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abstract

We study a discrete-time model for the spread of information in a graph, motivated by the

idea that people believe a story when they learn of it from two di�erent origins. Similar

to the burning number, in this problem, information spreads in rounds and a new source

can appear in each round. For a graph G, we are interested in b2(G), the minimum

number of rounds until the information has spread to all vertices of graph G. We are

also interested in �nding t2(G), the minimum number of sources necessary so that the

information spreads to all vertices of G in b2(G) rounds. In addition to general results, we

�nd b2(G) and t2(G) for the classes of spiders and wheels and show that their behavior

di�ers with respect to these two parameters. We also provide examples and prove upper

bounds for these parameters for Cartesian products of graphs.
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1. Introduction

The concept of graph burning, introduced by Bonato et al. [5] is a deterministic, discrete-

time model for the spread of social contagion on a graph. A social network can be modeled

by a graph in which the vertices represent people and the edges represent relationships.

For example, on a graph whose vertices correspond to Facebook users, edges may represent

users who are �Facebook friends". Information, such as gossip, rumors, or memes, can

spread from vertex to vertex over time along edges of the graph and we model the process
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Fig. 1. A graph H with b2(H) = 3.

using discrete time-steps called rounds. Such information may not stem from a single

source vertex; there may be a number of sources that appear over time in the graph.

Authors often refer to vertices as �unburned" (unaware of the information) and �burned"

(aware of the information) since rumors can appear to spread swiftly like �re. We will

instead use colors to depict these states: uncolored for unburned and blue for burned.

The discrete-time spread of information also mimics the spread of �re in the Fire�ghter

Problem [7], although the latter involves agents try to block the spread of �re on a graph.

In 2016, Bonato et al. [6] suggested a generalized burning process; and such a study was

formally initialized in 2021 by Li et al. [8]. For a �nite graph G, there are two possible

states for a vertex: uncolored or blue. Initially, at round 0, all vertices are uncolored. At

round j for j ≥ 1, one or both of the following occur: (i) an uncolored vertex is selected

as a source and colored blue, and (ii) every uncolored vertex that had at least r blue

neighbors at round j − 1 is colored blue.

If r = 1, the process describes the original burning model of [6], which has been studied

extensively; see the survey [4]. One of the main questions surrounding the original burning

model is how quickly the in�uence or contagion can propagate through the graph. For a

�nite graph G, Li et al. [8] denote by br(G), the minimum number of rounds after which

every vertex is colored blue and since G is �nite, the parameter is well-de�ned. Li et

al. [8] named the parameter, the generalized burning number, but because this label does

not reference r and br(G) can change for di�erent values of r on a �xed graph G, we refer

to the parameter as the r-burning number of graph G. For example, for the graph H in

Figure 1 it is straightforward to show b2(H) = 3 and this can be achieved by selecting

a, b, c as sources in rounds 1, 2, 3 respectively. If these same sources are selected in the

order a, c, b, it requires four rounds for all vertices to turn blue.

The generalized burning process is related to r-neighbor bootstrap percolation, which

is another way to model the spread of infection or information among vertices in a graph.

In both processes, we color infected vertices blue, but in a generalized burning process

there is at most one source vertex per round, whereas in bootstrap percolation, the source

vertices are all selected at the start. More precisely, for a graph G and positive integer

r, the process of r-neighbor bootstrap percolation is the following: during round 0, a set

of vertices A ⊆ V (G) turns blue; and during round t > 0, every vertex that has at least

r blue neighbors at round t− 1, becomes blue. For a set A in graph G, percolation of G

occurs if every vertex of G is eventually blue and in this case, A is called a percolating

set. Consequently, for a �xed positive integer r, the cardinality of a minimum size per-

colating set on graph G provides a lower bound for the r-burning number. We discuss

the relationship of the r-burning number to r-neighbor bootstrap percolation further in



The 2-burning Number of a Graph 213

Section 5. For more background on r-neighbor bootstrap percolation, see [1, 9, 11].

In this paper, we focus on b2(G), the 2-burning number of graph G, motivated by the

idea that people often believe a rumor when they hear it from two di�erent people. Li

et al. [8] determined the 2-burning number for some families of graphs including paths,

cycles, and complete bipartite graphs. They also provided some preliminary bounds on

b2(G) for a general graph G. We also study t2(G), the 2-burning source number of a

graph G, which we de�ne as the minimum number of sources so that all vertices of G

are blue after b2(G) rounds. The parameter t2(G) provides a middle ground between the

2-burning number of G and the minimum size percolating set for 2-neighbor bootstrap

percolation on G.

The rest of the paper is organized as follows. In Section 2 we provide the foundational

de�nitions as well as results about subgraphs, coronas and joins. Section 3 focuses on

two families of graphs: spiders and wheels. We �nd exact values for b2(G) and t2(G)

when G is a spider or wheel and show that these parameters are within 1 for spiders

but can be arbitrarily far apart for wheels. We turn to Cartesian products in Section 4

and provide examples and prove upper bounds for both the 2-burning number and the 2-

burning source number. In our concluding section, we discuss connections between b2(G),

t2(G), and the minimum size of an associated percolating set. We also pose a few open

questions.

2. De�nitions and preliminary results

We assume all graphs to be �nite and connected.

2.1. De�nitions

Algorithm 2-burning (below) gives a precise description of the 2-burning process on a

graph with a speci�ed sequence of sources. Note that the algorithm will always terminate

since our graphs are �nite. With the formal description of the 2-burning process given in

Algorithm 2-burning, we can now introduce our fundamental de�nitions.

De�nition 2.1. A 2-burning sequence s for a graph G is a sequence (s1, s2, s3, . . . , sm)

of vertices of G for which all vertices are blue when Algorithm 2-burning terminates.

De�nition 2.2. If s = (s1, s2, s3, . . . , sm) is a 2-burning sequence for graph G then the

length of s, denoted by len(s), is m and rd(s) is the output of Algorithm 2-burning, that

is, the number of rounds until all vertices of G are blue.

Returning to the graph in Figure 1, if s = (a, b, c) then len(s) = 3 and rd(s) = 3;

however, if s′ = (a, c, b) then len(s′) = 3 and rd(s′) = 4.

De�nition 2.3. The 2-burning number for graph G, denoted by b2(G), is the minimum

value of rd(s), taken over all 2-burning sequences for G. A 2-burning sequence that

achieves this minimum is called optimal. The 2-burning source number for graph G is the
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Algorithm 1: Algorithm 2-burning

Input: A graph G and a sequence (s1, s2, . . . , sm) of vertices of G (called sources).

