1)cq3+1 + (q3 + q2)(q3 + q2 + 1)cq3+q2+1 =k(k − 1)(q2 + 1).

Being k = q5+q2+1 it follows that cq2+1 = q3+1, cq3+1 = q6 and cq3+q2+1 = q4−q3+q2.

Lemma 2.7. A (q3 + 1)�plane contains at most one (q2 + 1)�line.

Proof. Let π be a (q3 + 1)�plane, and assume on the contrary that it contains at least

two (q2 + 1)�line, say ℓ and ℓ1. Let p be a point of ℓ1 \ {ℓ1 ∩ ℓ}. All lines on p contained

in π intersect K in at least q points, so the usual counting on p gives q3 + 1 = |π ∩ K|≥
q2+1+q2(q−1) = q3+1, that is in π on p there is exactly one (q2+1)�line and q2 q�lines.

Thus, in π on each point of ℓ1 \ {ℓ1 ∩ ℓ} there are exactly q2 q�lines and one (q2 +1)�line,

namely ℓ1. Hence, bq ≥ q4. Since all the planes on a q�line are (q3 + 1)�planes, it follows

that cq3+1 ≥ bq · q2 + 1 ≥ q4 · q2 + 1, a contradiction being cq3+1 = q6.

Let ℓ be a (q2 + 1)�line, and let x and y be the number of (q2 + 1)�planes and of

(q3 + 1)�planes on ℓ, respectively. Counting the number of points of K via the lines on ℓ

gives

q5 + q2 + 1 =q2 + 1 + y(q3 − q2) + (q2 + 1− x− y)q3,

q3 =xq3 + yq2,

that is q = xq + y. So, either x = 0 and y = q or x = 1 and y = 0. It follows that on a

(q2 +1)�line there is at most one (q2 +1)�plane. Let L be the set of all the (q2 +1)�lines

contained into exactly one (q2 + 1)�plane. Double countings give |L|= cq2+1 = q3 + 1.

Lemma 2.8. No (q3 + 1)�plane contains a (q2 + 1)�line.
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Proof. Let π be a (q3 + 1)�plane, and assume on the contrary that it contains at least

one (q2 + 1)�line, say ℓ. By the previous Lemma, ℓ is the unique (q2 + 1)�line contained

in π. It follows that on every point of π ∩K \ ℓ there are only q and q+1�lines. If ℓ1 is a

(q2 + 1)�line di�erent from ℓ and contained in a (q2 + 1)�plane, it intersects π in a point

of ℓ, otherwise there is no (q2 + 1)�plane on ℓ1.

Since |L|= q3 + 1 there are at least q3 (q2 + 1)�lines di�erent from ℓ1. Let ℓ2 a line of

L\ℓ1, it has to intersect both ℓ and ℓ1 since there is one (q
2+1)�plane on ℓ2. If ℓ2 intersect

ℓ in a point di�erent from ℓ∩ℓ1, from Lemma 2.7 it follows that the three lines ℓ, ℓ1 and ℓ2
belong to a (q3+q2+1)�plane having no tangent lines. Thus, the usual counting argument

on the point ℓ∩ℓ1 in this plane gives q3+q2+1 ≥ q2+1+q2+(q2−1)q = q3+2q2−q+1,

a contradiction.

Hence all the (q2 + 1)�lines of L are concurrent in a point of ℓ, say p. Thus, on p there

are at least the q3 + 1 (q2 + 1)�lines of L and the line ℓ. Counting the number of points

of K via the lines on p gives |K|≥ q2 + 1+ (q3 + 1)q2 = q5 + 2q2 + 1, a contradiction, and

the statement is proved.

Since a (q3 +1)�plane with no (q2 +1)�line intersects K in an Hermitian arc, it follows

that there are no q�lines.

Let π be a (q3 + q2 + 1)�plane, and let ℓ be a (q2 + 1)�line contained in π. Let p be

a point of π ∩ K \ ℓ and let ℓ1 a (q2 + 1)�line of π on p. Let p0 be the point ℓ ∩ ℓ1. Let

x0(≤ q2 − 1) be the number of (q + 1)�lines of π on p0. Assume that there is no tangent

line on p0. Counting the number of points of π ∩K via the lines passing through p0 gives

q3 + q2 + 1 = 1 + x0q + (q2 + 1− x0)q
2,

that is

x0(q − 1) = q2(q − 1),

and so x0 = q2, a contradiction since x0 ≤ q2 − 1.

Thus in π, and so in every (q3 + q2 + 1)�plane there is at least one tangent line. So in

every (q3+q2+1)�plane all the (q2+1)�lines are concurrent in a point on which there are

all the tangent lines to K of the plane, too. If ℓ is a (q + 1)�line of a (q3 + q2 + 1)�plane,

since on each of its point there is a (q2+1)�line and since these lines have to be concurrent

we have that the number of all the (q2 + 1)�lines of a (q3 + q2 + 1) plane is (q + 1).

So, in every (q3 + q2 + 1)�plane, the (q2 + 1)�lines are part of a pencil containing no

(q + 1)�line.

Let ℓ be a (q2 + 1)�line and π0 be a (q3 + 1)�plane. Let p be the point of K in which ℓ

intersects π0. Through ℓ there are exactly one (q2+1)�plane, say π1 and q2 (q3+ q2+1)�

planes πi, i = 2, . . . , q2 + 1. The plane π1 intersects π0 ∩ K in the only tangent line at p,

the planes πi intersects π0 ∩ K in the remaining q2 (q + 1)�lines.

Any other (q2 + 1)�line, say ℓ1 intersects ℓ, otherwise there is no (q2 + 1)�plane on ℓ1
and so counting the number of points of K through the planes on ℓ1 gives q5 + q2 + 1 =

k ≥ q2 + 1 + (q2 + 1)q3.

All the (q2 + 1)�lines di�erent from ℓ are concurrent in a point V of ℓ, otherwise let

ℓ1 and ℓ2 be two (q2 + 1)�lines intersecting ℓ in two di�erent points. Then ℓ1 and ℓ2 are



On Hermitian Cones in PG(3, q2) 117

disjoint and so skew. Hence on each of them there pass only (q3 + q2 + 1) planes, and

so counting the number of points of K via the planes on one of the ℓi, i = 1, 2, gives a

number bigger than q5 + q2 + 1, a contradiction. Thus, there is a point V on ℓ such that

on it there are (q3 + 1) (q2 + 1)�lines and all the other lines are tangent ones.

Hence, K is the Hermitian cone with vertex V and base π∩K, and the proof is complete.
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