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abstract

Let G be a graph, the zero forcing number Z(G) is the minimun of |Z| over all zero

forcing sets Z ⊆ V (G). In this paper, we are interested in studying the zero forcing

number of quartic circulant graphs Cp (s, t), where p is an odd prime. Based on the fact

that Cp (s, t) ∼= Cp (1, q), we give the exact values of the zero forcing number of some

speci�c quartic circulant graphs.
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1. Introduction

In this paper, all graphs considered are �nite, undirected and simple. For any terminology

used but not de�ned here, one may refer to [5].

Graph parameters have many application in some science trends. As one of the most

important, it can be zero forcing number. Also, zero forcing number have applications in

power domination problem, logic circuits, information in social networks and so on, see

[6, 4, 14]. We now formally introduce its de�nition. Let G be a graph and Z be an subset

of V (G). Color the vertices of Z and V (G) \ Z black and white initially, respectively. A

forcing process is de�ned as follows: for a black vertex u of V (G), if u has exactly one
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white neighbor v, then reassign v black. At the time, we say u forces v and denote it by

u → v. The subset Z is called a zero forcing set, if all vertices in V (G) \ Z are forced

black by repeatedly applying the forcing process. The zero forcing number of G is the

minimum of |Z| over all zero forcing sets Z ⊆ V (G), denoted by Z(G).

The computation of zero forcing number is NP-hard, see [9]. It has attracted many

scholars, and a lot of results are obtained in the �eld. In [1], some elementary results

of graphs regarding zero forcing are obtained, such as, trees, Cartesian products of two

paths. Kalinowski et al. ([16]) showed that Z(G) ≥ n(1 + 2λmin

d−λmin
) if G is d-regular. In [2,

3], if a graph G has the minimum and maximum degree δ and ∆ respectively, then the

zero forcing number of a graph G with n vertices can be as δ ≤ Z(G) ≤ n∆
∆+1

. In addition,

Meyer [20] obtained upper and lower bounds for Z(G) when G is a bipartite circulant

and showed which graphs achieve the equality in the lower bound. From these references,

we can �nd that, even for some special graphs, it seems to be impossible to determine

the exact number of zero forcing number. Note that, Riddell [23] obtained some results

of the zero forcing number on cubic circulant graphs. Hence determining the zero forcing

number for all quartic circulant graphs is an interesting and challenging problem. For

more details on zero forcing, see [9, 10, 12, 13, 19, 24, 7, 25].

Given an integer n ≥ 2 and a subset S ⊆
{
1, 2, ...,

⌊n
2

⌋}
, a circulant graph G = Cn(S)

is formally de�ned as a graph with vertex set V (G) = {0, 1, ..., n − 1} and edge set

E(G) = {{i, i ± j}|i ∈ {0, ..., n− 1} and j ∈ S}, where i, j and i ± j are taken modulo

n. Note that if S = {s1, ..., st}, then we can always assume that s1 < s2 < ... < st. In

particular, if S = {s, t}, the circulant graph Cn (s, t) is a quartic circulant graph, where

1≤s <t≤
⌊n
2

⌋
, that is to say, for any i ∈ {0, ..., n− 1}, the neighbours of i be {i±s, i± t},

where {i± s, i± t} are taken modulo n.

The distance between two vertices u and v is the length of the shortest path from u

to v, denoted by d(u, v). The diameter of G is the maximum distance among all pairs

of vertices in G, denoted by diam (G). If u is a vertex of G, then let Ni(u) denote the

set of vertices at distance i from u. The partition {N0(u), N1(u), ..., Nd(u)} is called the

distance partition with respect to u. Clearly, N0(u) = {u}. The set of neighbours of a

vertex v in a graph G is denoted by N(v). Studying the properties of circulant graphs

has become an active topic in algebraic graph theory for a long time. Actually, they are

close related with graph parameters and networks etc, such as, [15, 18, 22, 27]. Let Zp be

the additive group of integers modulo p, where p be an odd prime, Z∗
p = Zp\{0}. Some

examples of circulant graphs are given in Figure 1.

Fig. 1. The circulant graphs C7 (1, 2) and C11 (2, 5)

We �rst characterize the zero forcing number of quartic circulant graphs Cp (1, q) on
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groups G with some special q.

Theorem 1.1. Let G = Cp (1, q) with 2 ≤ q ≤
⌊p
2

⌋
.

(1) If q = 2, then Z (Cp (1, 2)) = 4.

