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abstract

In this paper we consider some new weighted and alternating weighted generalized Fi-

bonomial sums and the corresponding q−forms. A generalized form of weight sequences

which contains squares in subscripts is discussed for the �rst time in the literature. The

main key to get success in sums is an ability to change one sum into another that is

simpler in some way. Thus, in order to prove these sums by doing some manipulations

and tricks, our approach is to use classical q−analysis, in particular a formula of Rothe,

a version of Cauchy binomial theorem and Gauss identity.
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1. Introduction

Binomial coe�cients and their generalizations occur frequently in combinatorics, number

theory, and discrete mathematics. There are many generalizations of the binomial coef-

�cients in the literature. One of them is the sequential generalization, i.e. replacing the

natural numbers by the terms of an arbitrary sequence (an) of real or complex numbers.

A generalization which is obtained by choosing nth Fibonacci number Fn instead of an
is known as Fibonomial coe�cients. For another well-known generalization of binomial

coe�cients, let q be a variable, and let an = 1 + q + q2 + · · · + qn. Then we get the
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q−binomial coe�cient, which is known to be a polynomial in q with nonnegative integer

coe�cients (a Gaussian polynomial). q−binomial coe�cients have very rich properties

and many of the properties of binomial coe�cients can be proved more easily by using

these coe�cients. Both Fibonomial coe�cients and q−binomial coe�cients are interested

in by several authors and so their various properties have been found. During this study,

we will frequently use the relationships between Fibonomial coe�cients and q−binomial

coe�cients.

For n ≥ m ≥ 1 the Fibonomial coe�cient is de�ned by

nkF :=
F1F2 . . . Fn

(F1F2 . . . Fk)(F1F2 . . . Fn−k)
,

with n0F = nnF = 1 where Fn is the nth Fibonacci number. For n ≥ 2, Falcon and Plaza

[4, 5] de�ne two second order linear recurrences

Un = pUn−1 + Un−2, U0 = 0, U1 = 1,

Vn = pUn−1 + Vn−2, V0 = 2, V1 = p,

and named these sequences as k−Fibonacci numbers and k−Lucas numbers by taking k

instead of p, respectively. The Binet forms of these numbers and their q−forms are

Un =
αn − βn

α− β
= αn−11− qn

1− q
and Vn = αn + βn = αn (1 + qn) ,

where α and β are the roots of the characteristic polynomial of the recurrences and

q = β
α
= −α−2 so that α = i√

q
. Using the sequence {Un} , for n ≥ k ≥ 1, the generalized

Fibonomial coe�cient is de�ned by

nkU :=
U1U2 . . . Un

(U1U2 . . . Uk)(U1U2 . . . Un−k)
,

with n0U = nnU = 1. If we take the indices in a linear arithmetic progression, we obtain

the generalized Fibonomial coe�cients

nkU,m :=
UmU2m . . . Unm

(UmU2m . . . Ukm)(UmU2m . . . U(n−k)m)
,

for a nonnegative integer m. The usual Fibonomial coe�cients nkF can be obtained by

taking m = p = 1, and when m = 1 the coe�cient nkU,m turns into the generalized Fi-

bonomial coe�cients nkU . As in binomial coe�cients, it is surprising that these quantities

will always take integer values. The Fibonomial coe�cients appear in several places in

the literature (for more details, we refer to [2, 6, 17, 7]).

Throughout the paper, the set of natural numbers is denoted as usual N. The q−Pochhammer

symbol reads as (x; y)0 = 1 and (x; y)n = (1−x)(1−xy) · · · (1−xyn−1) for two indetermi-

nates x and y and n ∈ N. Then for n, k ∈ N the generalized Gaussian binomial coe�cients

are given by

nkx,y :=
(x; y)n

(x; y)k(x; y)n−k

,
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with nkx,y = 0 for k < 0 or k > n which become the usual q−binomial coe�cients nkq for

x = y.

