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abstract

Let G = (V,E) be a simple connected graph with vertex set V and edge set E. The

Randi¢ index of graph G is the value R(G) =
∑

uv∈E(G)
1√

d(u)d(v)
, where d(u) and d(v)

refer to the degree of the vertices u and v. We obtain a lower bound for the Randi¢ index

of trees in terms of the order and the Roman domination number, and we characterize

the extremal trees for this bound.
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1. Introduction

Let G = (V,E) be a simple, undirected and connected graph with vertex set V = V (G)

and edge set E = E(G), respectively. Here, uv represents an edge in the graph G that

connects two vertices given by u and v. Moreover, d(u) also known as the degree of vertex

u, indicates the number of edges incident to u in graph G. Given that d(u) = 1, a vertex

u in G is termed a pendant or leaf. In a graph G, the greatest vertex degree is expressed

with the notation ∆(G) (or simply ∆).

The open neighborhood of each vertex v ∈ V denotes the set N(v) = {u ∈ V |uv ∈ E}.

� Corresponding author.
E-mail addresses: hroslan@umt.edu.my (Roslan Hasni).

Received 08 July 2024; accepted 20 December 2024; published 31 December 2024.

DOI: 10.61091/ars161-14
© 2024 The Author(s). Published by Combinatorial Press. This is an open access article under the CC

BY license (https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.61091/ars161-14
https://www.combinatorialpress.com/ars
mailto:hroslan@umt.edu.my
https://doi.org/10.61091/ars161-14
https://creativecommons.org/licenses/by/4.0/


176 Movahedi et al.

Meanwhile, the closed neighborhood denotes the set N [v] = N(v) ∪ {v}. The cycle and

the path on n vertices are expressed as Cn and Pn, respectively. Assume T is a tree.

Then, the longest path between the two leaves de�nes a tree's diameter. Provided that

v1, v2, . . . , vd denotes a path in which the diameter is obtained, we may state that it

resembles a diametrical path in T . To designate the forest generated by T via eliminating

the vertices of u1, u2, . . . , uk or the edges e1, e2, . . . , ek in T , we employ T−{u1, u2, . . . , uk}
or T −{e1, e2, . . . , ek}. For other notations and terminologies which are not de�ned here,

please refer to West [22].

For a graph G = (V,E), let f : V → {0, 1, 2}, and let (V0, V1, V2) be the ordered

partition of V induced by f , where Vi = {v ∈ V |f(v) = i} and |Vi|= ni, for i = 0, 1, 2.

Note that there exists a 1 − 1 correspondence between the functions f : V → {0, 1, 2}
and the ordered partitions (V0, V1, V2) of V (G). Thus, we will write f = (V0, V1, V2). A

function f = (V0, V1, V2) is a Roman dominating function (RDF) if V2 ≻ V0, where ≻
means that the set V2 dominates the set V0, i.e., V0 ⊆ N [V2] \ V2. The weight of f is

f(V ) =
∑

v∈V (G) f(v) = 2n2 + n1.

The Roman domination number, denoted γR(G) (or γR for short), equals the minimum

weight of an RDF of G, and we say that a function f = (V0, V1, V2) is a γR-function if it

is an RDF and f(V ) = γR(G). For more details on Roman domination and its variants,

please refer to [7, 6].

First, we have the following essential results.

Lemma 1.1. [7] For n ≥ 3, γR(Pn) = ⌈2n
3
⌉.

Lemma 1.2. [8] For a tree T with a pendant vertex v,

γR(T )− 1 ≤ γR(T − {v}) ≤ γR(T ).

Lemma 1.3. [8] For a tree T and any vertex v ∈ V (T ), γR(T ) ≤ n− d(v) + 1.

Graph theory has provided chemists with a variety of useful tools, such as topological

indices. A topological index is a numeric quantity from the structural graph of a chemical

compound [21]. Among many topological indices, the Randi¢ index is the most widely

used in applications to chemistry, especially in QSPR/QSAR investigations [15].

The Randi¢ index was introduced by Randi¢ [19] and is de�ned as

R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

,

where d(u) and d(v) denote the degrees of the vertices u, v ∈ V (G) and uv denotes the

edge connecting these two vertices.