(2) If q = 3, then

Z (Cp (1, 3)) =

{
4, p = 7,

6, p ≥ 11.

(3) If q = 4, then

Z (Cp (1, 4)) =

{
6, p = 11 or 13,

8, p ≥ 17.

(4) If q = 5, then

Z (Cp (1, 5)) =


4, p = 11,

6, p = 13 or 17,

8, p = 19 or 23,

10, p ≥ 29.

Motivated by the above result, we have the following conjecture: when |p− q| is su�-

ciently large, Z(Cp(1, q)) = 2q.

The rest of the paper is structured as follows. In Section 2 we give some preliminary

results. We focus on the isomorphism of quartic circulant graphs, and conclude that

Cp (s, t) ∼= Cp (1, q) for some q ∈ Z∗
p . Inspired by the idea of the isomorphism of those

graphs, the zero forcing number of Cp (1, q) can help us research the zero forcing number

of Cp (s, t). In Section 3 we prove Theorem 1.1.

2. Preliminary Results

In this section, we will characterize the isomorphism of (quartic) circulant graphs. Assume

that Cp (s1, s2, ..., st) be a circulant graph of prime order p with 1 ≤ si ≤
⌊p
2

⌋
, 1 ≤ i ≤ t.

We �rst propose the following result.

Lemma 2.1. [17] Let Zp be the additive group of integers modulo p, where p be an odd

prime. Then Aut ((Zp,+)) ∼=
(
Z∗

p ,×
)
.

By [8] and [21], together with Lemma 2.1, we have the following useful result, which

characterize the isomorphism of circulant graphs with prime vertices.

Theorem 2.2. [8, 21] Let G = Cp (s1, s2, ..., st) be a circulant graph, where p be an odd

prime, 2 ≤ si ≤
⌊p
2

⌋
. Then Cp (s1, s2, ..., st) ∼= Cp (1, q2, ..., qt), for some qi ∈ Z∗

p .

Based on Theorem 2.2, for quartic circulant graphs, we can get the following conclusion.
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Theorem 2.3. Let Cp (s, t) be a quartic circulant graph with 2≤s <t≤
⌊p
2

⌋
. Then Cp (s, t) ∼=

Cp (1, q) for some q ∈ Z∗
p .

As an example of Theorem 2.3, if p = 11 and s = 2, t = 5, then C11 (2, 5) ∼= C11 (1, 3).

Therefore, the characterization of the zero forcing number of quartic circulant graphs

Cp (s, t) can be converted into the zero forcing number of quartic circulant graphs Cp (1, q).

Fig. 2. The circulant graph C11 (2, 5) ∼= C11 (1, 3)

3. The Zero Forcing Number of Circulant Graphs Cp (1, q)

Motivated by Theorem 2.3, we will characterize the zero forcing number of circulant

graphs Cp (1, q). In this section, we �rst give the upper bound of the zero forcing number

of Cp (1, q). For the rest of this section, we will give the exact values of the zero forcing

number for Cp (1, 2), Cp (1, 3), Cp (1, 4), and Cp (1, 5), respectively.

3.1. The zero forcing number of Cp (1, q) with q = 2, 3

In this subsection, we characterize the exact values of the zero forcing number of the

circulant graphs Cp (1, 2) and Cp (1, 3). For consecutive circulant graphs, we have the

following conclusions.

Theorem 3.1. [26] If G = Cp (1, q), then Z (G) ⩽ 2q.

Lemma 3.2. [8] If G = Cn (1, 2, ..., d) , 1 ≤ d ≤
⌊n
2

⌋
, then Z (G) = 2d.

By Lemma 3.2, we can get the following theorem immediately.

Theorem 3.3. If G = Cp (1, 2), then Z (Cp (1, 2)) = 4.

Remark 3.4. Observe that {0, 1, 2, p− 1} is a zero forcing set of Cp (1, 2).

Theorem 3.5. Let G = Cn (1,m) be a circulant graph, where n=2m+1, then Z (Cn (1,m)) =

4.

Proof. By [8, Lemma 1.2], Z (Cn (1,m)) ≥ 4. In the following, we can get a forcing set



Zero Forcing Number of Quartic Circulant Graphs 7

of size 4, that is to say Z (Cn (1,m)) ≤ 4.

Step 1. Black four vertices {0, 1,m, 2m}, then m+ 1 be the unique neighbour not be

colored black of vertex 0, thus 0 → m+ 1, see Figure 3.