Output: Either the number of rounds until all vertices are blue, or a report that

there will always be an uncolored vertex.

Initialize: At round 0, all vertices are uncolored.

while Initialize j = 1 (or Let j = 1, or something equivalent) not all vertices are

blue do

At round j:

if j ≤ m and sj is uncolored then

Color the source vertex sj blue.

foreach uncolored vertex v with at least two blue neighbors at round j − 1 do

Color v blue.

if all vertices are blue then

Terminate and return j (the number of rounds until all vertices are blue).

if j > m and no vertices turned blue in round j then

Terminate and report that there will always be an uncolored vertex.

Increment j.

minimum length of an optimal 2-burning sequence for G and is denoted by t2(G).

For example, selecting any two distinct source vertices provides an optimal 2-burning

sequence of minimum length for the complete graph Kn, but when n ≥ 3, it takes one

additional round for all vertices to turn blue. Thus b2(Kn) = 3 and t2(Kn) = 2 for n ≥ 3.

By de�nition, t2(G) ≤ b2(G) for all graphs G.

2.2. Subgraphs and vertices of degree one and two

For many real-valued functions de�ned on graphs (e.g., chromatic number, maximum

degree, girth) the function value decreases for induced subgraphs. However, the same is

not true for the 2-burning number. For example, the path P7 is an induced subgraph of the

path P12 and also of the wheel W8. We will see in Theorems 2.8 and 3.3 that b2(P7) = 5,

b2(P12) = 7 and b2(W8) = 4, and indeed these theorems show that the gap between the

2-burning number of a graph and that of an induced subgraph can be made arbitrarily

large in either direction using paths and wheels. However, for spanning subgraphs, we

can prove an inequality.

Lemma 2.4. If G and H are connected graphs and H is a subgraph of G with |V (G)|=
|V (H)|, then b2(G) ≤ b2(H) and t2(G) ≤ t2(H).

Proof. Since the edges of H are present in G, any 2-burning sequence for H will also be a

2-burning sequence for G. Moreover, using any 2-burning sequence s for H, the number of

rounds until all vertices are blue in H is at least as large as when s is used as a 2-burning
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sequence for G. Thus b2(G) ≤ b2(H) and t2(G) ≤ t2(H).

We next consider the role of leaves (i.e., vertices of degree one) and vertices of degree

two when creating a 2-burning sequence. Observe that there are only two ways for any

vertex to turn blue, either it is a source or it has two blue neighbors. Since leaves have

only one neighbor, they must be sources, which we record as an observation below. In

Lemma 2.6 we show that for adjacent vertices of degree two, at least one must be a source.

Observation 2.5. If v is a leaf of graph G and s is a 2-burning sequence for G then

v ∈ s. Consequently, if graph G has k leaves, then b2(G) ≥ k.

Lemma 2.6. If G is a graph and v1 and v2 are adjacent vertices in G with deg(v1) =

deg(v2) = 2, then at least one of v1 and v2 must be a source in any 2-burning sequence.

Proof. Consider a 2-burning sequence for G and assume for a contradiction neither v1
nor v2 are sources. The vertex v1 can only turn blue after its two neighbors are blue so

v1 turns blue after v2. By symmetry, v2 turns blue after v1, which is a contradiction.

The next lemma is helpful in identifying graphs G with b2(G) > t2(G).

Lemma 2.7. Let G be a graph and let s be a 2-burning sequence for G. If every vertex

of s is adjacent to a degree two non-source vertex then rd(s) ≥ len(s) + 1.

Proof. By de�nition we know rd(s) ≥ len(s) so suppose for a contradiction that rd(s) =

len(s). Let v be the last source vertex in s. Then v has a degree two non-source neighbor

x, and x cannot turn blue until at least one round after v turns blue, a contradiction.

In [8] the authors �nd the 2-burning number for paths and cycles using direct arguments.

Theorem 2.8. [8] If Pn is the path on n vertices and Cn is the cycle on n vertices then

b2(Pn) = b2(Cn) = ⌈n
2
⌉+ 1.

The lower bound b2(Cn) ≥ ⌈n
2
⌉ + 1 follows from combining the results in Lemmas 2.6

and 2.7 and equality holds because selecting every other vertex (when n is even) and one

additional source vertex (when n is odd) yields an optimal 2-burning sequence of length

⌈n
2
⌉. The result for paths then follows using Lemma 2.4.

As above, Cn has an optimal 2-burning sequence of length ⌈n
2
⌉ for all n ≥ 3. The path

Pn has an optimal 2-burning sequence of length ⌈n
2
⌉ + 1 when n is even, and of length

⌈n
2
⌉ when n is odd. We record this below.

Observation 2.9. If Pn is the path on n vertices and Cn is the cycle on n vertices then

t2(Pn) = ⌈n
2
⌉+ 1 and t2(Cn) = ⌈n

2
⌉ when n is even and t2(Pn) = t2(Cn) = ⌈n

2
⌉ when n is

odd.
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2.3. Coronas and joins

Observation 2.5 states that for any 2-burning sequence of a graph G, every leaf must be

a source vertex. This motivates us to next consider a family of graphs with many leaves.

For any graph G on n ≥ 2 vertices, the corona G◦K1 is the graph on 2n vertices obtained

by joining a leaf to each vertex of G.

Proposition 2.10. For any graph G on n ≥ 1 vertices, b2(G ◦K1) = t2(G ◦K1) = n+1.

Proof. Observation 2.5 implies that each of the n leaves of G ◦ K1 must be a source

vertex in a 2-burning sequence for G◦K1. Each vertex of G is adjacent to only one leaf of

G ◦K1, thus there must also be a source vertex from among the vertices of G. Therefore,

n+ 1 ≤ t2(G ◦K1) ≤ b2(G ◦K1).

It remains to show b2(G ◦K1) ≤ n + 1. Let v1 be any vertex of G and label the rest

of the vertices v2, . . . , vn, according to a breadth-�rst search rooted at v1. Let T be the

resulting breadth �rst search tree of G, so v1 is the root of T and if vi is the parent of vj
in T then i < j. Label the leaves of G ◦K1 as v

′
1, v

′
2, . . . , v

′
n so that vi is adjacent to v′i for

1 ≤ i ≤ n and let s = (v1, v
′
2, v

′
3, v

′
4, . . . , v

′
n, v

′
1).

When we run Algorithm 2-burning on graph G ◦ K1 and sequence s, we see that for

t : 2 ≤ t ≤ n, vertex v′t is blue at round t as is the parent of vt in T . Thus vt has two blue

neighbors after round t and will be blue by round t+ 1. Therefore, all vertices of G ◦K1

are blue by round n+1 and s is a 2-burning sequence of length n+1 for G ◦K1, proving

that b2(G ◦K1) ≤ n+ 1.