In the literature there exists several sums involving Gaussian q−binomial coe�cients

with weight functions. Also some sums including Fibonomial coe�cients are evaluated.

By taking q = β/α, we can see that there exists a correspondence between these two classes

of sums and hence using an appropriate convenience gives us that we can evaluate one

class of sums from another. Thus our approach is essentialy based on these connections,

that is

nkU,m = αmk(n−k)nkqm .

Fibonomial coe�cients and q−binomial coe�cients have very strong relationships be-

cause they can be easily converted to each other. In this way, while an identity associated

with Fibonomial coe�cients is proved, it is written in the form of q−binomial coe�cient

and proof is made accordingly. Also a proven q−binomial identity is true not only for a

speci�c selection of q, but also for all real or complex values.

We recall some well known identities related to the q−identities. Gauss identity is given

as
n∑

k=0

(−1)k2nkq =
n∏

k=1

(1− q2k−1).

Then for a nonnegative integer m, we have

n∑
k=0

(−1)k2nkqm =
n∏

k=1

(1− qm(2k−1)). (1)

A version of Cauchy binomial theorem is stated as

n∑
k=0

q(
k+1
2 )nkqx

k = (x; q)n =
n∏

k=1

(1 + xqk),

and Rothe's formula is given by

n∑
k=0

(−1)kq(
k
2)nkqx

k = (x; q)n =
n−1∏
k=0

(1− xqk),

see [1].

Now we recall some well-known results about the sums involving Fibonomial coe�cients

from the current literature. These sums are computed explicitly by writing everything in

terms of q and using the Cauchy binomial theorem and Rothe's formula.

• In [10, 16], the authors consider some Fibonomial sums with weights generalized

Fibonacci and Lucas numbers.

• In [11], some variations of q−Dixon identity which have results in terms of Fibonomial

sums are examined.

• In [12, 18, 14, 13], the authors are interested in the sums with terms �nite products

of generalized Fibonacci and Lucas numbers and squares of Fibonomial coe�cients. An

example can be given as
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2n+1∑
k=0

(−1)kqk
2−2kn−3k(1− q2k)22n+ 1k2

q = 2(−1)n+1q−n2−2n−2 (1 + q) (1− q2n+1)
2

1 + q2n
2n+ 1nq2 .

They give a systematic approach to evaluate these kinds of sums. In [15], sums with a

new kind of coe�cients are examined. They consider the coe�cients as products of two

Gaussian q−binomial coe�cients with a parametric rational weight function. Also some

applications to Fibonomial sums are given. To compute these sums, the partial fraction

decomposition technique is used.

• In [8], a class of sums of triple aerated Fibonomial coe�cients with generalized Fi-

bonacci number coe�cients are studied.

• In [3], quadratic sums of Gaussian q−binomial coe�cients with two additional pa-

rameters are evaluated. These results include various known results on square sums of

the Gaussian q−binomial coe�cients when the parameters are specialized.

• In [9, 21, 22, 23, 24], various weighted Fibinomial sums are calculated.

• In [19, 20], various divisibility properties of Fibonomial coe�cients are considered.

In this paper, we will usually deal with the following types of sums:∑
k

am,n,kan+ bkU,m,
∑
k

(−1)kam,n,kan+ bkU,m, and
∑
k

(−1)kam,n,n2,k,k2an+ bkU,m,

where a, b are integers. The �rst of the above sums will be called as on-line weighted, the

second is called as on-line alternate weighted and the third is called as non-line alternate

weighted sum. In particular, a generalized version of the sum of the third type will be

given for the �rst time in the literature.

In the paper, inspired by some of the previous results and earlier partial q−binomial

sums formulæ, we shall derive some interesting new kinds of generalized Fibonomial sums

with generalized Fibonacci and Lucas numbers weighted. We compute these sums by using

Cauchy binomial theorem or Rothe's formula after converting them into forms involving

the Gaussian q−binomial coe�cients. These steps can be seen by the following diagram:

∑
k

am,n,kan+ bkU,m
Convert to q−form

−→
∑
k

am,n,k(q)an+ bkqm

↖ ↙

f(m,n, q)

Obtained closed form

To summarize, we will present the following situations in this paper:

� Sums of the Gaussian q−binomial coe�cients.