Fig. 3. Step 1

Step 2. After the above forcing process, m+1 has the unique neighbour m+2 not be

colored black, thus m+ 1 → m+ 2, see Figure 4.

Fig. 4. Step 2

Step 3. After this forcing process, 1 has the unique neighbour 2 not be colored black,

thus 1 → 2.

Step 4. Similarily, the black vertex m + 2 has the unique neighbour m + 3 not be

colored black, thus m+ 2 → m+ 3. Then the black vertex 2 has the unique neighbour 3

not be colored black, thus 2 → 3. Continue the similiar analysis, the vertices m+4, 4, ...,

2m− 1, m− 1 will be colored black by the forcing process of m+ 3, 3, ..., 2m− 2, m− 2,

respectively.

Then all the vertices of G be colored black, thus {0, 1,m, 2m} be a forcing set and

Z (Cn (1,m)) ≤ 4.

The girth is the length of the shortest cycle of the graph. It is clearly that the girth of

quartic circulant graphs Cp (1, q) is 3 or 4. By [11, Theorem 2.4] , if G is a graph of girth

g at least 3 and minimum degree δ at least 2, then Z(G) ≥ (g − 2)(δ − 2) + 2. The next

theorem give the exact value of the zero forcing number of Cp (1, 3).
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Theorem 3.6. If G = Cp (1, 3), then

Z (Cp (1, 3)) =

{
4, p = 7,

6, p ≥ 11.

Proof. By Theorem 3.5, we have Z (C7 (1, 3)) = 4.

Fig. 5. C7 (1, 3) with a zero forcing set {0, 1, 4, 6}

We are going to prove that when p ≥ 11, Z (Cp (1, 3)) = 6. By Theorem 3.1, Z (Cp (1, 3))

≤2×3=6. In the following, we prove that Z (Cp (1, 3)) ≥ 6. We claim that when p ≥ 11,

the girth of Cp (1, 3) is 4, that is, Cp (1, 3) is triangle-free. Otherwise, without loss of

generality, we can assume that C = (0, x, y, 0) is the 3-cycle containing the identity

element 0 (the vertex-transitity guarantees the existance of this 3-cycle). That is to say,

x and y are adjacent. Since N(0) = {1, 3, p−3, p−1}, under the assumption that p ≥ 11,

3, p−3, p−1 are not adjacent. Thus g ≥ 4. Also we can �nd a 4-cycle (0, 1, p−2, p−3, 0).

So when p ≥ 11, the girth of Cp (1, 3) equal to 4, and Z (Cp (1, 3)) ≥ (g − 2)(δ − 2) + 2 =

(4− 2)(4− 2) + 2 = 6.

Hence we conclude that Z (Cp (1, 3)) = 6.

3.2. The zero forcing number of Cp (1, 4)

In this section, we characterize the exact values of the zero forcing number of the circulant

graphs Cp (1, 4). We �rst propose the following results.

Lemma 3.7. Let G be a graph, u and v be the �rst and second vertices performing the

forcing process with the property that d(u, v) ≥ 3, then |Z|≥ d(u) + d(v).

Proof. Since u and v be the �rst and second vertices performing the forcing process and

d(u, v) ≥ 3, |N(u)∩N(v)|= 0, then |Z|≥ 1+(d(u)−1)+1+(d(v)−1) = d(u)+d(v).

We will present the �rst three parts of distance partition {N0(0), N1(0), ..., Nd(0)} of

Cp (1, 4) for p > 17, see Figure 6.
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Fig. 6. Distance partition of Cp (1, 4), where p > 17

According to the graphs deinition, when p > 17, N0(0), N1(0), N2(0) are �xed. Note

that when p = 19, 7 = p− 12 and 12 = p− 7, then N3(0) has 6 vertices instead of 8. But

this does not a�ect the following proof, and the proof of p = 19 and p > 19 is the same.

So in the following, we use the Figure 6 as the example graph.

Let Z be a zero forcing set for Cp (1, 4). Note that Cp (1, 4) is the vertex-transitive graph,

with no loss of generality, we assume that 0 is the �rst black vertex which performs the

forcing process. Then all but one of the neighbors of 0 must be contained in Z. Suppose

that 4 ̸∈ Z, where 4 ∈ N1(0). By applying the forcing process, 0 → 4.