The �rst Zagreb index M1 and the second Zagreb index M2 of graph G are de�ned as:

M1(G) =
∑

v∈V (G)

d2(v),
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and

M2(G) =
∑

uv∈E(G)

d(u)d(v).

The Zagreb indices has been studied extensively, see [5, 8, 17, 18] and references therein.

Numerous researchers have been interested in the connection between domination pa-

rameters and topological indices. Bermudo et al. [3] determined the lower and upper

bounds of the Randi¢ index of trees in terms of order and the domination number. More

recently the upper and lower bounds of the Randi¢ index for trees with a given total

domination number are obtained and the corresponding extremal trees were character-

ized [10, 14]. In [1, 4, 20], authors investigated the sharp lower and upper bounds for the

geometric-arithmetic, Zagreb, and Sombor index of a tree, respectively, in terms of the

domination number. In [2, 17], bounds for the geometric-arithmetic index and Zagreb

index of a tree, respectively, in terms of order and the total domination number were

obtained. Very recently, Hasni et al. [9] obtained the upper bound for harmonic index of

trees in terms of order and the total domination number.

Ahmad Jamri et al. [11] proposed a lower bound on the �rst Zagreb index of trees with

a given Roman domination number and characterized all extremal trees. Furthermore,

the upper bound for Zagreb indices of unicyclic and bicyclic graphs with a given Roman

domination number is investigated. In [13], Ahmad Jamri et al. presented a lower bound

on the second Zagreb index of trees with n vertices and Roman domination number.

The upper bounds on the �rst and second Zagreb indices of trees with a given Roman

domination number were studied in [8, 12].

This paper is a continuation of these studies. Namely, we present a new lower bound

of the Randi¢ index in terms of the order and the Roman domination number, and we

characterize the extremal trees for that bound.

2. Main Results

We �rst show the following lemma to simplify the proof of the theorem, giving the lower

bound of the Randi¢ index in terms of the order of a tree and the given Roman domination

number.

Lemma 2.1. For n > 2, suppose that

h(n, k) =

(√
2(n− k + 1) +

k − 2

2

)(
1√

2n− k − 2
− 1

2n− k

)
−

√
2√

2n− k − 2
.

Then h(n, k + 1) < h(n, k) and h(n, k) < h(n+ 1, k) for any 2 ≤ k ≤ n− 2.

Proof. We show that h(n, k + 1) < h(n, k) for any 2 ≤ k ≤ n− 2. Since

h(n, k) =

(√
2(n− k) +

k − 1

2

)(
1√

2n− k − 3
− 1√

2n− k − 1

)
−

√
2√

2n− k − 3

=

(√
2(n− k + 1) +

k − 2

2

)(
1√

2n− k − 3
− 1√

2n− k − 1

)
−

√
2√

2n− k − 3
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+
1

2

(
1√

2n− k − 3
− 1√

2n− k − 1

)
−
√
2

(
1√

2n− k − 3
− 1√

2n− k − 1

)
.

Then h(n, k + 1) < h(n, k) if and only if(√
2(n− k + 1) +

k − 2

2

)(
1√

2n− k − 3
− 1√

2n− k − 1

)
−

√
2√

2n− k − 3

+
1

2

(
1√

2n− k − 3
− 1√

2n− k − 1

)
−
√
2

(
1√

2n− k − 3
− 1√

2n− k − 1

)
<

(√
2(n− k + 1) +

k − 2

2

)(
1√

2n− k − 2
− 1√

2n− k

)
−

√
2√

2n− k − 2
.

This is equivalent to(√
2(n− k + 1) +

k − 2

2

)[(
1√

2n− k − 3
− 1√

2n− k − 1

)
−
(

1√
2n− k − 2

− 1√
2n− k

)]
<

√
2

(
1√

2n− k − 3
− 1√

2n− k − 1

)
− 1

2

(
1√

2n− k − 3
− 1√

2n− k − 1

)
+

( √
2√

2n− k − 3
−

√
2√

2n− k − 2

)
.

On the other hand,

√
2(n− k + 1) +

k − 2

2
= (2n− k)− (2−

√
2)n+ (

3

2
−
√
2)k + (

√
2− 1) ≤ 2n− k.