While the corona G ◦K1 is a family of graphs with a high number of leaves, we next

consider a family on the other end of the spectrum: graph joins. The join of graphs

G and H is the graph denoted G ∨ H that has vertex set V (G) ∪ V (H) and edge set

E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}.
Consider graphs G and H with |V (G)|≥ 2 and |V (H)|≥ 2. If we select s1, s2 ∈ V (G),

then the sequence (s1, s2) is a 2-burning sequence for G ∨ H because all vertices in the

subgraph induced by V (H) turn blue in round 3 and subsequently, all vertices in the

subgraph induced by V (G) are blue by round 4. We record this in the following.

Observation 2.11. Let G and H be graphs on m ≥ 2 and n ≥ 2 vertices, respectively.

Then b2(G ∨H) ≤ 4 and t2(G ∨H) ≤ 2.

When we apply Observation 2.11 to the graphs G = Kn and H = Km we get an upper

bound of 4 for the 2-burning number of the complete bipartite graph Km,n. In [8] the

authors proved directly that b2(Km,n) = 4 if n,m ≥ 4 and b2(Km,n) = 3 if m ∈ {2, 3} or

n ∈ {2, 3}.
A graph G with universal vertex u is an example of a graph join: G = K1 ∨ (G − u)

and Observation 2.11 can be applied. However, for a graph G with universal vertex u, we

can also bound the 2-burning number of G by the 1-burning number of G − u. We will

use this idea later in the proof of Theorem 3.3, but state a more general result next. For

a graph G, a set D ⊆ V (G) is dominating set if every vertex of G is either in D or has
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a neighbor in D. We denote by γ(G), the minimum cardinality of a dominating set on

graph G.

Proposition 2.12. Let G be a graph and D ⊆ V (G) be a dominating set of cardinality

γ(G). Then b2(G) ≤ γ(G) + b1(G−D).

Proof. Let G be a graph and D ⊆ V (G) be a dominating set of cardinality γ(G). We

choose the vertices of D (in any order) to be the �rst γ(G) source vertices for G. At the

end of round γ(G), every vertex in G−D is adjacent to a blue vertex. Thus, the process

reduces to the 1-burning process on G−D.

3. The classes of spiders and wheels

In this section, we consider two classes of graphs: spiders and wheels. For each, we are

able to �nd the exact value for the 2-burning number and the 2-burning source number.

These classes provide an interesting contrast between b2(G) and t2(G). For spiders these

quantities di�er by at most 1, while for wheels they can be arbitrarily far apart.

3.1. Spider Graphs

The spider graph Sn1,n2,..,nr consists of a central vertex v∗ of degree r, and paths of lengths

n1, n2, . . . , nr emanating from v∗. Thus if we remove v∗ from Sn1,n2,..,nr , the resulting graph

consists of the paths Pn1 , Pn2 , .., Pnr . Figure 2 shows four spider graphs. Note that when

r = 1 or r = 2 the spider graph is a path graph, thus we assume r ≥ 3.

Interestingly, although determining the 1-burning number of a spider graph is NP-

hard [3], we next determine the 2-burning number exactly.

Theorem 3.1. Let G be the spider graph Sn1,n2,..,nr where r ≥ 3 and n = n1+n2+...+nr+1

and let k be the number of ni that are odd. Then b2(G) = ⌈n
2
⌉ + 1 if k ≤ 2 and b2(G) =

n+k−1
2

if k ≥ 3.

Proof. Let G be the spider graph Sn1,n2,..,nr and v∗ the central vertex. As discussed above,

G − v∗ is the graph whose components are the paths with ni vertices for 1 ≤ i ≤ r. We

denote by Hi the ith component of G − v∗, which is a path with ni vertices. Let xi be

the vertex of Hi that is adjacent to v∗ and yi be the vertex of Hi that is farthest from

v∗. We construct 2-burning sequences for G using four cases that depend on the value of

k. In each case below, when ni is even we choose yi and every other vertex of Hi starting

at yi to be a source. Thus we have ni

2
sources from Hi for the even paths. We will select

ni+1
2

sources from Hi when ni is odd but the particular sources chosen from these paths

will vary in di�erent cases.

First consider the case k = 0, which is illustrated for S4,4,4,2,2 in Figure 2 (a). In this

case, n is odd. In addition to the sources chosen from the Hi, we also select v
∗ as a source.

So the number of sources is 1 + 1
2
(n1 + n2 + · · ·+ nr) = 1 + n−1

2
= ⌈n

2
⌉. Every non-source

vertex of G is adjacent to two of these sources, so every vertex turns blue by round ⌈n
2
⌉+1
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and thus b2(G) ≤ ⌈n
2
⌉+ 1. In this case, the sources can be arranged in any order.

Next consider the case k = 1, which is illustrated for S3,4,4,2 in Figure 2(b). In this case,

n is even. Without loss of generality, let H1 be the odd path. If n1 = 1 let y1 be a source,

and if n1 ≥ 3, let y1 and its neighbor z1 be sources, as well as every other vertex starting

at z1. In addition to the sources chosen from the Hi, we also select v∗ as a source. So the

number of sources is 1+ 1
2
(1+n1 +n2 + · · ·+nr) = 1+ n

2
= ⌈n

2
⌉+1. Arrange the sources

so that v∗ is the �rst and y1 is the last. The remaining sources can appear in any order.

Every non-source vertex is adjacent to two sources, so all vertices will turn blue and we

have constructed a 2-burning sequence for G. Furthermore, the only neighbor of the last

source y1 is itself a source vertex, thus all vertices are blue by round ⌈n
2
⌉ + 1, and hence

b2(G) ≤ ⌈n
2
⌉+ 1.

Our third case is k = 2, which is illustrated for S5,3,4,2 in Figure 2 (c). In this case, n is

odd. Without loss of generality, let H1 and H2 be the odd paths, and for these paths (as

well as the even ones) let yi and and every other vertex starting at yi be a source. This

means that x1 and x2 will be chosen as sources. In this case we do not select v∗ to be a

source, but we do select x1 and x2 as the �rst two sources so v∗ will turn blue in round

3. The number of sources is 1
2
(2 + n1 + n2 + · · · + nr) = 1

2
(1 + n) = ⌈n

2
⌉. Since k = 2

and r ≥ 3, we know n ≥ 5 so ⌈n
2
⌉ ≥ 3 and there are a su�cient number of rounds for

v∗ to turn blue. After all the sources turn blue, every non-source is adjacent to two blue

vertices, so in one additional round, all the vertices become blue. Thus b2(G) ≤ ⌈n
2
⌉+ 1.