Let v be the second black vertex which performs the forcing process. According to the

symmetry of Cp (1, 4), we only discuss vertex v as one vertex of the �rst half of Figure 6,

i.e., {1, 4, 2, 3, 5, 8, 6, 7, ...}. In the following, we say that a set is black, which means

that its all vertices are black.

Based on the distance partition, we can get the following lemma of the zero forcing

number of Cp (1, 4).

Lemma 3.8. Let G = Cp (1, 4) with p > 17, 0 be the �rst black vertex which performs

the forcing process, v be the second black vertex which performs the forcing process and

v ∈ N2(0), then |Z|≥ 8.

Proof. By the symmetry of Cp (1, 4), we only discuss vertex v as one vertex of 2, 3, 5, 8.

(1) When v = 2.

In this case, |N(v)∩N1(0)|= |{1}|= 1, |N(v)∩N2(0)|= |{3, p−2}|= 2, |N(v)∩N3(0)|=
|{6}|= 1. Since v be the second black vertex which performs the forcing process, v and

its neighbors except one must be included in Z, that is, |Z|≥ 7, and 0, 1, 4, p − 4, p −
1, 2, 3, p− 2, 6 are black. Let W1 = {0, 1, 4, p− 4, p− 1, 2, 3, p− 2, 6}.
After the above forcing process, the black vertex 3, p − 1 have the unique neighbour

7, p− 5 not be colored black, respectively. Thus 3 → 7, p− 1 → p− 5, and W1∪{7, p− 5}
is black, see Figure 7.
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Fig. 7.

Let w be the next black vertex which performs the forcing process, w has the property

that |(N(w) ∪ w) ∩ (W1 ∪ {7, p− 5})|≤ 3, so we have at least one more vertex belong to

Z, which infers that |Z|≥ 7 + 1 = 8.

When v = 8, |N(v)∩N1(0)|= |{4}|= 1, |N(v)∩N3(0)|= |{7, 9, 12}|= 3, Since v be the

second black vertex which performs the forcing process, v and its neighbors except one

must be included in Z, that is, |Z|≥ 7. Then we can get the result of |Z|≥ 8 by a similar

analysis.

(2) When v = 3.

In this case, |N(v)∩N1(0)|= |{4, p−1}|= 2, |N(v)∩N2(0)|= |{2}|= 1, |N(v)∩N3(0)|=
|{7}|= 1. Since v be the second black vertex which performs the forcing process, v and its

neighbors except one must be contained in Z, that is, |Z|≥ 6, and 0, 1, 4, p−4, p−1, 2, 3, 7

are black. Let W2 = {0, 1, 4, p− 4, p− 1, 2, 3, 7}, see Figure 8.

Fig. 8.

Let w be the next black vertex which performs the forcing process. The following cases

will be considered.

Case i. w ∈ V \{1, 2, 4, p− 1}.
In this case, w has the property that |(N(w)∪w)∩W2|≤ 2, there are at least two more

vertices belong to Z, which implies that |Z|≥ 6 + 2 = 8.

Case ii. w ∈ {1, 2, 4, p− 1}.
When w = 1. Without loss of generality, let 5 ∈ Z, then 1 → p − 3. At this time,

|Z|≥ 6+1 = 7. Then the black vertex 4 has the unique neighbour 8 not be colored black,



Zero Forcing Number of Quartic Circulant Graphs 11

thus 4 → 8. Let u be the next black vertex which performs the forcing process, u has the

property that |(N(u) ∪ u) ∩ (W2 ∪ {5, 8, p− 3})|≤ 3. So there is at least one more vertex

contained in Z, and |Z|≥ 7 + 1 = 8.

When w = 2. Without loss of generality, let 6 ∈ Z, then 2 → p − 2. At this time,

|Z|≥ 6+1 = 7. Then the black vertex p−1 has the unique neighbour p−5 not be colored

black, thus p − 1 → p − 5. Let u be the next black vertex which performs the forcing

process, u has the property that |(N(u)∪ u)∩ (W2 ∪{6, p− 2, p− 5})|≤ 3, so at least one

more vertex is added to Z, then |Z|≥ 7 + 1 = 8.

When w = 4. Let 5 ∈ Z, then 4 → 8 and |Z|≥ 6 + 1 = 7. The black vertex 1 has the

unique neighbour p − 3 not be colored black, thus 1 → p − 3. Let u be the next black

vertex which performs the forcing process, u has the property that |(N(u) ∪ u) ∩ (W2 ∪
{5, 8, p − 3})|≤ 3, so we have at least one more vertex belonging to Z, which results in

|Z|≥ 7 + 1 = 8.