Thus, it is enough to check that

(2n− k)

[(
1√

2n− k − 3
− 1√

2n− k − 1

)
−
(

1√
2n− k − 2

− 1√
2n− k

)]
< (

√
2− 1

2
)

(
1√

2n− k − 3
− 1√

2n− k − 1

)
+
√
2

(
1√

2n− k − 3
− 1√

2n− k − 2

)
,

which is obtained by considering the function

g(x) =

(√
2− 1

2

)(
1√
x− 3

− 1√
x− 1

)
+
√
2

(
1√
x− 3

− 1√
x− 2

)
− x

[(
1√
x− 3

− 1√
x− 1

)
−
(

1√
x− 2

− 1√
x

)]
,

and this fact that g(x) is a positive function for any x > 2. Now we prove that h(n, k) <

h(n+ 1, k). We have

h(n+ 1, k) =

(√
2(n− k + 2) +

k − 1

2

)(
1√

2n− k
− 1√

2n− k + 2

)
−

√
2√

2n− k
,
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then h(n, k) < h(n+ 1, k) if and only if(√
2(n− k + 1) +

k − 2

2

)(
1√

2n− k − 2
− 1√

2n− k

)
−

√
2√

2n− k − 2

<

(√
2(n− k + 1) +

k − 2

2

)(
1√

2n− k
− 1√

2n− k + 2

)
−

√
2√

2n− k

+
√
2

(
1√

2n− k
− 1√

2n− k + 2

)
,

for any n > k + 2. This inequality is equivalent to(√
2(n− k + 1) +

k − 2

2

)[(
1√

2n− k − 2
− 1√

2n− k

)
−
(

1√
2n− k

− 1√
2n− k + 2

)]
<

√
2

(
1√

2n− k
− 1√

2n− k + 2

)
+
√
2

(
1√

2n− k − 2
− 1√

2n− k

)
.

Since
√
2(n− k + 1) + k−2

2
≤ 2n− k, the function

g(x) =
√
2

(
1√
x− 2

− 1√
x+ 2

)
− x

(
1√
x− 2

− 2√
x
+

1√
x+ 2

)
,

is a positive function for any x ≥ 2. Consequently, the proof is completed.

Fig. 1. The graph Tr,s

Lemma 2.2. Let T be a tree shown in Figure 1 of order n and a Roman domination

number γR. Then

R(T ) =

√
2(n− γR + 1)√

2n− γR
+

γR − 2

2
√
2

(
1 +

√
2√

2n− γR

)
.

Proof. Assume that T = Tr,s shown in Figure 1. In this tree, we have n = s + 2r + 1,

γR = 2(r + 1). Since r = γR
2
− 1 and s = n− γR + 1, we obtain

R(Tr,s) =
s√
r + s

+
r√
2
+

r√
2(r + s)

=

√
2(n− γR + 1)√

2n− γR
+

γR − 2

2
√
2

+
γR − 2

2
√
2n− γR

=

√
2(n− γR + 1)√

2n− γR
+

γR − 2

2
√
2

(
1 +

√
2√

2n− γR

)
.
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Theorem 2.3. Let T be a tree of order n and a Roman domination number γR. Then

R(T ) ≥
√
2(n− γR + 1)√

2n− γR
+

γR − 2

2
√
2

(
1 +

√
2√

2n− γR

)
,

with equality if and only if T = Tr,s shown in Figure 1.

Proof. Let f = (V0, V1, V2) be a γR-function of graph T . The result is proved by induction

on the number of vertices. To simplify the computations, we denote

f(n, γR) =

√
2(n− γR + 1)√

2n− γR
+

γR − 2

2
√
2

(
1 +

√
2√

2n− γR

)
.

For n = 3, R(P3) =
√
2 = f(3, 2). If n = 4, then R(P4) =

√
2 + 1

2
= f(4, 3) and

R(S4) =
√
3 = f(4, 2). Therefore, we suppose that n ≥ 5 and the result holds for any

trees of order n − 1. We will check if it is true for the tree with n vertices. Let ∆ = 2.

