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abstract

Let 0 < k ∈ Z. Let the star 2-set transposition graph ST 2
k be the (2k − 1)-regular graph

whose vertices are the 2k-strings on k symbols, each symbol repeated twice, with its

edges given each by the transposition of the initial entry of one such 2k-string with any

entry that contains a di�erent symbol than that of the initial entry. The pancake 2-set

transposition graph PC2
k has the same vertex set of ST 2

k and its edges involving each

the maximal product of concentric disjoint transpositions in any pre�x of an endvertex

string, including the external transposition being that of an edge of ST 2
k . For 1 < k ∈ Z,

we show that ST 2
k and PC2

k , among other intermediate transposition graphs, have total

colorings via 2k − 1 colors. They, in turn, yield e�cient dominating sets, or E-sets, of

the vertex sets of ST 2
k and PC2

k , and partitions into into 2k − 1 such E-sets, generalizing

Dejter-Serra work on E-sets in such graphs.
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1. E�cient Domination and Total Coloring of Graphs

Let 0 < k ∈ Z. Given a �nite graph G = (V (G), E(G)) and a subset S ⊆ V (G), it is said

that S is an e�cient dominating set (E-set) [1, 3, 2, 6, 7, 10] or a perfect code [4, 5], if for

each v ∈ V (G) \ S there exists exactly one vertex v0 in S such that v is adjacent to v0.

Applications of E-sets occur in: (a) the theory of error-correcting codes and (b) estab-
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lishing the existence of regular graphs for Network Theory by removing E-sets from their

containing graphs.

A total coloring of a graph G is an assignment of colors to the vertices and edges of G

such that no two incident or adjacent elements (vertices or edges) are assigned the same

color [8]. A total coloring of G such that the vertices adjacent to each v ∈ V (G) together

with v itself are assigned pairwise di�erent colors will be said to be an e�cient coloring.

The e�cient coloring will be said to be totally e�cient if G is k-regular, the color set is

[k] = {0, 1, . . . , k− 1} and each v ∈ V (G) together with its neighbors are assigned all the

colors in [k]. The total (resp. e�cient) chromatic number χ′′(G) (resp. χ′′′(G)) of G is

de�ned as the least number of colors required by a total (resp. e�cient) coloring of G.

As for applications other than (a)-(b) above, note that: (c) by removing the vertices

of a �xed color, then again regular graphs for Network Theory are generated; (d) by

removing the edges of a �xed color, then copies of a non-bipartite biregular graph whose

parts have vertices with degrees di�ering in a unit are determined, again applicable in

Network Theory.

In Section 3, we show that the graphs of a family of graphs G = ST 2
k , (0 < k ∈ Z),

introduced in Section 2, satisfy the conditions of the following theorem. We conjecture

that those conditions are only satis�ed by such graphs G = ST 2
k , and not any other

graphs.

Theorem 1.1. (I) Let 3 < h ∈ 2Z. Let G be a connected (h − 2)-regular graph with a

totally e�cient coloring via color set [h] \ {0} = {1, . . . , h− 1}. Then, there is a partition

of V into h − 1 subsets W1, . . . ,Wh−1, where Wi is formed by those vertices of G having

color i, for each i ∈ [h] \ {0}. In such a case, χ′′′(G) = h − 1. Moreover, each Wi is an

E-set of G, for i ∈ [h] \ {0}. (II) Let 4 < h ∈ 2Z. Then, G \Wi is a connected (h− 3)-

regular subgraph that still has e�cient chromatic number h− 1, i.e. χ′′′(G \Wi) = h− 1,

even though it has only a (non-total) e�cient coloring. Letting Ei be the set of edges with

color i in G \Wi, then:

(a) G \Wi \ Ei is the disjoint union of copies of regular subgraphs of degree h− 4 with

e�cient colorings by h− 3 colors obtained from [h] \ {0, i} by removing the edges of

a color j ̸= i;

(b) G \ Ei is a non-bipartite (h− 2, h− 3)-biregular graph.

Proof. We use the inequality χ′′(G) ≥ ∆(G)+1, where ∆(G) is the maximum degree of G

[8]. In our case, χ′′′(G) = χ′′(G) = ∆(G) + 1. Because of this, a totally e�cient coloring

here provides a partition W1, . . . ,Wh−2 as claimed in item (I). By de�nition of totally

e�cient coloring, each Wi is an E-set. For item (II), deleting Wi from G removes also

all the edges incident to the vertices of Wi, so G \Wi still has an e�cient coloring which

is not totally e�cient since there is an edge color lacking incidence to each particular

vertex of G \Wi. To establish item (II)1, note that removal of Ei from G \Wi for h > 4,

leaves us with the graph induced by the edges of all colors other than color i, which

necessarily disconnects G\Wi, again because of the de�nition of totally e�ective coloring.