� Partial sums of the Gaussian q−binomial coe�cients.

� New weighted sums containing square subscripts of generalized Fibonacci and Lucas

numbers which will be given for the �rst time in this paper.

� New weighted sums of the generalized Fibonomial coe�cients.

� New q−identities for readers' convenience.
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2. Sums: with the Exact Closed Forms

We give our main results in this section. We �nd identities of several sums. To prove the

identities, the technique is to translate everything in terms of a variable q, and then to

use Rothe's identity and Cauchy Binomial theorem from classical q−calculus.

2.1. Non-line weighted sums

We �rst consider the sums with non-line weighted. The following theorem gives some

identities in this kind.

Theorem 2.1. Let n and m be nonnegative integers. Then we have

(i) For n is odd

2n∑
k=0

(−1)k2nkU,mUm(k−n)2 = 2(p2 + 4)
n−1
2

n∏
k=1

Um(2k−1),

and for n is even

2n∑
k=0

(−1)k2nkU,mVm(k−n)2 = 2(p2 + 4)
n
2

n∏
k=1

Um(2k−1).

(ii)
4n∑
k=0

(−1)k4nkUV(2n−k)2 = 2(p2 + 4)n U8n−2

U4n−1

2n−2∏
k=1

U2k+1.

(iii)
4n∑
k=0

(−1)k4nkUU(2n−k)2 = 0.

(iv)
4n+2∑
k=0

(−1)k4n+ 2kUV(2n+1−k)2 = 0.

(v) For n is odd,

2n∑
k=0

(−1)k2nkU,mVm(k2−2nk) = 2(p2 + 4)
n+1
2 (−1)(m+1)Umn2

n∏
k=1

Um(2k−1),

and for n is even,

2n∑
k=0

(−1)k2nkU,mVm(k2−2nk) = (p2 + 4)
n
2 Vmn2

n∏
k=1

Um(2k−1).

(vi) Let m be an even integer. Then

2n∑
k=0

(−1)k2nkU,mUm(k2−2nk) = (p2 + 4)
n−1
2 Vmn2

n∏
k=1

Um(2k−1),

for n is odd, and

2n∑
k=0

(−1)k2nkU,mUm(k2−2nk) = −(p2 + 4)
n
2Umn2

n∏
k=1

Um(2k−1),

for n is even.
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(vii) Let m be an odd integer. Then

2n∑
k=0

(−1)k2nkU,mUm(k2−2nk) = −(p2 + 4)
n−1
2 Vmn2

n∏
k=1

Um(2k−1),

for n is odd, and

2n∑
k=0

(−1)k2nkU,mUm(k2−2nk) = −(p2 + 4)
n
2Umn2

n∏
k=1

Um(2k−1),

for n is even.

Proof. We will give the proof of the identity (i). Other identities can be similarly shown.

To prove this, we use Gauss identity given in (1). Replacing q by α/β, we �nd that (1)

reduces to
2n∑
k=0

(−1)k2nkU,mβ
m(k−n)2 = (−1)n(α− β)n

n∏
k=1

Um(2k−1). (2)

Similarly if q is replaced by β/α, we obtain

2n∑
k=0

(−1)k2nkU,mα
m(k−n)2 = (−1)n(β − α)n

n∏
k=1

Um(2k−1). (3)

If n is odd, we subtract (2) from (3) to get

2n∑
k=0

(−1)k2nkU,mUm(k−n)2 = 2(p2 + 4)
n−1
2

n∏
k=1

Um(2k−1),

and if n is even, we add (2) to (3) to get

2n∑
k=0

(−1)k2nkU,mVm(k−n)2 = 2(p2 + 4)
n
2

n∏
k=1

Um(2k−1).

This completes the proof.