Finally, we consider the case k ≥ 3, which is illustrated for S5,3,3,3,3,4 in Figure 2(d).

Without loss of generality, assume that ni is odd for 1 ≤ i ≤ 3. For the odd path H1, if

n1 = 1 let y1 be a source, and if n1 ≥ 3, let y1 and its neighbor z1 be sources, as well as

every other vertex starting at z1. For the remaining odd paths (as well as the even ones),

let yi and every other vertex starting at yi be a source. This means that x2 and x3 will

be sources. In this case we do not select v∗ to be a source, but we do select x2 and x3 as

the �rst two sources so v∗ will turn blue in round 3 and we select y1 to be the last source.

The remaining sources can appear in any order. There are ni

2
sources for each Hi when ni

is even and 1+ni

2
sources for each Hi when ni is odd. Thus the number of source vertices

is 1
2
(k + n1 + n2 + · · ·+ nm) =

1
2
(n+ k − 1). Note that this number is an integer since k

and n have opposite parity. Every non-source vertex is either adjacent to two sources or

to v∗ and one source, so all vertices will turn blue and we have constructed a 2-burning

sequence for G. Furthermore, the only neighbor of the last source y1 is itself a source

vertex, thus all vertices are blue by round 1
2
(n+ k − 1), hence b2(G) ≤ 1

2
(n+ k − 1).

It remains to show that b2(G) ≥ ⌈n
2
⌉+ 1 for k ≤ 2 and b2(G) ≥ 1

2
(n+ k− 1) for k ≥ 3.

We begin by calculating the minimum number of source vertices in Hi in a 2-burning

sequence. Of the vertices of Hi, vertex yi is a leaf of G and the remaining ni − 1 vertices

have degree 2 in G. By Lemma 2.6, at least ni−2
2

of these degree two vertices must be

sources and by Observation 2.5, the leaf yi must also be a source. Thus there are at least
ni

2
vertices in Hi that are sources. Summing over all i, we get at least ⌈n−1

2
⌉ sources from

G− v∗ in any 2-burning sequence of G.

In the �rst case, k = 0, so n is odd and the number of sources from G − v∗ in any
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2-burning sequence is at least ⌈n
2
⌉ − 1. If none of the xi are sources, then v∗ must be a

source, so there are at least ⌈n
2
⌉ sources. However, in this instance, every non-source has

degree 2 and every source is adjacent to a non-source, so by Lemma 2.7, the 2-burning

sequence requires ⌈n
2
⌉+1 rounds. If exactly one of the xi are sources, then again v∗ must

be a source, so there are at least ⌈n
2
⌉ + 1 sources. Otherwise, at least two of the xi are

sources and again there are at least ⌈n
2
⌉+1 sources. Thus any 2-burning sequence requires

at least ⌈n
2
⌉+ 1 rounds and b2(G) ≥ ⌈n

2
⌉+ 1.

In the next case, k = 1, so n is even and the number of sources from G − v∗ in any

2-burning sequence of G is at least ⌈n
2
⌉. If only one xi is a source then v∗ must be a

source, so in any case there are at least ⌈n
2
⌉ + 1 sources. Thus any 2-burning sequence

requires at least ⌈n
2
⌉+ 1 rounds and b2(G) ≥ ⌈n

2
⌉+ 1.

In the case k = 2 we again have n odd and we may assume that the odd paths are H1

and H2. In any 2-burning sequence there are at least 1+ni

2
sources from the odd path Hi

for i = 1, 2, so the total number of sources from G−v∗ is it least 1
2
(2+n1+n2+ · · ·+nr) =

⌈1+n
2
⌉ = ⌈n

2
⌉. Suppose for a contradiction that there exists a 2-burning sequence s with

len(s) = rd(s) = ⌈n
2
⌉. Consider the last source sk of s (i.e., k = ⌈n

2
⌉). If sk = x1 or

sk = x2 then v∗ does not turn blue until round ⌈n
2
⌉+ 1, a contradiction. Otherwise, sk is

adjacent to a degree 2 non-source vertex and that vertex does not turn blue until round

⌈n
2
⌉ + 1, a contradiction. Thus any 2-burning sequence requires at least ⌈n

2
⌉ + 1 rounds

and b2(G) ≥ ⌈n
2
⌉+ 1.

Finally, we consider the case k ≥ 3. In any 2-burning sequence for G there are at least ni

2

sources from eachHi when ni is even and at least
1+ni

2
sources from eachHi when ni is odd.

Thus the total number of source vertices is at least 1
2
(k+n1+n2+ · · ·+nr) =

1
2
(k+n−1)

and consequently b2(G) ≥ 1
2
(k + n− 1).

Fig. 2. Four spider graphs in which the circled vertices are sources in an optimal 2-burning sequence.

Corollary 3.2. Let G be the spider graph Sn1,n2,..,nr where r ≥ 3 and n = n1 +n2 + ...+
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nr+1 and let k be the number of ni that are odd. If k = 0 or k = 2 then t2(G) = b2(G)−1

and if k = 1 or k ≥ 3 then t2(G) = b2(G).

Proof. In the proof of Theorem 3.1 we show that for k = 0 and k = 2, every 2-burning

sequence s has len(s) ≥ ⌈n
2
⌉ and there exists a 2-burning sequence of that length. Thus

when k = 0 or k = 2 we have t2(G) = b2(G) − 1. When k = 1 the proof shows that

len(s) ≥ ⌈n
2
⌉+ 1 for any 2-burning sequence s, hence t2(G) = b2(G). Finally, when k ≥ 3

we show len(s) ≥ 1
2
(n+ k − 1) in the proof of Theorem 3.1, so t2(G) = b2(G).

3.2. Wheel Graphs

The wheel graph Wn is a graph formed from the cycle Cn by adding a central vertex that

is adjacent to all the vertices of the cycle. By Proposition 2.12 we know, b2(Wn+1) ≤
1 + b1(Cn) = 1 + ⌈

√
n ⌉; the latter equality due to [6]. In Theorem 3.3 we determine

b2(Wn+1) exactly, and Figure 3 shows the optimal 2-burning sequences for W30 and W22

that are constructed in the proof.

Theorem 3.3. If n ≥ 5, then b2(Wn) = ⌈
√
n+ 6 ⌉ and b2(W4) = 3.