To establish item (II)2, the removal of the edges with color i leaves their endvertices with
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degree h − 3 and forming a vertex subset of the resulting G \ Ei, while the remaining

vertices have color i, degree h− 2 and form a stable vertex set. This completes the proof

of the theorem. All of this can be veri�ed without loss of generality via the proof of

Theorem 3.1, for h = 2k.

Let ℓ ∈ {0, 1}. In Section 5, we generalize via ℓ-set permutations, (see Section 2), the

result of [6] that the star transposition graphs form a dense segmental neighborly E-chain.

In Section 6, we generalize star transposition graphs to pancake transposition graphs and

related intermediate graphs [6], leading to an adequate version of dense neighborly E-chain

[6], with obstructions preventing any convenient version of segmental E-chain [6].

2. Families of Multiset Transposition Graphs with E-Sets

Let 0 < ℓ ∈ Z and let 1 < k ∈ Z. We say that a string over the alphabet [k] that contains

exactly ℓ occurrences of i, for each i ∈ [k], is an ℓ-set permutation. In denoting speci�c

ℓ-set permutations, commas and brackets are often omitted.

Let V ℓ
k be the set of all ℓ-set permutations of length kℓ. Let the star ℓ-set transposition

graph ST ℓ
k be the graph on vertex set V ℓ

k with an edge between each two vertices v =

v0v1 · · · vkℓ−1 and w = w0w1 · · ·wkℓ−1 that di�er in a star transposition, i.e. by swapping

the �rst entry v0 of v = v0v1 · · · vkℓ−1 ∈ V ℓ
k with any entry vj (j ∈ [kℓ] \ {0}) whose

value di�ers from that of v0 (so vj ̸= v0), thus obtaining either w = w0 · · ·wj · · ·wkℓ−1 =

vj · · · v0 · · ·wkℓ−1 or w = w0 · · ·wkℓ−1 = vkℓ−1 · · · v0. In other words, each edge of ST ℓ
k is

given by the transposition of the initial entry of an endvertex string with an entry that

contains a di�erent symbol than that of the initial entry. The graphs ST ℓ
k are a particular

case of the graphs treated in [9] in a context of determination of Hamilton cycles.

It is known that all k-permutations, (that is all 1-set permutations of length k),

form the symmetric group, denoted Symk, under composition of k-permutations, each k-

permutation v0v1 · · · vk−1 taken as a bijection from the identity k-permutation 01 · · · (k−1)

onto v0v1 · vk−1 itself. A graph ST 1
k with k > 1 (which excludes ST 1

1 ) is the Cayley graph

of Symk with respect to the set of transpositions {(0 i); i ∈ [k] \ {0}}. Such a graph

is denoted STk in [1, 6], where is proven its vertex set admits a partition into k E-sets,

exempli�ed on the left of Figure 1 for ST 1
3 = ST3, with the vertex parts of the partition

di�erentially colored in black, red and green, for respective �rst entries 0, 1 and 2. Figure

1 of [6] shows a similar example for ST 1
4 = ST4. Also, the graph ST ℓ

k is vertex transitive,

but is neither a Cayley graph nor a Shreier graph; see Subsection 5.1, below.

Fig. 1. The 6-cycles ST 1
3 = ST3 and ST 2

2
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3. E-sets of Star 2-set Transposition Graphs

Let i ∈ [2k] \ {0} = {1, . . . , 2k − 1}. Let Σk
i be the set of vertices v0v1 · · · vkℓ−1 of ST ℓ

k

such that v0 = vi, (i = 1, . . . , 2k− 1). Let Ek
i be the set of edges having color i in G \Σk

i .

We will show that Σk
i is an E-set of ST 2

k . Clearly, no edge of E
k
i is incident to the vertices

of Σk
i .

Theorem 3.1. Let k > 1. (I) The graph ST 2
k has (2k)!

2k
vertices and regular degree 2(k−1).

(II) Let i ∈ [2k] \ {0} = {1, . . . , 2k − 1} and let Σk
i be the set of vertices v0v1 . . . v2k−1

of ST 2
k such that v0 = vi. Then, V 2

k admits a vertex partition into 2k − 1 E-sets Σk
i ,

(i ∈ [2k] \ {0}). (III) Let k > 2, let j ∈ [2k] \ {0} and let Ek
j be the set of all edges of

color j. Then, ST 2
k \ Σk

i \ Ek
i is the disjoint union of k2k − 1 copies of ST 2

k−1.