We obtain the following results given by L. Carlitz in �The Fibonacci Quarterly, Ad-

vanced problems and solutions, 10(6)(1972), page 630, problem H-202".

Corollary 2.2. For k is odd,

2k∑
j=0

(−1)j2kjF(j−k)2 = 2 · 5
k−1
2

k∏
j=1

F2j−1,

and for k is even,
2k∑
j=0

(−1)j2kjL(j−k)2 = 2 · 5
k
2

k∏
j=1

F2j−1.
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2.2. On-line weighted sums

Now, we will derive some identities for on-line weighted sums.

Theorem 2.3. Let n and m be nonnegative integers. Then we have

(i)
2n∑
k=0

2nkU,mUmk =


2U2mn

n−1∏
k=1

V 2
mk, m is even,

2U2mn

n−1∏
k=1

V2mk, m is odd.

(ii)
2n∑
k=0

2nkU,mU(2n−1)mk =


2Umn(2n−1)

2

Vmn(2n−1)
2

2n−1∏
k=1

Vmk, m is even,

2
n∑

k=0

2n− 12k − 1U,mU(4k−2)mn, m is odd.

(iii)
2n∑
k=0

2nkU,mVmk =


n∏

k=1

V 2
mk, m is even,

n∏
k=1

V2mk, m is odd.

(iv)
2n∑
k=0

(−1)k2nkU,mU(2n−1)mk =

 0, m is even,

2
n−1∑
k=0

2n− 12kU,mU4nmk, m is odd.

(v)
2n∑
k=0

(−1)k2nkU,mVmk =

 0, m is even,

4
n−1∏
k=1

V2mk, m is odd.

Proof. In order to keep this paper within reasonable length, we restricted ourselves to a

short selection. Thus we will only prove the �rst identity of Theorem 2.3. All the other

veri�cations are very similar. To prove the �rst identity, we �rst translate everything into

q−form. We see that the identity

2n∑
k=0

2nkU,mUmk =


2U2mn

n−1∏
k=1

V 2
mk, m is even,

2U2mn

n−1∏
k=1

V2mk, m is odd,

will be

2n∑
k=0

(
1− qmk

)
(−1)

mk(2n−k+1)
2 q−

mk(2n−k+1)
2 2nkqm

=

{
2(1− q2mn)q−m(n+1

2 ) (−qm; qm)2n−1 , m is even,

2(−qm)−(
n+1
2 ) (1− q2mn) (−q2m; q2m)n−1 , m is odd.

So we will prove this q−form. First we separate the sum into two sums, that is

2n∑
k=0

(
1− qmk

)
(−1)

mk(2n−k+1)
2 q−

mk(2n−k+1)
2 2nkqm



102 I. Akkus and G. Kizilaslan

=
2n∑
k=0

(−1)
mk(2n−k+1)

2 q
mk(k−2n−1)

2 2nkqm −
2n∑
k=0

(−1)
mk(2n−k+1)

2 q
mk(k−2n+1)

2 2nkqm .

Let m be even. Then

2n∑
k=0

(−1)
mk(2n−k+1)

2 q
mk(k−2n−1)

2 2nkqm −
2n∑
k=0

(−1)
mk(2n−k+1)

2 q
mk(k−2n+1)

2 2nkqm

=
2n∑
k=0

q
mk(k−2n−1)

2 2nkqm −
2n∑
k=0

q
mk(k−2n+1)

2 2nkqm = L1 − L2.

Here

L1 =
2n∑
k=0

q
mk(k−2n−1)

2 2nkqm =
2n∑
k=0

qm(
k+1
2 )q−mk(n+1)2nkqm

and

L2 =
2n∑
k=0

q
mk(k−2n+1)

2 2nkqm .