Proof. Let v∗ be the central vertex of Wn and label the vertices along the cycle consecu-

tively as 1, 2, 3, . . . , n where n ≥ 5. We consider two possibilities for 2-burning sequences

for Wn: those for which v∗ is a source and those for which v∗ is not a source. Note that

it is not useful to choose v∗ as a source in round 3 or later since it will be adjacent to the

�rst two source vertices and will therefore turn blue at round 3. Additionally, note that

selecting v∗ as the source in round 2 is equivalent to selecting it as the source in round 1,

so we consider the latter in Case 1.

Case 1: The central vertex v∗ is the �rst source.

Observe that in this case, once the central vertex turns blue, each vertex in the cycle is

adjacent to one blue vertex, namely v∗, so it will turn blue when it is chosen as a source

or when it is adjacent to another blue vertex of the cycle. This reduces the problem to

�nding the 1-burning number for Cn, and adding one for the initial round of selecting

v∗ as a source. In [6], it is proven that b1(Cn) = ⌈
√
n ⌉, hence in Case 1, the minimum

number of rounds for all vertices to turn blue is 1 + ⌈
√
n ⌉.

Case 2: The central vertex v∗ is not a source vertex.

Let s = (s1, s2, . . . , sm) be a 2-burning sequence for which si ̸= v∗ for 1 ≤ i ≤ m. Let

k = rd(s), so 3 ≤ m ≤ k. Apply Algorithm 2-burning with input Wn and sequence s. In

round 3 the central vertex v∗ turns blue. After that, each vertex with a blue neighbor on

the cycle becomes blue in the next round. In round 4, the neighbors of s1 on the cycle

turn blue (if they are not already blue) and in round 5 their neighbors on the cycle turn

blue, and this continues propagating outward along the cycle in both directions from s1.

Thus at each round, starting at round 4, vertex s1 is responsible for at most two new blue

vertices, so after k rounds, source s1 turns at most 2(k−3) vertices of the cycle blue. The

same is true for sources s2 and s3. For j ≥ 4, source sj is responsible for turning at most
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2 of the cycle vertices blue in each round from j + 1 to k, so it turns at most 2(k − j)

vertices of the cycle blue in total. Let B be the set of blue vertices in the cycle after k

rounds, thus |B|≤ m+ 3 · 2(k − 3) +
∑m

j=4 2(k − j).

We simplify this sum to

|B| ≤ m+ 6k − 18 + 2
m∑
j=4

k − 2
m∑
j=4

j

= m+ 6k − 18 + 2k(m− 3)− (m+ 4)(m− 3)

= 2km−m2 − 6 = m(2k −m)− 6.

There are n vertices on the cycle, and all are blue after round k, thus n ≤ m(2k−m)− 6.

The product m(2k − m) is maximized when k = m, so n ≤ k2 − 6 or equivalently

k ≥
√
n+ 6. We know k is an integer, so in fact, k ≥ ⌈

√
n+ 6 ⌉. Hence when v∗ is not

a source vertex, every 2-burning sequence for Wn requires at least ⌈
√
n+ 6 ⌉ rounds and

at least m source vertices where m(2k −m) ≥ n+ 6.

Next we show that the quantity ⌈
√
n+ 6 ⌉ is also su�cient. Let k = ⌈

√
n+ 6 ⌉ so

k2 ≥ n+6. Choose m so that 2km−m2 ≥ n+6, but 2kr−r2 < n+6 for r < m. That is,

m is the minimum integer for which m(2k−m) ≥ n+6. Note that m is well-de�ned since

for r = 0 we know 0 < n+6 and for r = k we know k2 ≥ n+6. We construct a 2-burning

sequence s = (s1, s2, . . . , sm) and show that rd(s) ≤ k. This is illustrated in Figure 3 for

n = 30 (where k = 6 and m = 6) and for n = 26 (where k = 6 and m = 4). Select the

source vertices as follows. Let s1 = 1, s2 = s1 + 2(k− 3) + 1, and s3 = s2 + 2(k− 3) + 1.

For 4 ≤ j ≤ k, let sj = sj−1 + (k − j + 1) + (k − j) + 1. One can check that m ≤ 3 only

when n ≤ 9, and in each of those cases our sequence s is a 2-burning sequence for Wn.

Thus we may assume m ≥ 4.

By the end of round 3, the source vertices s1, s2, s3 are blue as is the central vertex v∗.

Once v∗ is blue, each uncolored vertex with a blue neighbor on the cycle becomes blue in

the next round. First consider vertices v with s1 < v < s2. By construction, there are

2(k− 3) such vertices, so each is distance at most k− 3 from one of s1, s2 along the cycle.

Since s1, s2 and v∗ are all blue by round 3, and there are k rounds total, vertex v will be

blue after round k. The same is true for s2 < v < s3.

Next consider vertices v with sj−1 < v < sj for some j with 4 ≤ j ≤ m. By construction,

sj − sj−1 = 1+ (k− j +1)+ (k− j), so there are there are (k− j) + (k− (j − 1)) vertices

strictly between sj and sj−1 along the cycle. The k− j vertices closest to sj all turn blue

by round k since sj turns blue at round j and there are k− j rounds remaining. Similarly,

the k− (j − 1) vertices closest to sj−1 all turn blue by round k. Thus again, vertex v will

be blue after round k.

Finally, we consider the vertices v with sm < v < n. As before, the k − 3 vertices

closest to s1 along the cycle are all blue after round k, so it su�ces to consider v with

sm < v ≤ n− (k−3). Using our recursive formulas above, we can derive explicit formulas

for the source vertices. In particular, s1 = 1, s2 = 2 + 2(k − 3), s3 = 3 + 4(k − 3), and

sm = m+ 3(k − 3) + (k −m) + 2
m−1∑
i=3

(k − i)
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= 4k − 9 + 2
m−1∑
i=3

k − 2
m−1∑
i=3

i

= 4k − 9 + 2k(m− 3)− (m+ 2)(m− 3)

= 2km−m2 +m− 2k − 3.

Hence, sm + (k − m) = 2km − m2 − k − 3 ≥ n + 6 − k − 3 = n − (k − 3). Since

sm turns blue in round m and there are k − m rounds remaining, the vertices v with

sm < v ≤ n − (k − 3) will all be blue after round k. Thus s is a 2-burning sequence for

Wn and rd(s) ≤ k = ⌈
√
n+ 6 ⌉. Hence we have shown that when v∗ is not a source, the

minimum number of rounds for all vertices of Wn to turn blue is ⌈
√
n+ 6 ⌉.

Combining the results of these cases, we conclude that b2(Wn) = min{1+⌈
√
n ⌉, ⌈

√
n+ 6 ⌉}.

By inspection, b2(W4) = 3, and it is not hard to show that ⌈
√
n+ 6 ⌉ ≤ 1 + ⌈

√
n ⌉ for

n ≥ 5, completing the proof.