Proof. Let i = 2k − 1 and let j ∈ [2k]. Then, each vertex v = v0v1 · · · v2k−3v2k−2v2k−1 =

0v1 · · · v2k−3j0 is the neighbor of vertex w = jv1 · · · v2k−300 via an edge of color k−1. But

v ∈ Σk
i = Σk

2k−1. Being w at distance 1 from Σk
2k−1, then w is in the open neighborhood

N(Σk
i ) [6] of Σk

2k−1 in ST 2
k , so w ∈ N(Σk

i ) = N(Σk
2k−1) ⊆ ST 2

k \ Σk
i \ Ek

i = ST 2
k \

Σk
2k−1 \ Ek

2k−1. In fact, N(Σk
i ) = N(Σk

2k−1) is a connected component of ST 2
k \ Σk

i \ Ek
i =

ST 2
k \Σk

2k−1\Ek
2k−1. A similar conclusion holds for each other open neighborhoods N(Σk

i ),

(1 ≤ i < 2k − 1).

Remark 3.2. The total coloring of ST 2
k will be referred to as its color structure. The

k2k−1 copies of ST 2
k−1 in ST 2

k whose disjoint union is ST 2
k \ Σk

i \ Ek
i inherit each a color

structure that generalizes that of Examples 3.3-3.4, below, and is similar to the color

structure of ST 2
k−1.

Example 3.3. The graph ST 2
2 has the totally e�cient coloring depicted on the right of

Figure 1, where Σ2
1 = {0011, 1100} is color blue, as is E2

1 = {(0101, 1001), (0110, 1010)};
Σ2

2 = {0101, 1010} is color green, as is E2
2 = {(0110, 1100), (0011, 1001)}; Σ2

3 = {0110, 1001}
is color red, as is E2

3 = {(0011, 1010), (0101, 1100)}.

Example 3.4. The graph ST 2
3 has the E-set Σ3

5 with 18 vertices denoted as in display

(1):
A = 011220, A = 022110, B = 012210, B = 021120, C = 012120, C = 021210,

D = 122001, D = 100221, E = 120021, E = 102201, F = 120201, F = 102021,

G = 200112, G = 211002, H = 201102, H = 210012, J = 201012, J = 210102.

(1)

A planar interconnected disposition of the 6-cycles of the subgraph ST 2
3 \Σ3

5 of ST
2
3 is

shown in Figure 2. The edges of such 6-cycles are alternatively colored with 2 or 3 colors

of the color form (ababab) or (abcabc) respectively, where {a, b, c} ⊆ {1, 2, 3, 4} is a subset

of colors provided by the respective positions 1,2,3,4 of the 6-tuples taken as the vertices

of ST 2
3 .

The tessellation suggested in Figure 2 can be extended to the whole plane as an unfold-

ing of the fundamental region delimited by the shown dash-border rectangle � call it R.
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Fig. 2. A fundamental region of a lattice suggests a rhomboidal torus cutout of ST 2
3

This R appears partitioned via dashed segments into two right triangles and a rhomboid

in between. By transporting the left right triangle � call it Tl ⊂ R � to a new position T ′
l

to the right so that the vertical side of T ′
l coincides with the right side of R, a rhomboid

R′ is obtained. Identi�cation of the tilted sides of R′ and of its horizontal sides allows to

view a toroidal embedding of ST 2
3 \ Σ3

5.

Edge colors in Figure 2 are numbered as follows (indicating corresponding subsequent

positions in the 6-tuples representing the vertices of ST 2
3 ):

1 = green, 2 = blue, 3 = hazel, 4 = red, 5 = black. (2)

In Figure 2, the 3-colored 6-cycles are exactly those containing in their interiors (next to

their corresponding denoting vertices) the (possibly underlined) capital letters of display

(1), but each such letter colored as indicated in display (2). Each such number color

a ∈ {1, 2, 3, 4} as in display (2) of a symbol X ∈ {A, . . . , J, A, . . . , J} in Figure 2 indicates

the existence of an (absent) a-colored edge between V 2
3 \Σ3

5 and Σ3
5 in ST 2

3 . Figure 3 shows

each such edge in exactly one copy Υ of K1,4 with its endvertex in Σ3
5 represented by X (in

black) and its other endvertex being the sole element of Υ∩V 2
3 \Σ3

5, namely the a-colored

X, that we denote as Xa in Table 1. In fact, Table 1 reproduces the data of Figure 2 in

a likewise disposition, with the vertex notation Xa instead of the a-colored X notation

of Figure 2. In Table 1, edges are represented by their numeric symbols (display (2))

and appear interspersed with the symbols Xa in representing the 3-colored 6-cycles, while

2-colored 6-cycles are represented by the disposition of their numeric symbols. Note in

Figure 2 that each 3-colored 6-cycle is bordered by six 2-colored 6-cycles via edges colored

in {1, 2, 3, 4, }, while each 2-colored 6-cycle, call it Θ, is bordered by three 3-colored 6-

cycles (via edges in one �xed color of {1, 2, 3, 4}) alternated with three 2-colored 6-cycles

via an edge matching bordering Θ and whose color is 1.