By Cauchy binomial theorem we can write

L1 =
2n∑
k=0

qm(
k+1
2 )q−mk(n+1)2nkqm =

2n∏
k=1

(
1 + qm(k−n−1)

)
= 2

(
1 + q−mn

) n−1∏
k=1

(
1 + qmk

) (
1 + q−mk

)
= 2

(
1 + q−mn

) n−1∏
k=1

q−mk
(
1 + qmk

)2
= 2

(
1 + q−mn

)
q−m(n2) (−qm; qm)2n−1 ,

and

L2 =
2n∑
k=0

q
mk(k−2n+1)

2 2nkqm =
2n∑
k=0

qm(
k+1
2 )q−mnk2nkqm

=
2n∏
k=1

(
1 + qm(k−n)

)
= 2 (1 + qmn)

n−1∏
k=1

(
1 + qmk

) (
1 + q−mk

)
= 2 (1 + qmn)

n−1∏
k=1

q−mk
(
1 + qmk

)2
= 2 (1 + qmn) q−m(n2) (−qm; qm)2n−1 .

Hence for m is even, we get

L1 − L2 =2
(
1 + q−mn

)
q−m(n2) (−qm; qm)2n−1 − 2 (1 + qmn) q−m(n2) (−qm; qm)2n−1

=2(1− q2mn)q−m(n+1
2 ) (−qm; qm)2n−1 .
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Now let m be odd. Then the sum will separate into two sums as follows

2n∑
k=0

ik
2

qm(
k+1
2 )q−m(n+1)ki−(2n+1)k2nkqm −

2n∑
k=0

ik
2

qm(
k+1
2 )q−mnki−(2n+1)k2nkqm = S1 − S2.

So we will �nd the sums S1 and S2. Now

S1 =
2n∑
k=0

ik
2

i−(2n+1)kqm(
k+1
2 )q−m(n+1)k

(
2n

k

)
qm

=
1 + i

2

2n∑
k=0

qm(
k+1
2 ) (i−(2n+1)q−m(n+1)

)k (2n
k

)
qm

+
1− i

2

2n∑
k=0

qm(
k+1
2 ) (−i−(2n+1)q−m(n+1)

)k (2n
k

)
qm

=
1 + i

2

2n∏
k=1

(
1 + i−(2n+1)qm(k−n−1)

)
+
1− i

2

2n∏
k=1

(
1− i−(2n+1)qm(k−n−1)

)
= in

2 (
1 + i−(2n+1)q−mn

) n−1∏
k=1

i−(2n+1)q−mk
(
1 + q2mk

)
+i3n

2 (
1− i−(2n+1)q−mn

) n−1∏
k=1

−i−(2n+1)q−mk
(
1 + q2mk

)
= i−n2+n+1

(
1 + i−(2n+1)q−mn

)
q−m(n2)

(
−q2m; q2m

)
n−1

+in
2+3n−1

(
1− i−(2n+1)q−mn

)
q−m(n2)

(
−q2m; q2m

)
n−1

= i−n2+n+1q−m(n2)
(
−q2m; q2m

)
n−1

×
[(
1 + i−(2n+1)q−mn

)
−
(
1− i−(2n+1)q−mn

)]
= 2(−1)−(

n+1
2 )q−m(n2)q−mn

(
−q2m; q2m

)
n−1

.

and

S2 =
2n∑
k=0

ik
2

qm(
k+1
2 )q−mnki−(2n+1)k

(
2n

k

)
qm

=
1 + i

2

2n∑
k=0

qm(
k+1
2 )q−mnki−(2n+1)k

(
2n

k

)
qm

+
1− i

2

2n∑
k=0

qm(
k+1
2 )q−mnki−(2n+1)k

(
2n

k

)
qm

=
1 + i

2

2n∏
k=1

(
1 + i−(2n+1)qm(k−n)

)
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+
1− i

2

2n∏
k=1

(
1− i−(2n+1)qm(k−n)

)
= in

2 (
1 + i−(2n+1)qmn

) n−1∏
k=1

i−(2n+1)q−mk
(
1 + q2mk

)
+i3n

2 (
1− i−(2n+1)qmn

) n−1∏
k=1

−i−(2n+1)q−mk
(
1 + q2mk

)
= i−n2+n+1

(
1 + i−(2n+1)qmn

)
q−m(n2)