In our proof of Theorem 3.3 we found the minimum number of sources needed for an

optimal 2-burning sequence for Wn. We record this in the following corollary.

Corollary 3.4. If n ≥ 5 and k = ⌈
√
n+ 6 ⌉ then t2(Wn) is the minimum integer m ≥ 3

for which m(2k −m) ≥ n+ 6.

Fig. 3. The wheels W30 and W26 where the edges incident to v∗ are omitted and only the sources in our

optimal 2-burning sequences are labeled.

The wheel graphsW30 andW26 and optimal 2-burning sequences for them are illustrated

in Figure 3. For W30 the optimal 2-burning sequence constructed in the proof of Theo-

rem 3.3 is s = (1, 8, 15, 21, 25, 27) where k = b2(W30) = 6 and m = t2(W30) = 6. For W26

the optimal 2-burning sequence constructed in the proof of Theorem 3.3 is s = (1, 8, 15, 21)

where k = b2(W26) = 6 and m = t2(W26) = 4.
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The next theorem shows that there exist wheel graphs G for which the 2-burning

number is arbitrarily larger than the length of an optimal 2-burning sequence.

Theorem 3.5. For any integer r, there exists an integer n for which b2(Wn)−t2(Wn) ≥ r.

Proof. Fix an integer r and choose an integer k ≥ 5 such that 2(k − 1) > r2. Let

n = (k − 1)2 − 5, so n + 6 = (k − 1)2 + 1 = k2 − 2(k − 1), and thus ⌈
√
n+ 6 ⌉ = k. By

Theorem 3.3 we know that b2(Wn) = k and by Corollary 3.4 we know that t2(Wn) is the

smallest integer m ≥ 3 for which m(2k−m) ≥ n+ 6. Observe that for j = k− r we have

j(2k − j) = (k − r)(k + r) = k2 − r2 > k2 − 2(k − 1) = n+ 6.

Hence m ≤ k − r and b2(Wn)− t2(Wn) = k −m ≥ r as desired.

4. Cartesian products

Motivated by the interesting relationships that often emerge between graph parameters

of input graphs versus their product, we study the 2-burning number and the 2-burning

source number of Cartesian products. The Cartesian product of graphs G and H is

the graph denoted G□H that has vertex set {(u, v) : u ∈ V (G), v ∈ V (H)} and

(u1, v1)(u2, v2) ∈ E(G□H) if and only if one of the following hold: (i) u1 = u2 and

v1v2 ∈ E(H) or (ii) v1 = v2 and u1u2 ∈ E(G).

Recall that Observation 2.5 provided a lower bound for the 2-burning number of a graph

based on the number of leaves; namely, if graph G has k leaves, then b2(G) ≥ k. Cartesian

products of connected graphs have no leaves, so we begin by determining b2(Km □Kn),

and use this to provide a lower bound for the 2-burning number of the Cartesian product

of any pair of connected graphs on m and n vertices.

Theorem 4.1. If m ≥ 5 and n = 3, or m ≥ n ≥ 4, then t2(Km □Kn) = 2 and

b2(Km □Kn) = 5.

Proof. Let V (Km) = {u1, u2, . . . , um} and V (Kn) = {v1, v2, . . . , vn}. Partition Km □Kn

into m copies of Kn, labeled H1, H2, . . . , Hm where ui is the �rst coordinate of each vertex

in Hi. For the lower bound on b2(Km □Kn), without loss of generality, suppose the �rst

source vertex is (u1, v1) in H1. We consider two cases.

Case 1: The second source vertex is in H1.

At the end of round 3, every vertex in H1 has turned blue. Without loss of generality,

the third source vertex is inH2. So at the end of round 3, there are at least three uncolored

vertices in H2 and every vertex in H3 is uncolored. Let (u2, vj) and (u2, vk) be distinct

vertices of H2 that are uncolored at the end of round 3, where 1 ≤ j, k ≤ n and j ̸= k.

Then at most one of (u3, vj), (u3, vk) in H3 turns blue during round 4, leaving at least one

uncolored at the end of round 4.

Case 2: The second source vertex is not in H1.
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Without loss of generality, assume the second source is (u2, vj) in H2. If j = 1 then

during round 3, exactly one non-source vertex turns blue in Hi for 3 ≤ i ≤ m, namely

(ui, v1). Without loss of generality, assume (u1, v2) is the third source vertex. Then

during round 4, exactly one non-source vertex turns blue in each Hi for 3 ≤ i ≤ m,

namely (ui, v2). Since |V (Hi)|≥ 3 for i : 1 ≤ i ≤ m and at most one vertex from H1 ∪H2

is a source vertex in round 4, there is at least one uncolored vertex amongst the vertices

of H1 ∪H2 at the end of round 4.

If j ̸= 1, without loss of generality we may assume j = 2, so the �rst two sources are

(u1, v1) and (u2, v2). Then the only non-source vertices to turn blue in round 3 are (u1, v2)

and (u2, v1). During round 4, the remaining vertices of H1 ∪H2 turn blue; along with at

most two non-source vertices in each of H3, H4. At the end of round 4, there are at most

two source vertices in H3 ∪H4. If m ≥ n ≥ 4, this leaves at least two vertices in H3 ∪H4

uncolored by the end of round 4. If m ≥ 5 and n = 3, observe that during round 4,

exactly two non-source vertices in each of H3, H4, H5 turn blue. Then at the end of round

4, there are at most two source vertices in H3 ∪H4 ∪H5, leaving at least one uncolored

vertex in H3 ∪H4 ∪H5.

The above two cases show that b2(Km □Kn) ≥ 5. To see that b2(Km □Kn) = 5, let

s = ((u1, v1), (u2, v2)) and observe that s is a 2-burning sequence of Km □Kn that results

in every vertex blue by the end of round 5. It also shows that t2(Km □Kn) ≤ 2. Any

graph with two or more vertices requires at least two sources, so t2(Km □Kn) = 2.

If G and H are graphs with m = |V (G)| and n = |V (H)| then G□H is a spanning

subgraph ofKm □Kn. We combine Lemma 2.4 and Theorem 4.1 to conclude the following.

Corollary 4.2. Let G and H be graphs on m and n vertices, respectively, where m ≥ 5

and n = 3, or m ≥ n ≥ 4. Then t2(G□H) ≥ 2 and b2(G□H) ≥ 5.

In the next theorem we show that b2(G) is an additional lower bound for b2(G□H).

Theorem 4.3. Let G and H be connected graphs on m and n vertices, respectively, where

m ≥ 5 and n = 3, or m ≥ n ≥ 4. Then b2(G□H) ≥ max{5, b2(G), b2(H)}.