Then T ≃ Pn. Using Lemma 1.1, γR(Pn) =
2n+r
3

if n ≡ r (mod 3). One can easily check

that R(Pn) =
√
2 + n−3

2
> f(n, 2n+r

3
) for n ≥ 5 and r = 0, 1, 2.

Now suppose that ∆ ≥ 3 and let v1, v2, . . . , vd be a diameter path in T . Suppose

that d(v2) = i ≥ 2 and N(v2) = {v1, v3, u1, . . . , ui−2}, d(v3) = j ≥ 2 and N(v3) =

{v2, v4, w1, . . . , wj−2}. We consider T ′ = T − {v1}. Using Lemma 1.2, we study two

following cases.

Case 1: Let γR(T
′) = γR(T ). In such a case, we get

R(T ) =R(T ′) +
1√
i
+ (i− 2)

(
1√
i
− 1√

i− 1

)
+

1√
ij

− 1√
(i− 1)j

≥f(n− 1, γR) +
1√
i
+ (i− 2)

(
1√
i
− 1√

i− 1

)
+

1√
ij

− 1√
(i− 1)j

=f(n, γR) +
√
2(n− γR + 1)

(
1√

2n− γR − 2
− 1√

2n− γR

)
−

√
2√

2n− γR − 2

+
γR − 2

2

(
1√

2n− γR − 2
− 1√

2n− γR

)
+

1√
i
+ (i− 2)

(
1√
i
− 1√

i− 1

)
+

1√
ij

− 1√
(i− 1)j

=f(n, γR) +

(√
2(n− γR + 1) +

γR − 2

2

)(
1√

2n− γR − 2
− 1√

2n− γR

)
−

√
2√

2n− γR − 2
+

1√
i
− (i− 2)

(
1√
i− 1

− 1√
i

)
+

1√
ij

− 1√
(i− 1)j

.

Let n = i + 2. In this case, T ≃ T1,s shown in Figure 1. Thus, using Lemma 2.2, the

result holds. So, we suppose that n ≥ i + 3. From Lemma 1.3, we have γR ≤ n − i + 1.

Since n ≥ i+ 3 and γR ≤ n− i+ 1, by applying Lemma 2.1, we obtain(√
2(n− γR + 1) +

γR − 2

2

)(
1√

2n− γR − 2
− 1√

2n− γR

)
−

√
2√

2n− γR − 2
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≥
(√

2i+
n− i− 1

2

)(
1√

n+ i− 3
− 1√

n+ i− 1

)
−

√
2√

n+ i− 3

≥
√
2(i+ 1)

(
1√
2i

− 1√
2i+ 2

)
− 1√

i
.

Therefore, we have

R(T ) ≥f(n, γR) +

(√
2(n− γR + 1) +

γR − 2

2

)(
1√

2n− γR − 2
− 1√

2n− γR

)
−

√
2√

2n− γR − 2
+

1√
i
− (i− 2)

(
1√
i− 1

− 1√
i

)
+

1√
ij

− 1√
(i− 1)j

≥f(n, γR) +
√
2(i+ 1)

(
1√
2i

− 1√
2i+ 2

)
− 1√

i
+

1√
i
− (i− 2)

(
1√
i− 1

− 1√
i

)
+

1√
2i

− 1√
2(i− 1)

=f(n, γR) + (i+ 1)

(
1√
i
− 1√

i+ 1

)
− (i− 2)

(
1√
i− 1

− 1√
i

)
+

1√
2i

− 1√
2(i− 1)

>f(n, γR),

for any i ≥ 2. Hence, R(T ) > f(n, γR).

Case 2: Let γR(T
′) = γR(T )− 1. In such a case, we have d(v2) = 2. If n = j +3, then

T ≃ T2,s where s ≥ 1. Hence using Lemma 2.2, the equality holds. Therefore, we suppose

that n ≥ j + 4, for the tree T ′ = T − {v1}, we get

R(T ) =R(T ′)− 1√
j

(
1− 1√

2

)
+

1√
2

≥f(n− 1, γR − 1)− 1√
j

(
1− 1√

2

)
+

1√
2

=f(n, γR) +

(√
2(n− γR + 1) +

γR − 2

2

)(
1√

2n− γR − 1
− 1√

2n− γR

)
− 1

2
√
2

(
1 +

√
2√

2n− γR − 1

)
− 1√

j

(
1− 1√

2

)
+

1√
2

=f(n, γR) +

(√
2(n− γR + 1) +

γR − 2

2

)(
1√

2n− γR − 1
− 1√

2n− γR

)
− 1

2
√
2n− γR − 1

− 1√
j

(
1− 1√

2

)
+

1

2
√
2
.