Fig. 3. The eighteen stars K1,4 in ST 2
3 centered at the vertices of the E-set Σ3

5

Table 2 represents the twelve 3-colored 6-cycles, as follows. The six centers X ∈
{A, . . . , J, A, . . . , J} of copies of K1,4 involved with one such 3-colored 6-cycle, call it

Φ, are represented by 6-tuples that are expressed in Table 2 in a 6-row section of a
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1J23G24 4C32A31 1F 23D24 4J32G31 1C23A24 4F 32D31

H2 H2 5 B3 B3 5 E2 E2 5 H3 H3 5 B2 B2 5 E3 E3 5

4G23J21 1A32C34 4D23F 21 1G32J34 4A23C21 1D32F 34

5 5 5 5 5 5 5 5 5 5 5 5

3F 41D42 2J14G13 3C41A42 2F 14D13 3J41G42 2C14A13

5 E4 E4 5 H1 H1 5 B4 B4 5 E1 E1 5 H4 H4 5 B1 B1

2D41F 43 3G14J12 2A41C43 3D14F 12 2G41J43 3A14C12

5 5 5 5 5 5 5 5 5 5 5 5

4J32G32 1C23A24 4F 32D31 1J23G24 4C32A31 1F 23D24

H3 H3 5 B2 B2 5 E3 E3 5 H2 H2 5 B3 B3 5 E2 E2 5

1G32J34 4A23C21 1D32F 34 4G23J21 1A32C34 4D23F 21

Table 1. Notational disposition of elements of ST 2
3 in Figure 2

column whose heading is Σ3
5. To the immediate right of each such 6-row section, an-

other 6-row section of 6-tuples expresses the corresponding neighbors Xb, for a �xed color

b ∈ {1, 2, 3, 4}, via b-colored edges. Such neighbors Xb conform V (Φ) and induce Φ. In

fact, Table 2 contains the twelve instances of such representations.

Notice that the vertices in display (1) are of the form ia1a2a3a4i. Centered inside each

3-colored 6-cycle Φ in Figure 2, a pair (i, b) of digits (written as ib) indicates the �xed

double entry i ∈ {0, 1, 2} of the vertices ia1a2a3a4i of Σ
3
5 in Φ and the �xed color b their

representing symbols have in the �gure.

To facilitate viewing the edge colors along each Φ, the second row in Table 2 shows

the 6-tuple x of subsequent positions (or colors), 012345, of the 6-tuples representing

each X and Xb. In each such x under the heading Σ3
5, the entry b ∈ {1, 2, 3, 4} of the

corresponding Xb is underlined, while under each subsequent heading Xb, the other three

entries in {1, 2, 3, 4} are underlined to indicate the entries successively transposed with

the initial entry in the subsequent vertically disposed 6-tuples of each particular Φ.

Observe the di�erence between 3-colored 6-cycles appearing here and 2-colored 6-cycles

in that the former are created by transpositions not involving the initial entry while the

latter do involve transpositions with the initial entry.

In Figure 2, deletion of the edges colored 1 from ST 2
3 \Σ3

5 leaves a subgraph with twelve

components, each being a 3-colored 6-cycle. Note that E(ST 2
3 ) has a 1-factorization into

�ve 1-factors E3
1 , E

3
2 , E

3
3 , E

3
4 , E

3
5 , each E3

i composed by those edges colored i, (i ∈ [6]\{0}).
Moreover, ST 2

3 \ Σ3
5 \ E3

5 is the union of the twelve 3-colored 6-cycles in Table 2.

Corollary 3.5. Let k > 2. Then:

(a) ST 2
k has 2k!

2k
vertices having 2k!

2k(2k−1)
vertices in each color 1, 2, . . . , 2k − 1;

(b) ST 2
k has 2k!