When w = p − 1. Let p − 2 ∈ Z, then p − 1 → p − 5 and |Z|≥ 6 + 1 = 7. The

black vertex 2 has the unique neighbour 6 not be colored black, thus 2 → 6. Let u

be the next black vertex which performs the forcing process, u has the property that

|(N(u) ∪ u) ∩ (W2 ∪ {6, p − 2, p − 5})|≤ 3, then there is at least one more vertex that is

included in Z, and |Z|≥ 7 + 1 = 8.

When v = 5, |N(v) ∩N1(0)|= |{1, 4}|= 2, |N(v) ∩N3(0)|= |{6, 9}|= 2. Since v be the

second black vertex which performs the forcing process, v and its neighbors except one

must be included in Z, that is, |Z|≥ 6. Then we can get the result of |Z|≥ 8 by a similar

analysis.

Lemma 3.9. Let G = Cp (1, 4), where p > 17, 0 be the �rst black vertex which performs

the forcing process, v be the second black vertex which performs the forcing process and

v ∈ N1(0), then |Z|≥ 8.

Proof. By the symmetry of Cp (1, 4), v can be regarded as 1 or 4.

When v = 1. In this case, |N(v)∩N0(0)|= |{0}|= 1, |N(v)∩N2(0)|= |{2, 5, p− 3}|= 3.

Since v be the second black vertex which performs the forcing process, v and its neighbors

except one must be contained in Z, that is, |Z|≥ 4 + 2 = 6, and 0, 1, 4, p − 4, 2, 5, p − 3

are black. Let W3 = {0, 1, 4, p− 4, 2, 5, p− 3}.

Fig. 9.
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Let w be the next black vertex which performs the forcing process. The following cases

will be considered.

Case i. w ∈ V \{3, 4, p− 2, p− 4}.
In this case, |(N(w) ∪ w) ∩ W3|≤ 2, so there are at least two extra vertices that are

added to Z, we thus conclude that |Z|≥ 6 + 2 = 8.

Case ii. w ∈ {3, 4, p− 2, p− 4}.
When w = 3. Let 3 ∈ Z, then 3 → 7. At this time, |Z|≥ 6+ 1 = 7. The black vertex 4

has the unique neighbour 8 not be colored black, thus 4→ 8. Let u be the next black vertex

which performs the forcing process, u has the property that |(N(u)∪u)∩(W3∪{3, 7, 8})|≤
3, then there is at least one more vertex belonging to Z, and |Z|≥ 7 + 1 = 8.

When w = 4. Without loss of generality, let 3 ∈ Z, then 4 → 8 and |Z|≥ 6 + 1 = 7.

The black vertex 3 has the unique neighbour 7 not be colored black, thus 3 → 7. Let

u be the next black vertex performs the forcing process, u satis�es the property that

|(N(u) ∪ u) ∩ (W3 ∪ {3, 7, 8})|≤ 3, so at least one more vertex belongs to Z, which infers

that |Z|≥ 7 + 1 = 8.

When w = p − 2. Let p − 2 ∈ Z, then p − 2 → p − 6. At this time, |Z|≥ 6 + 1 = 7.

Then the black vertex p − 3 has the unique neighbour p − 7 not be colored black, thus

p − 3 → p − 7. Let u be the next black vertex which performs the forcing process, we

can �nd that |(N(u) ∪ u) ∩ (W3 ∪ {p− 2, p− 6, p− 7})|≤ 3, so there is at least one extra

vertex that is added to Z, we get that |Z|≥ 7 + 1 = 8.

When w = p − 4. Without loss of generality, let p − 5 ∈ Z, then p − 4 → p − 8 and

|Z|≥ 6 + 1 = 7. Let u be the next black vertex which performs the forcing process, u has

the property that |(N(u) ∪ u) ∩ (W3 ∪ {p − 5, p − 8})|≤ 3, so we have at least one more

vertex belonging to Z, and |Z|≥ 7 + 1 = 8.

When v = 4, |N(v) ∩N0(0)|= |{0}|= 1, |N(v) ∩N2(0)|= |{3, 5, 8}|= 3. Since v be the

second black vertex which performs the forcing process, v and its neighbors except one

must be included in Z, that is, |Z|≥ 6. Then we can obtain the result of |Z|≥ 8 by a

similar analysis.