(
−q2m; q2m

)
n−1

+in
2+3n−1

(
1− i−(2n+1)qmn

)
q−m(n2)

(
−q2m; q2m

)
n−1

= i−n2+n+1q−m(n2)
(
−q2m; q2m

)
n−1

×
[(
1 + i−(2n+1)qmn

)
−
(
1− i−(2n+1)qmn

)]
= 2(−1)−(

n+1
2 )q−m(n2)qmn

(
−q2m; q2m

)
n−1

.

Therefore the sum that we want to evaluate will be

S1 − S2 = 2(−1)−(
n+1
2 )q−m(n2)q−mn

(
−q2m; q2m

)
n−1

2(−1)−(
n+1
2 )q−m(n2)qmn

(
−q2m; q2m

)
n−1

= 2(−1)−(
n+1
2 )q−m(n2)

(
−q2m; q2m

)
n−1

(
q−mn − qmn

)
= 2(−qm)−(

n+1
2 ) (1− q2mn

) (
−q2m; q2m

)
n−1

.

Hence the proof is completed.

Theorem 2.4. Let n and m be nonnegative integers. Then

(i)
2n+1∑
k=0

2n+ 1kU,mU2mk =


2Um(2n+1)

n−1∏
k=1

Vmn+2k

n−1∏
k=1

V 2
2mk, m is even,

2Um(2n+1)Vm(2n+1)

n−1∏
k=1

V2mk, m is odd.

(ii)
2n+1∑
k=0

2n+ 1kU,mU2nmk =


2Um(2n+1)

2

Vm(2n+1)
2

2n+1∏
k=1

Vmk, m is even,

2
n∑

k=0

2n2kU,mU(2n+1)2mk, m is odd.

(iii)
2n+1∑
k=0

2n+ 1kU,mV2mk =


2Vm(2n+1)

1∏
k=0

Vmn+mk

n−1∏
k=1

V 2
mk, m is even,

2(p2 + 4)V 2
m(2n+1)

n−1∏
k=1

V2mk, m is odd.

(iv)
2n+1∑
k=0

(−1)k2n+ 1kU,mU2nmk =

 0, m is even,

−2
n∑

k=1

2n2k − 1U,mUm(2n+1)(2k−1), m is odd.

(v)
2n+1∑
k=0

(−1)k2n+ 1kU,mV2mk =

 0, m is even,

−2VmVm(2n+1)

n−1∏
k=1

V2mk, m is odd.
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Proof. We will only prove the �fth identity of Theorem 2.4. All the other veri�cations

are very similar. Again we translate everything into q−form. Then we observe that

2n+1∑
k=0

(−1)k2n+ 1kU,mV2mk =

 0, m is even,

−2VmVm(2n+1)

n−1∏
k=1

V2mk, m is odd,

can be written in q−form as

2n+1∑
k=0

(−1)k(−q)−
mk(2n−k+3)

2 (1 + q2mk)2n+ 1kqm

=

{
0, m is even,

2in
2+nq−m(n2)q−m(n+1)(1 + qm)(1 + qm(2n+1)) (−q2m; q2m)n−1 , m is odd.

Let m be even. Then

2n+1∑
k=0

(−1)k(−q)−
mk(2n−k+3)

2 (1 + q2mk)2n+ 1kqm

=
2n+1∑
k=0

(−1)kqm(
k
2)(−q)−mk(n+1)imk(1−k)2n+ 1kqm

+
2n+1∑
k=0

(−1)kqm(
k
2)(−q)−mk(n+1)imk(1−k)q2mk2n+ 1kqm

=
2n+1∑
k=0

(−1)kqm(
k
2)q−mk(n+1)2n+ 1kqm

+
2n+1∑
k=0

(−1)kqm(
k
2)qmk(1−n)2n+ 1kqm

=
2n∏
k=0

(
1− qm(k−n−1)

)
+

2n∏
k=0

(
1− qm(k+1−n)

)
= 0.