2k
× (k − 1) edges;

(c) color kℓ− 1 provides exactly 2k!
2k(2k−1)

= y vertices forming a PDS Σk
2k−1 of ST

2
k ;
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(d) the y resulting dominating copies of K1,2k−2 have a total of y × (2k − 2) = z edges;

(e) there are exactly 2k!
2k

× (k − 1)− z = h edges in ST k
2k−1 not counted in item 4;

(f) the h edges in item 5. contain h
2k−1

edges in each color 1, 2, . . . , 2k − 1;

(g) so they contain h− h
2k−1

edges in colors ̸= 2k − 1, (namely, 1, 2, . . . , 2k − 2);

(h) there are 2k!
2k

− y vertices in ST 2
k \ Σk

2k−1 dominated by Σk
2k−1;

(i) the 2k!
2k

− y vertices in item 8. appear in k × (2k − 2) copies of ST 2
k−1;

(j) there are h
(2k−1)2k

edges in each copy of ST k
2k−1 in ST 2

k \ Σk
2k−1.

X Σ3
5 X1 X Σ3

5 X2 X Σ3
5 X3 X Σ3

5 X4

x 012345 012345 x 012345 012345 x 012345 012345 x 012345 012345

A 011220 101220 A 011220 110220 A 011220 211020 A 011220 211200

B 021120 201120 B 012210 210210 B 021120 121020 B 012210 112200

C 012120 102120 C 021210 120210 C 021210 221010 C 012120 212100

A 022110 202110 A 022110 220110 A 022110 122010 A 022110 122100

B 012210 102210 B 021120 120120 B 012210 212010 B 021120 221100

C 021210 201210 C 012120 210120 C 012120 112020 C 021210 121200

D 122001 212001 D 122001 221001 D 122001 022101 D 122001 022011

E 102201 012201 E 120021 021021 E 102201 202101 E 120021 220011

F 120201 210201 F 102021 201021 F 102021 002121 F 120201 020211

D 100221 010221 D 100221 001221 D 100221 200121 D 100221 200211

E 120021 210021 E 102201 201201 E 120021 020121 E 102201 002211

F 102021 012021 F 120201 021201 F 120201 220101 F 102021 202011

G 200112 020112 G 200112 002112 G 200112 100212 G 200112 100122

H 210012 120012 H 201102 102102 H 210012 010212 H 201102 001122

J 201012 021012 J 210102 012102 J 210102 110202 J 201012 101022

G 211002 121002 G 211002 112002 G 211002 011202 G 211002 011022

H 201102 021102 H 210012 012012 H 201102 101202 H 210012 110022

J 210102 120102 J 201012 102012 J 201012 001212 J 210102 010122

Table 2. The twelve 6-cycles whose vertices start with 00, 11 and 22

Proof. The ten items of the corollary can be veri�ed directly from the enumerative facts

involved with the graphs ST 2
k .

Example 3.6. For ST 2
3 , we have that:

(a) ST 2
3 has 6!

23
= 90 vertices containing 90

5
= 18 vertices in each color 1, 2, 3, 4, 5;

(b) ST 2
3 has 90× 4/2 = 180 edges;

(c) color 5 provides 18 vertices that form a PDS Σ3
5 of ST

2
3 ;
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(d) the 18 resulting dominating copies of K1,4 in ST 2
3 have 18× 4 = 72 edges;

(e) outside that, there are still 180− 72 = 108 edges;

(f) they contain 108
5

= 36 edges in each color 1, 2, 3, 4, 5;

(g) so they contain 108− 36 = 72 edges in colors ̸= 5, (namely, 1, 2, 3, 4);

(h) there are 90− 18 = 72 remaining vertices in ST 2
3 , dominated by Σ3

5;

(i) they appear in 3× 4 = 12 copies of ST 2
2 ;

(j) there are 72
3×4

= 72
12

= 6 edges in each copy of ST 2
2 in ST 2

3 \ Σ3
5.

Example 3.7. For ST 2
4 , we have that:

(a) ST 2
4 has 8!

24
= 2520 vertices containing 2520

7
= 360 vertices in each color 1, . . . , 7;

(b) ST 2
4 has 2520× 6/2 = 7560 edges;

(c) color 7 provides 360 vertices that form a PDS Σ4
7 of ST

2
4 ;

(d) the 360 resulting dominating copies of K1,6 in ST 2
4 have 360× 6 = 2160 edges;

(e) outside that, there are still 7560− 2160 = 5400 edges;

(f) they contain 5400
7

= 1080 edges in each color 1, 2, 3, 4, 5, 6, 7;

(g) the h edges in item 6 have 5040−1080 = 4320 edges in colors ̸= 7, (namely, 1, . . . , 6);

(h) there are 2520− 360 = 2160 remaining vertices in ST 2
4 , dominated by Σ4

7;

(i) they appear in 4× 6 = 24 copies of ST 2
3 ;

(j) there are 4320
4×6

= 4320
24

= 180 edges in each copy of ST 2
3 in ST 2

4 \ Σ4
7.