With the above preparations, in the following, we can completely characterize the zero

forcing number of Cp (1, 4).

Theorem 3.10. If G = Cp (1, 4), then

Z (Cp (1, 4)) =

{
6, p = 11 or 13,

8, p ≥ 17.

Proof. First, we prove that when p = 11, Z (Cp (1, 4)) = 6. The circulant graph C11 (1, 4)

as follows:
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Fig. 10. The circulant graph C11 (1, 4)

It is easy to check that {0, 1, 2, 7, 8, 10} is a zero forcing set for C11 (1, 4), that is

Z (C11 (1, 4)) ≤ 6. And Z(C11 (1, 4)) ≥ (g − 2)(δ − 2) + 2 ≥ 6, hence we conclude

that Z (C11 (1, 4)) = 6. The forcing processes as follows: 0 → 4, 1 → 5, 4 → 3, 7 → 6

and 8 → 9. Similarly, Z (C13 (1, 4)) = 6.

Now we prove that when p ≥ 17, Z (Cp (1, 4)) = 8. By Theorem 3.1, Z (Cp (1, 4)) ≤ 8.

In the following, we prove that Z (Cp (1, 4)) ≥ 8, and hence we conclude that Z (Cp (1, 4)) =

8.

Firstly, we show that Z (Cp (1, 4)) ≥ 8 for p > 17. Let 0 be the �rst black vertex which

performs the forcing process, and v be the second black vertex which performs the forcing

process. The following cases will be considered.

Case 1. v ∈ Ni(0), i ≥ 3.

Since Cp (1, 4) is 4-regular, and d(0, v) ≥ 3, by Lemma 3.7, |Z|≥ d(0)+d(v) = 4+4 = 8.

Case 2. v ∈ N2(0).

By Lemma 3.3, |Z|≥ 8.

Case 3. v ∈ N1(0).

By Lemma 3.4, |Z|≥ 8.

Note that when p > 17, 8 and p − 8 are not adjacent, 8 and p − 5 are not adjacent, 5

and p− 8 are not adjacent. On the contrary, when p = 17, , they are adjacent. Similarly,

based on the distance partition, we can prove that when p = 17, Z (Cp (1, 4)) ≥ 8.

Therefore, when p ≥ 17, Z(Cp (1, 4)) = 8.

3.3. The zero forcing number of Cp (1, 5)

Using the similar way of showing Z(Cp(1, 4)), we can determine the exact value of

Z(Cp(1, 5)), but the process of the proof is long and tedious. Hence, we omit it here.

But we present the outline of the proof as follows: Z(C11 (1, 5)) can be easily obtained

through Theorem 3.5; the proof of Z(C13 (1, 5)) and Z(C17 (1, 5)) is similar to Z(C11 (1, 4));

when p ≥ 19, the proof of Z(Cp (1, 5)) adopts the method of distance partition, and the

proof process can be referred to Cp (1, 4), p ≥ 17.

Theorem 3.11. If G = Cp (1, 5) with the prime p, then Z (Cp (1, 5)) = 10 for p ≥ 29. In

particular, for p < 29, Z (Cp (1, 5)) is presented in the following table.
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Cp (1, q) diameter |Z| Z

C11 (1, 5) 3 4 {0, 1, 5, 10}
C13 (1, 5) 2 6 {0, 1, 2, 7, 8, 12}
C17 (1, 5) 3 6 {0, 1, 6, 7, 12, 16}
C19 (1, 5) 3 8 {0, 1, 2, 4, 14, 15, 17, 18}
C23 (1, 5) 3 8 {0, 1, 5, 6, 7, 12, 13, 22}

Table 1.

4. Concluding Remarks

In the paper, we have explored the zero forcing number of quartic circulant graphs

Cp (s, t). Firstly, we focus on the isomorphism of quartic circulant graphs, and conclude

that Cp (s, t) ∼= Cp (1, q) for some q ∈ Z∗
p . In addition, for q = 2, 3, 4, 5, we obtain the

zero forcing number of Cp(1, q). When |p− q| is small, we can use the method of distance

partition to get Z(G). However, for |p−q| is large, analyzing Z(G) with distance partition

is very complicated. In this case, Z(G) is still unsolved. For further study, it would be

an interesting problem to verify when |p− q| is su�ciently large, Z(Cp(1, q)) = 2q.
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