Now let m be odd. Then we have

2n+1∑
k=0

(−1)k(−q)−
mk(2n−k+3)

2 (1 + q2mk)2n+ 1kqm

=
2n+1∑
k=0

(−1)kqm(
k
2)(−q)−mk(n+1)imk(1−k)2n+ 1kqm

+
2n+1∑
k=0

(−1)kqm(
k
2)(−q)−mk(n+1)imk(1−k)q2mk2n+ 1kqm

=
2n+1∑
k=0

(−1)kik
2

qm(
k
2)
(
i2n+1q−m(n+1)

)k
2n+ 1kqm
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+
2n+1∑
k=0

(−1)kik
2

qm(
k
2)
(
i2n+1qm(1−n)

)k
2n+ 1kqm

= S1 + S2.

Here

S1 =
2n+1∑
k=0

(−1)kik
2

qm(
k
2)
(
i2n+1q−m(n+1)

)k
2n+ 1kqm

=
1 + i

2

2n+1∑
k=0

(−1)kqm(
k
2)
(
i2n+1q−m(n+1)

)k
2n+ 1kqm

+
1− i

2

2n+1∑
k=0

(−1)kqm(
k
2)
(
−i2n+1q−m(n+1)

)k
2n+ 1kqm

=
1 + i

2

2n∏
k=0

(
1− i2n+1qm(k−n−1)

)
+

1− i

2

2n∏
k=0

(
1 + i2n+1qm(k−n−1)

)
=in

2 (
1− i2n+1q−mn

) (
1− i2n+1q−m(n+1)

)
×

n−1∏
k=1

−i2n+1q−mk
(
1 + q2mk

)
+ i3n

2 (
1 + i2n+1q−mn

) (
1 + i2n+1q−m(n+1)

)
×

n−1∏
k=1

i2n+1q−mk
(
1 + q2mk

)
=2in

2+nq−m(n2)q−mn
(
1 + q−m

) (
−q2m; q2m

)
n−1

and

S2 =
2n+1∑
k=0

(−1)kik
2

qm(
k
2)
(
i2n+1qm(1−n)

)k
2n+ 1kqm

=
1 + i

2

2n+1∑
k=0

(−1)kqm(
k
2)
(
i2n+1qm(1−n)

)k
2n+ 1kqm

+
1− i

2

2n+1∑
k=0

(−1)kqm(
k
2)
(
−i2n+1qm(1−n)

)k
2n+ 1kqm

=
1 + i

2

2n∏
k=0

(
1− i2n+1qm(k−n+1)

)
+

1− i

2

2n∏
k=0

(
1 + i2n+1qm(k−n+1)

)
=in

2 (
1− i2n+1qmn

) (
1− i2n+1qm(n+1)

) n−1∏
k=1

−i2n+1q−mk
(
1 + q2mk

)
+ i3n

2 (
1 + i2n+1q−mn

) (
1 + i2n+1q−m(n+1)

)
×

n−1∏
k=1

i2n+1q−mk
(
1 + q2mk

)
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=2in
2+nq−m(n2)qmn (1 + qm)

(
−q2m; q2m

)
n−1

.

Thus the result follows as

S1 + S2 = 2in
2+nq−m(n2)q−mn

(
1 + q−m

) (
−q2m; q2m

)
n−1

+

2in
2+nq−m(n2)qmn (1 + qm)

(
−q2m; q2m

)
n−1

= 2in
2+nq−m(n2)

[
q−mn + q−m(n+1) + qmn + qm(n+1)

]
(−q2m; q2m)n−1 .