Example 3.8. The 24 copies of ST 2
3 in ST 2

4 , (item 5 of Example 3.7), can be encoded

as follows. We start by encoding the fundamental rectangle in Figure 2 by arranging the

pairs (i, b) = ib as follows, following the disposition in the �gure:

22 03 12 23 02 13 22

14 21 04 11 24 01

23 02 13 22 03 12 22

(3)

By further encoding this disposition as (012, 1234), we now have that the 24 copies of

ST 2
3 in ST 2

4 can be expressed as:

(123, 123456), (013, 123456), (023, 123456), (012, 123456).

A characterization of the twenty-four 2-colored 6-cycles of ST 2
3 \Σ3

1 is also available from

that of the twelve 3-colored 6-cycles in display (3). Let us observe the triple (0x0, 1y1, 2y2)

formed by the three pairs 0x0, 1x1, 2x2 denoting the three 3-colored 6-cycles that share

each an edge e with a given 2-colored 6-cycle Θe. By shortening each such triple of pairs

to the triple of colors x0x1x2 and setting its missing color x3 in {1, 2, 3, 4} as a subindex,
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with colors i = 5 and x3 assigned alternatively to the edges of each Θe, we have now the

disposition in display (4) which is similar to that of Figure 2:

22 03 12 23 02 13 22

1423 3421 3412 3214 4213 4231 4132 2134 2143 2341 1342 1324 1423
14 21 04 11 24 01

1432 2431 2413 2314 4312 4321 4123 3124 3142 3241 1243 1234 1432
23 02 13 22 03 12 23

(4)

Again, this disposition is encoded as (123, 1234).

Theorem 3.9. The graphs ST 2
k satisfy the conditions of Theorem 1.1, so they also satisfy

its conclusions.

Proof. Because of the previous discussion, we see that in the hypotheses of Theorem 1.1

it is enough to take h = 2k, G = ST 2
k , Wi = Σk

i and Ei = Ek
i .

4. Open Problems

We conjectured that the graph G in the statement of Theorem 1.1 must necessarily coin-

cide with some ST 2
k . On the other hand, the twenty-four 2-colored 6-cycles of ST 2

3 \ Σ3
5

generalize to 2-colored 6-cycles in ST 2
k \ Σk

2k−1, for any k > 3, by similarly alternating

three black edges (meaning color 2k−1) with three edges of a common color di�erent from

2k − 1 in order to obtain one such 2-colored 6-cycle. Performing this to include all edges

of ST 2
k \ Σk

2k−1, still we do not know how to generalize for k > 3 what happens between

the k2k−1 copies of ST 2
k−1 in Theorem 3.1 and the black edges (colored via 2k − 1). The

determination of this particular matter is left as an open problem.

As a hint to illuminate the problem, let us recall that ST 2
k has (2k)!

2k
vertices and regular

degree 2(k − 1); then it has (2k)!(k−1)
2k

edges and a total coloring via 2k − 1 colors. The

number of vertices in ST 2
k having a �xed color is (2k)!

2k(2k−1)
. The copies of stars K1,2k−2 with

centers on vertices of ST 2
k having a �xed color contain a total of (2k)!(2k−2)

2k(2k−1)
= 2k)!(k−1)

2k−1(2k−1)

edges. The numbers of remaining vertices and edges, namely those of ST 2
k \ Σk

2k−1, are
(2k)!
2k

− (2k)!
2k(2k−1)

and (2k)!(2k−1)
2k

− (2k)!(k−1)
2k−1(2k−1)

, respectively. The edges of ST 2
k \ Σk

2k−1 with a

�xed color are divided into groups of three edges, each such group with alternate edges of

a corresponding 2-colored 6-cycle, with the other three alternating edges in color 2k − 1.

A conclusion here is that the number of 2-colored 6-cycles must be the third part of
(2k)!(2k−1)

2k
− (2k)!(k−1)

2k−1(2k−1)
, which for k = 3 equals 24, as can be counted for example via

Figure 2.

5. Conclusions for Star 2-set Transposition Graphs

Let us recall from [6] that:

(a) a countable family of graphs

G = {Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γi ⊂ Γi+1 ⊂ · · ·},
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is said to be an E-chain if every Γi is an induced subgraph of Γi+1 and each Γi has

an E-set Ci;

(b) for graphs Γ and Γ′, a one-to-one graph homomorphism ζ : Γ → Γ′ such that ζ(Γ)

is an induced subgraph of Γ′ is said to be an inclusive map;

(c) for i ≥ 1, let κi be an inclusive map of Γi into Γi+1; if Ci+1 = N(κi(V (Γi))), then

the E-chain G is said to be a neighborly E-chain;

(d) a particular case of E-chain G is the one in which Ci+1 has a partition into images

ζ
(j)
i (Ci) of Ci through respective inclusive maps ζ

(j)
i , where j varies on a suitable

�nite indexing set. In such a case, the E-chain is said to be segmental.