Using Lemma 2.1 and since γR ≤ n− j + 1 and n ≥ j + 4, we get

R(T ) ≥f(n, γR) +

(√
2(n− γR + 1) +

γR − 2

2

)(
1√

2n− γR − 1
− 1√

2n− γR

)
− 1

2
√
2n− γR − 1

− 1√
j

(
1− 1√

2

)
+

1

2
√
2
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≥f(n, γR) +

(√
2j +

n− j − 1

2

)(
1√

n+ j − 2
− 1√

n+ j − 1

)
− 1

2
√
n+ j − 2

− 1√
j

(
1− 1√

2

)
+

1

2
√
2

≥f(n, γR) +
(√

2j + 1
)( 1√

2j + 2
− 1√

2j + 3

)
− 1

2
√
2j + 2

− 1√
j

(
1− 1√

2

)
+

1

2
√
2
,

where for any j ≥ 2, R(T ) > f(n, γR).

Remark 2.4. Lu and Zhu in [16] obtained a lower bound for Randi¢ index for any tree

T with n vertices as R(T ) ≥ 3
2
− 1

2(n−2)
. Let

f(n, γR) =

√
2(n− γR + 1)√

2n− γR
+

γR − 2

2
√
2

(
1 +

√
2√

2n− γR

)
.

Since γR ≥ 2n
∆+1

[7] in which ∆ ≤ n − 2 is the maximum degree, we have γR ≥ 2n
n−1

.

Also, in [6], for any connected graph G of order n ≥ 3 is proven that 2 ≤ γ ≤ ⌊4n
5
⌋ ≤ 4n

5
.

Hence from γR ≥ 2n
n−1

and 2 ≤ γ ≤ 4n
5
, we get

f(n, γR) ≥
√
2(n

5
+ 1)

√
2n− γR

+
n√

2(n− 1)

(
1 +

√
2√

2n− γR

)

≥ n+ 5

5
√
n− 1

+
n√

2(n− 1)

(
1 +

1√
n− 1

)
.

We consider f(x) = x+5
5
√
x−1

+ x√
2(x−1)

(
1 + 1√

x−1

)
− 3

2
+ 1

2(x−2)
which is a positive function.

Therefore, we have

f(n, γR) ≥
n+ 5

5
√
n− 1

+
n√

2(n− 1)

(
1 +

1√
n− 1

)
≥ 3

2
− 1

2(x− 2)
.

Remark 2.5. Bermudo et al. [3] presented a lower bound in terms of order and domi-

nation number as follows

R(T ) ≥ n− 2γ + 1√
n− γ

+
γ − 1√

2

(
1 +

1√
n− γ

)
.

Since γ ≤ γR ≤ 2γ, we have

f(n, γR) =

√
2(n− γR + 1)√

2n− γR
+

γR − 2

2
√
2

(
1 +

√
2√

2n− γR

)
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=
n− γR + 1√

n− γR
2

+
γR
2
− 1

√
2

(
1 +

1√
n− γR

2

)

≥ n− 2γ + 1√
n− γ

+
γ − 1√

2

(
1 +

1√
n− γ

)
.

3. Conclusions

This paper is devoted to the investigation of the relationship between the Randi¢ index

and the Roman domination number of trees. More precisely, we established a lower bound

for the Randi¢ index of trees in terms of the order and the Roman domination number,

and all trees attaining the equality are characterized. This result solves part of Problem

1 in [14] for the lower bound case. For the next study, researchers can work on the upper

bound for the Randi¢ index of trees in terms of the order and the Roman domination

number. One can also work on the relationship between other degree-based topological

indices, such as the geometric-arithmetic index, harmonic index and Sombor index, with

Roman domination number.
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