3. Outlines: Other Identities in q−form

We give here the complete list of q−binomial versions of the identities given in Section

2. Let n and m be both nonnegative integers. Identities given in Theorem 2.3 can be

converted into q−forms as follows:

Identity (ii) can be converted as

2n∑
k=0

(−q)−
mk(4n−k−1)

2

(
1− qmk(2n−1)

)
2nkqm

=


2(−q)−

mn(2n−1)
2

(
1− qmn(2n−1)

) 2n−1∏
k=1

(−q)−
mk
2 (1 + qmk), m is even,

2
n∑

k=0

(−q)−m(2k−1)(2n−k)
(
1− qmn(4k−2)

)
2n− 12k − 1qm , m is odd.

Identity (iii) can be converted as

2n∑
k=0

(−q)−
mk(2n−k+1)

2 (1 + qmk)2nkqm =


n∏

k=1

q−mk(1 + qmk)2, m is even,

n∏
k=1

(−1)kq−mk(1 + q2mk), m is odd.

Identity (iv) can be converted as

2n∑
k=0

(−1)k(−q)−
mk(4n−k−1)

2

(
1− qmk(2n−1)

)
2nkqm .

The sum equals 0 for m is even. Otherwise, we have

2
n−1∑
k=0

(−q)−mk(4n−2k−1)
(
1− q4mnk

)
2n− 12kqm .

Identity (v) can be converted as

2n∑
k=0

(−1)k(−q)−
mk(2n−k+1)

2 (1 + qmk)2nkqm =

 0, m is even,

4
n−1∏
k=1

(−1)kq−mk(1 + q2mk), m is odd.
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Identities given in Theorem 2.4 can be converted into q−forms as follows:

Identity (i) can be converted as

2n+1∑
k=0

(−q)−
2kmn+3km−mk2

2

(
1− q2mk

)
2n+ 1kqm .

If m is even, we have

2(−q)−
m(2n+1)

2

(
1− qm(2n+1)

) n−1∏
k=1

(−q)−
mn+2k

2 (1 + qmn+2k)
n−1∏
k=1

q−2mk(1 + q2mk)2,

and if m is odd

2(−q)−m(2n+1)
(
1− q2m(2n+1)

) n−1∏
k=1

(−q)−mk(1 + q2mk).

Identity (ii) can be converted as

2n+1∑
k=0

(−q)−
mk(4n−k+1)

2

(
1− q2mnk

)
2n+ 1kqm

=


2(−q)−

m(2n+1)
2

(
1− qm(2n+1)

) 2n+1∏
k=1

(−q)−
mk
2 (1 + qmk), m is even,

2
n∑

k=0

(−q)−mk(4n−2k+1)
(
1− q2mk(2n+1)

)
2n2kqm , m is odd.

Identity (iii) can be converted as

2n+1∑
k=0

(−q)−
mk(2n+3−k)

2 (1 + q2mk)2n+ 1kqm .

If m is even we have

2q−(2mn+m)(1 + qmn)(1 + qm(n+1))(1 + qm(2n+1))
n−1∏
k=1

q−mk(1 + qmk)2,

and if m is odd

−2(p2 + 4)q−m(2n+1)(1 + qm(2n+1))2
n−1∏
k=1

(−q)−mk(1 + q2mk).

Identity (iv) can be converted as

2n+1∑
k=0

(−1)kq−
mk(4n+1−k)

2

(
1− q2nmk

)
2n+ 1kqm .

The sum equals 0 for m is even. Otherwise, we have

−2
n∑

k=1

(−q)−m(2k−1)(2n−k+1)
(
1− qm(2n+1)(2k−1)

)
2n2k − 1qm .
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4. Conclusion

In this paper we considered some sums which are called as on-line and non-line and we

obtained some identities in q−form. For special q−values we obtain some Fibonomial sums

identities and these results can be proved by using q−Zeilberger algorithm in Mathematica

or Mapple program versions. Furthermore, sums with negative subscripts can be also

considered in future studies. Our starting point for this case will be the following identity.

The identity
n∑

k=1

(−1)
k(k+1)

2 αk−knnkF = −1,

is obtained by using the identity

n∑
k=1

(−1)k−1q
k(k−1)

2 nkq = 1.

So some results can also be obtained similar to this sum.
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