Proof. Let s = ((u1, v1), (u2, v2), . . . , (uk, vk)) be an optimal 2-burning sequence for

G□H. We note that the �rst coordinates of vertices in sequence s may not all be

distinct: for i ̸= j, it is possible that ui = uj. Similarly, the second coordinates of vertices

in s may not all be distinct.

For graph G, let sG = (u1, u2, . . . , uk). To complete the proof, we must show that when

Algorithm 2-burning is applied to graph G and sequence sG, it will terminate when all

vertices of G are blue. The fact that the vertices in sG are not necessarily all distinct

causes no problem with this implementation: if source vertex uj turns blue before round

j, then no source vertex turns blue during round j.

We claim that any vertex up ∈ V (G) turns blue by round r (via sG) if there exists a

vertex (up, vq) ∈ V (G□H) that turns blue by round r (via s). By construction of sG, the

claim is true when up is in sG. For a contradiction suppose the claim is false and let ℓ be
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minimum so that there exists (up, vq) ∈ V (G□H) that turns blue by round ℓ (via s) but

for which up is not blue (via sG) by round ℓ. For (up, vq) to turn blue during round ℓ, it

must have at least two neighbors that are blue by the end of round ℓ − 1. We consider

two cases for neighbors of (up, vq).

For the �rst case, assume (up, vq) has a neighbor (up, vc) that is blue by round ℓ − 1.

By the minimality of ℓ, since (up, vc) is blue by round ℓ − 1, vertex up in G is blue by

round ℓ− 1, a contradiction.

For the second case, assume (ua, vq) and (ub, vq) are distinct neighbors of (up, vq) and

are both blue by round ℓ − 1. Then ua, ub ∈ NG(up) and since ℓ is minimum, ua, ub are

both blue by round ℓ − 1. Therefore, up is blue by the end of round ℓ, a contradiction.

This proves our claim.

As a consequence, if s results in every vertex of G□H blue by round b2(G□H),

then sG results in every vertex of G blue by round b2(G□H). It follows that b2(G) ≤
b2(G□H). A similar argument shows b2(H) ≤ b2(G□H) and 5 ≤ b2(G□H) follows

from Corollary 4.2.

The proof of Theorem 4.3 maps source vertices in G□H to source vertices in G to show

b2(G) ≤ b2(G□H). Unfortunately, this approach cannot be used to provide an analogous

bound for t2(G□H) based on t2(G). To see this, consider P4□P3, as shown in Figure 4.

The sequence s = {(1, 1), (2, 2), (3, 3), (4, 2), (4, 1)} results in every vertex blue by the end

of round 5 and Theorem 4.3 implies that b2(P4□P3) ≥ 5. Thus b2(P4□P3) = 5. However,

mapping the �rst three source vertices of s to P4 results in sequence sP4 = {1, 2, 3}, which
is not a 2-burning sequence for P4 as non-source vertex 4 has only one neighbor and

cannot ever turn blue. We do not know if t2(G) forms a lower bound for t2(G□H) in

general.

Fig. 4. The graph P4 □P3 with 2-burning sequence s1, s2, s3, s4, s5 labeled.

We next provide upper bounds for the 2-burning number and the 2-burning source

number of the Cartesian product of graphs. Figure 5 illustrates the proof in the case

G = P5 and H = P4.

Theorem 4.4. If G and H are graphs then t2(G□H) ≤ t2(G)t2(H) and b2(G□H) ≤
t2(G)t2(H) + (b2(H)− t2(H)) + (b2(G)− t2(G)).

Proof. Let m = |V (G)| and label the vertices of G as g1, g2, . . . , gm such that g =

(g1, g2, . . . , gk) is an optimal 2-burning sequence for G with len(g) = k = t2(G). Let
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n = |V (H)| and label the vertices of H as h1, h2, . . . , hn such that h = (h1, h2, . . . , hℓ)

is an optimal 2-burning sequence for H with len(h) = ℓ = t2(H). This is illustrated in

Figure 5 where G = P5, H = P4, m = 5, k = 3, n = 4, and ℓ = 3.

For i : 1 ≤ i ≤ k, let ai be the sequence (gi, h1), (gi, h2), . . . , (gi, hℓ) and let s be the

sequence a1, a2, . . . , ak. Thus s is a sequence of vertices in G□H and len(s) = kℓ =

t2(G)t2(H). In Figure 5, the nine vertices of s are circled and labeled s1, . . . , s9. We will

show that s is a 2-burning sequence for G□H and calculate the number of rounds until

all vertices are blue.

For each i : 1 ≤ i ≤ k, let Hi = {(gi, h1), (gi, h2), . . . , (gi, hℓ), . . . , (gi, hn)} and note that

Hi induces a copy of H in G□H. The �rst ℓ vertices listed in Hi are blue after round

t2(G)t2(H) because they are part of s. Since (h1, h2, . . . , hℓ) is a 2-burning sequence for

H, after an additional b2(H)− t2(H) rounds, the remaining vertices in Hi are blue. Thus,

if 1 ≤ i ≤ k and 1 ≤ j ≤ n then the vertex (gi, hj) is blue after round t2(G)t2(H) +

b2(H)− t2(H).

It remains to consider vertices of the form (gi, hj) where k + 1 ≤ i ≤ m and 1 ≤
j ≤ n. For each j : 1 ≤ j ≤ n, let Gj = {(g1, hj), (g2, hj), . . . , (gk, hj), . . . , (gm, hj)}
and note that Gj induces a copy of G in G□H. Since (g1, g2, . . . , gk) is a 2-burning

sequence for G of length t2(G), all vertices of G are blue b2(G) − t2(G) rounds after

gk becomes blue. Similarly, since (g1, hj), (g2, hj), . . . , (gk, hj) is a 2-burning sequence of

length t2(G) for the copy of G induced by Gj, all vertices of Gj are blue b2(G) − t2(G)

rounds after (gk, hj) becomes blue. We concluded above that (gk, hj) is blue after round

t2(G)t2(H) + b2(H) − t2(H) for 1 ≤ j ≤ n, so all vertices in Gj are blue after round

t2(G)t2(H)+ (b2(H)− t2(H))+ (b2(G)− t2(G)). Thus sequence s is a 2-burning sequence

for G□H of length t2(G)t2(H) and b2(G□H) ≤ t2(G)t2(H)+(b2(H)− t2(H))+(b2(G)−
t2(G)).

Fig. 5. The graph P5 □P4 with vertices labeled as in the proof of Theorem 4.4 and with source vertices

s1, s2, . . . , s9.