The notion of neighborly E-chain in item 3 above is not suitable in our context of graphs

ST 2
k and their E-sets, that we denote Σk

2k−1 (instead of Ci as in [6]), like Σ2
3 and Σ3

5 in

Example 3.4, with Σ3
5 detailed both in display (1) and Figures 2-3, and also in Tables 1-2.

In this context, the graphs ST 2
k form an E-chain

ST (2) = {ST 2
1 ⊂ ST 2

2 ⊂ · · · ⊂ ST 2
k ⊂ ST 2

k+1 ⊂ · · ·}, (5)

with each inclusion ST 2
k ⊂ ST 2

k+1 realized by a set of k + 1 neighborly maps

κj
k : ST

2
k → ST 2

k+1, (6)

(j ∈ [k+1]), (neighborly meaning that the images κj
k(ST

2
i ) are pairwise disjoint in ST 2

k+1

and that

Σk+1
k = ∪k−1

j=1N(κj
i (V

2
i )), (7)

as a disjoint union), these neighborly maps given by

κj
k(a0a1 · · · a2k−2a2k−1) = (aj0a

j
1 · · · a

j
2k−2a

j
2k−1jj), (8)

for j ∈ [k + 1], where

aki = ai, a
k+1
i = ai + 1 mod (k + 1), . . . , ak+h

i = ai + h mod (k + 1), . . . , (9)

for i = 0.1, . . . , 2k − 1, the superindices k + h of the entries ak+h
j taken mod k + 1.

As an example, the last column of Table 2 o�ers disjoint neighborly maps κj
2, for

j = 0, 1, 2, yielding respectively the following images of the 6-cycle that comprises ST 2
2 :

κ2
2(1001, 0011, 1010, 0110, 1100, 0101) = (100122, 001122, 101022, 011022, 110022, 010122);

κ0
2(1001, 0011, 1010, 0110, 1100, 0101) = (211200, 112200, 212100, 122100, 221100, 121200);

κ1
2(1001, 0011, 1010, 0110, 1100, 0101) = (022011, 220011, 020211, 200211, 002211, 202011).

An E-chain as in display (5) where each inclusion ST 2
k ⊂ ST 2

k+1 is realized by k + 1

neighborly maps κj
k, as de�ned in displays (6) to (9), is said to be a disjoint neighborly

E-chain.

The notion of segmental E-chain can also be generalized to the case of the graphs ST 2
k ,

where in item 3 above we replace �neighborly" by �disjoint neighborly". In that case, the
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E-chain will be said to be disjoint segmental. It is clear by symmetry that the E-chain

ST (2) of display (5) is disjoint segmental, as exempli�ed via Figures 2 and 3 and the

related Tables 1 and 2.

If, for each i ≥ 1, there exists an inclusive map ζi : Γi → Γi+1 such that ζ(Ci) ⊂ Ci+1,

then [6] calls the E-chain inclusive and observes that an inclusive neighborly E-chain has

κi ̸= ζi, for every positive integer i.

5.1. Density

In addition, [6] calls an E-chain G dense if, for each n ≥ 1, one has |V (Γn)|= (n+1)! and

|Cn|= n!. However, this notion is not helpful in our present context.

For k > 1, note that ST 1
kℓ is the Cayley graph of Symkℓ generated by the transpositions

(0 i), (0 < i < kℓ), but that ST ℓ
k is not even a Shreier coset graph of the quotient of

Symkℓ modulo say its subgroup Hℓ generated by the transpositions (a a+1), (0 ≤ a < k),

because the edges of ST ℓ
k are not given by transpositions (0 i) independently of the values

i in di�erent vertices of ST ℓ
k . However, Table 3 do generalize for every ST 2

k , (k ≥ 2),

where the table shows vertically:

(a) the right cosets of V 1
4 mod the subgroup generated by transpositions (0 1), (2 3);

(b) the representations of such right cosets as vertices of ST 2
2 ; and

(c) assigned generating sets of transpositions (0 i) per shown right coset of V 1
3 or its

representing vertex in ST 2
2 .