The next result illustrates that for some graphsG andH, the upper bound for t2(G□H)

given in Theorem 4.4 is exact.
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Theorem 4.5. The graph C4□C4 has b2(C4□C4) = 5 and t2(C4□C4) = 4.

Proof. Let V (C4) = {1, 2, 3, 4} where vertex i is adjacent to vertex i + 1 (mod 4).

Corollary 4.2 provides the lower bound b2(C4□C4) ≥ 5; and it is straightforward to

verify that b2(C4□C4) ≤ 5 by choosing source vertices (1, 1), (2, 2), (3, 3), (4, 4). Thus

b2(C4□C4) = 5 and every optimal 2-burning sequence s has rd(s) = 5.

Theorem 4.4 provides the upper bound t2(C4□C4) ≤ 4. For a contradiction, sup-

pose t2(C4□C4) ≤ 3 and �x an optimal 2-burning sequence s for C4□C4 with len(s) ≤
3. Since s is optimal, we know rd(s) = 5 and since there is no 2-burning sequence

for C4□C4 with only 2 source vertices, we also know len(s) = 3. We will use the

terms �rows� and �columns� as illustrated in Figure 6 where �row i" refers to the set

{(i, 1), (i, 2), (i, 3), (i, 4)}; and �column i" refers to {(1, i), (2, i), (3, i), (4, i)}.
First consider the case in which there is at most one source vertex in each row and in

each column. Without loss of generality we may assume that row 4 and column 4 contain

no source vertices. The vertices (1, 1) and (1, 3) cannot both be blue after round 3 since

at most one is a source and it would require a second source from row 1 to turn the other

blue by round 3. Thus the earliest (1, 1) and (1, 3) are both blue is round 4, and therefore

(1, 4) cannot turn blue until round 5. Similarly, vertices (3, 4), (4, 1) and (4, 3) cannot

turn blue until round 5. So none of the neighbors of vertex (4, 4) are blue until round 5,

and consequently, vertex (4, 4) is not blue at the end of round 5, a contradiction.

Otherwise, there exists a row or column containing two source vertices. Without loss of

generality we may assume that column 2 has two source vertices. There must be a source

vertex in column 4, or else no vertex in column 4 will ever turn blue. Without loss of

generality we may assume that (2, 4) is a source vertex. Any non-source vertex that turns

blue in round 3 must have two source neighbors. Thus, at the end of round 3, the only

vertices that are blue, are in row 2 and in column 2. Even if all seven of these vertices

were blue at round 3 (see Figure 6), vertex (4, 4) would not turn blue by the end of round

5, a contradiction. Thus t2(C4□C4) = 4.

Fig. 6. The graph C4 □C4 with some vertices labeled for reference, as in the proof of Theorem 4.5.

We know that t2(C4) = 2 and in Theorem 4.5 we show t2(C4□C4) = 4, so t2(C4□C4) =

t2(C4)t2(C4). Thus there exist graphs G and H for which the bound t2(G□H) ≤
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t2(G)t2(H) in Theorem 4.4 is exact. For the 2-burning number, Theorem 4.4 provides the

bound b2(C4□C4) ≤ 6, but Theorem 4.5 shows that b2(C4□C4) = 5. We do not know if

there exist graphs G and H for which the bound on b2(G□H) from Theorem 4.4 is exact.

5. Conclusion and Directions

Since the 2-burning numbers are known for Pn and Cn, it is natural to consider the 2-

burning number of their products. Theorems 4.3 and 4.4 provide lower and upper bounds

for 2-burning numbers, but the exact values remain unknown. For Pn□Pn, we can gain

insight and bounds on the 2-burning number from bootstrap percolation since Pn□Pn is

one of the few graphs for which bootstrap percolation has been studied from an extremal

perspective.

In Section 1 we de�ned the related problem of r-neighbor bootstrap percolation where

rather than having a sequence of sources turning blue in successive rounds, there is a

set of sources that all turn blue in round 0. Most work on bootstrap percolation has

focused on the process when the source vertices are chosen independently at random

with probability p, but some researchers have considered the problem of determining

the minimum cardinality of a percolating set. Following [9], we denote by m(G, r) the

cardinality of a minimum percolating set on graph G following the r-neighbor bootstrap

process. We denote by τ(G, r), the minimum number of rounds by which every vertex of

G is blue, over all possible minimum percolating sets on G. Though we state the next

observation for r = 2, we note that it holds for general r where the parameter tr(G) is

de�ned analogously to t2(G).

Observation 5.1. For a graph G on n vertices

m(G, 2) ≤ t2(G) ≤ b2(G) ≤ m(G, 2) + τ(G, 2).

Observe that if G = Kn and n ≥ 3 then m(Kn, 2) = 2 = t2(Kn) and b2(Kn) = 3,

and τ(Kn, 2) = 1; therefore the �rst and third inequalities are tight. We have seen other

examples (e.g., paths and cycles on an even number of vertices) that make the middle

inequality tight. Since τ(G, 2) > 0 for all graphs G, there are no graphs for which equality

holds throughout.

In Section 4 we considered Cartesian products and these have also been studied in

the context of percolation. For 2-neighbor bootstrap percolation, the extremal problem

of determining the smallest percolating set was �rst considered Pete [10], published in

Hungarian; and later communicated by Balogh and Pete [2]. The vertices on the diagonal

of the square grid Pn □Pn constitute a percolating set for this graph, thusm(Pn□Pn, 2) ≤
n. Indeed it is shown in [10] and [2] that m(Pn□Pn, 2) = n. The same set of sources

form a 2-burning sequence for Pn □Pn and using this sequence, all vertices turn blue by

round 2n. Thus, n ≤ b2(Pn □Pn) ≤ 2n. It would be interesting to determine the exact

value of b2(Pn □Pn) for general n.

Question 5.2. Can we determine b2(Pn□Pn) for all n?
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In this paper we have focused on b2(G), the 2-burning number, and our new parameter

t2(G), the 2-burning source number. The quantities b2(G) and t2(G) are equal precisely

when every optimal 2-burning sequence requires a source in each round. We found in�nite

families of graphs G for which t2(G) = b2(G); including subsets of paths, cycles, and

spiders. More generally, we would like to determine the set of graphs for which these

parameters are equal.

Question 5.3. Can we characterize all graphs G for which t2(G) = b2(G)?

Finally, we state two questions relating to the discussions succeeding Theorems 4.3

and 4.5.

Question 5.4. For arbitrary graphs G and H, are t2(G) and t2(H) lower bounds for

t2(G□H)?

Question 5.5. Do there exist graphs G and H for which the bound on b2(G□H) from

Theorem 4.4 is exact?
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