Right cosets of V 1
4 mod H 0123 2301 0213 2031 0231 2013

0132 2310 0312 2130 0321 2103

1023 3201 1203 3021 1230 3012

1032 3210 1302 3120 1320 3102

V 2
2 0011 1100 0101 1010 0110 1001

Gnr. set (0 2),(0 3) (0 2),(0 3) (0 1),(0 3) (0 1),(0 3) (0 1),(0 2) (0 1),(0 2)

Table 3. The right cosets of V 1
4 as the vertices of ST 2

2 and their generating sets

Tables like Table 3, but for k > 2, suggest extending the de�nition of a Shreier coset

graph as follows: A Shreier local coset graph of a group G, a subgroup H of G and a

generating set S(Hg) for each right coset Hg of H in G, is a graph whose vertices are the

right cosets Hg and whose edges are of the form (Hg,Hgs), for g ∈ G and s ∈ S(Hg).

The example in display (3) shows that ST 2
2 is a Shreier local coset graph of the group V 1

4 ,

its subgroup H generated by the transpositions (0 1) and (2 3), and the local generators

indicated in the last line of the display. In a similar way, it can be shown for k > 2 that

ST 2
k is a Shreier local coset graph of V 2

k with respect to its subgroup generated by the

transpositions (2a 2a + 1) with 0 ≤ a < k. Now, the density observed in [6] must be

replaced to be useful in the present context of 2-set star transposition graphs. It is clear

that in this sense, the E-sets found in the graphs ST 2
k in Section 3 are as dense as they

can be, so we say that these E-sets are 2-dense. Then, the �nal conclusion of the present

section is the following result.
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Theorem 5.1. The E-chain ST (2) of display (5) is a 2-dense, disjoint segmental, disjoint

neighborly E-chain via the E-sets Σk
i of Theorem 3.1.

Proof. The discussion above in this Section 5 provides all the properties in the statement.

6. Pancake 2-set Transposition Graphs

Let πi be an arbitrary product of independent transpositions on the set {1, . . . , i − 1},
(i > 1), where π1 and π2 are the identity. For each integer k ≥ 1, let

A(π1, . . . , πi, . . . , π2k−1) = {(0 1)π1, . . . , (0 i)πi, . . . , (0 (2k − 1))π2k−1}.

Lemma 2 of [6] implies that for k ≥ 1 and any choice of the involutions πi, (i ≥ 3),

the set A(π1, . . . , π2k−1) generates Sym2k−1. For each choice of involutions π1, π2, . . ., the

sequence of Cayley graphs with generating set A(π1, . . . , π2k−1) forms a chain of nested

graphs with natural inclusions Γk ⊂ Γk+1.

Let ℓ ∈ {1, 2}. If we choose the identity for each entry in A(π1, . . . , π2k−1), then we

get the ℓ-set star transposition graphs ST ℓ
k . If πi = (1 (i − 1)) · · · (⌊i/2⌋ ⌈i/2⌉), for

i = 3, . . . , k − 1, then we get the pancake ℓ-set transpostion graph PCℓ
k. In particular,

the pancake 2-set transposition graph PC2
k has the same vertex set of ST 2

k and its edges

involve each the maximal product of concentric disjoint transpositions in any pre�x of

an endvertex string, including the external transposition being that of an edge of ST 2
k .

The graphs PC1
k were seen in [6] to form a dense segmental neighborly E-chain PC(1) =

{PC1
1 , PC1

2 , . . . , PC1
k , . . .}. (Figure 2 of [6] represents the graph PC1

4). In a similar fashion

to that of Section 5, the following partial extension of that result can be established.

Theorem 6.1. The chain PC(2) = {PC2
1 , PC2

2 , . . . , PC2
k , . . .} is a 2-dense, disjoint

neighborly E-chain via the E-sets Σk
2k−1 of Theorem 3.1, but it fails to be disjoint seg-

mental. A similar result is obtained for any choice of the involutions π1, π2, . . . , πi . . .

with not all the πis being identity permutations.

Proof. Adapting the arguments given for star 2-set transposition graphs in Section 5 can

only be done for the E-sets Σk
2k−1 in pancake 2-set transposition graphs, since the feasibility

for the sets Σk
i , (1 ≤ i < 2k−1), to be E-sets is obstructed by the pancake transpositions in

A(π1, . . . , π2k−1), meaning that we can only establish that the E-chain PC(2) is dense and
disjoint neighborly, but not disjoint segmental. The �black'" vertices, those whose color is

2k−1, form an E-set Σk
2k−1 with the desired properties, and their removal leaves a 2k−2-

regular graph from which the removal of the �black" edges, forming an edge subset Ek
2k−1,

leaves the disjoint union of the open neighborhoods N(v) of the vertices v in the E-set

Σk
2k−1. This behavior is similar for any other choice of the involutions π1, π2, . . . , πi . . . with

not all the πis being identity permutations, other than πi = (1 (i − 1)) · · · (⌊i/2⌋ ⌈i/2⌉),
for i = 3, . . . , k − 1, which were used precisely to de�ne the pancake graphs.
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