Ars Combinatoria www.combinatorialpress.com/ars

Total Coloring and Efficient Domination Applications to Non-Cayley Non-Shreier Vertex-transitive Graphs

Italo J. Dejter^{1, \blacksquare}

¹ University of Puerto Rico Rio Piedras, PR 00936-8377

ABSTRACT

Let $0 < k \in \mathbb{Z}$. Let the star 2-set transposition graph ST_k^2 be the $(2k-1)$ -regular graph whose vertices are the $2k$ -strings on k symbols, each symbol repeated twice, with its edges given each by the transposition of the initial entry of one such $2k$ -string with any entry that contains a different symbol than that of the initial entry. The pancake 2-set transposition graph PC_k^2 has the same vertex set of ST_k^2 and its edges involving each the maximal product of concentric disjoint transpositions in any prefix of an endvertex string, including the external transposition being that of an edge of ST_k^2 . For $1 < k \in \mathbb{Z}$, we show that ST_k^2 and PC_k^2 , among other intermediate transposition graphs, have total colorings via $2k - 1$ colors. They, in turn, yield efficient dominating sets, or E-sets, of the vertex sets of ST_k^2 and PC_k^2 , and partitions into into $2k-1$ such E-sets, generalizing Dejter-Serra work on E-sets in such graphs.

Keywords: Total coloring, Efficient domination, Vertex-transitive graphs 2020 Mathematics Subject Classification: 05C15, 05C69, 05E18

1[.](#page-0-0)[E](#page-0-4)fficient Domination and Total Coloring of Graphs

Let $0 < k \in \mathbb{Z}$. Given a finite graph $G = (V(G), E(G))$ and a subset $S \subseteq V(G)$, it is said that S is an efficient dominating set (E-set) $[1, 3, 2, 6, 7, 10]$ $[1, 3, 2, 6, 7, 10]$ $[1, 3, 2, 6, 7, 10]$ $[1, 3, 2, 6, 7, 10]$ $[1, 3, 2, 6, 7, 10]$ $[1, 3, 2, 6, 7, 10]$ $[1, 3, 2, 6, 7, 10]$ $[1, 3, 2, 6, 7, 10]$ $[1, 3, 2, 6, 7, 10]$ $[1, 3, 2, 6, 7, 10]$ $[1, 3, 2, 6, 7, 10]$ or a perfect code $[4, 5]$ $[4, 5]$ $[4, 5]$, if for each $v \in V(G) \setminus S$ there exists exactly one vertex v^0 in S such that v is adjacent to v^0 .

Applications of E-sets occur in: (a) the theory of error-correcting codes and (b) estab-

Received 18 March 2024; accepted 25 November 2024; published 31 December 2024.

 $\overline{\otimes}$ Corresponding author.

E-mail addresses: italo.dejter@gmail.com (Italo J. Dejter).

DOI: [10.61091/ars161-06](https://doi.org/10.61091/ars161-06)

[©] 2024 The Author(s). Published by Combinatorial Press. This is an open access article under the CC BY license [\(https://creativecommons.org/licenses/by/4.0/\)](https://creativecommons.org/licenses/by/4.0/).

lishing the existence of regular graphs for Network Theory by removing E-sets from their containing graphs.

A total coloring of a graph G is an assignment of colors to the vertices and edges of G such that no two incident or adjacent elements (vertices or edges) are assigned the same color [\[8\]](#page-12-8). A total coloring of G such that the vertices adjacent to each $v \in V(G)$ together with v itself are assigned pairwise different colors will be said to be an *efficient coloring*. The efficient coloring will be said to be *totally efficient* if G is k-regular, the color set is $[k] = \{0, 1, \ldots, k-1\}$ and each $v \in V(G)$ together with its neighbors are assigned all the colors in [k]. The total (resp. efficient) chromatic number $\chi''(G)$ (resp. $\chi'''(G)$) of G is defined as the least number of colors required by a total (resp. efficient) coloring of G .

As for applications other than (a) - (b) above, note that: (c) by removing the vertices of a fixed color, then again regular graphs for Network Theory are generated; (d) by removing the edges of a fixed color, then copies of a non-bipartite biregular graph whose parts have vertices with degrees differing in a unit are determined, again applicable in Network Theory.

In Section [3,](#page-3-0) we show that the graphs of a family of graphs $G = ST_k^2$, $(0 \lt k \in \mathbb{Z})$, introduced in Section [2,](#page-2-0) satisfy the conditions of the following theorem. We conjecture that those conditions are only satisfied by such graphs $G = ST_k^2$, and not any other graphs.

Theorem 1.1. (I) Let $3 < h \in 2\mathbb{Z}$. Let G be a connected $(h-2)$ -regular graph with a totally efficient coloring via color set $[h] \setminus \{0\} = \{1, \ldots, h-1\}$. Then, there is a partition of V into $h-1$ subsets W_1, \ldots, W_{h-1} , where W_i is formed by those vertices of G having color i, for each $i \in [h] \setminus \{0\}$. In such a case, $\chi'''(G) = h - 1$. Moreover, each W_i is an E-set of G, for $i \in [h] \setminus \{0\}$. (II) Let $4 < h \in 2\mathbb{Z}$. Then, $G \setminus W_i$ is a connected $(h-3)$ regular subgraph that still has efficient chromatic number $h-1$, i.e. $\chi'''(G \setminus W_i) = h-1$, even though it has only a (non-total) efficient coloring. Letting E_i be the set of edges with color i in $G \setminus W_i$, then:

- (a) $G \setminus W_i \setminus E_i$ is the disjoint union of copies of regular subgraphs of degree $h-4$ with efficient colorings by $h-3$ colors obtained from $[h] \setminus \{0, i\}$ by removing the edges of a color $j \neq i$;
- (b) $G \setminus E_i$ is a non-bipartite $(h-2, h-3)$ -biregular graph.

Proof. We use the inequality $\chi''(G) \geq \Delta(G)+1$, where $\Delta(G)$ is the maximum degree of G [\[8\]](#page-12-8). In our case, $\chi'''(G) = \chi''(G) = \Delta(G) + 1$. Because of this, a totally efficient coloring here provides a partition W_1, \ldots, W_{h-2} as claimed in item (I). By definition of totally efficient coloring, each W_i is an E-set. For item (II), deleting W_i from G removes also all the edges incident to the vertices of $W_i,$ so $G \setminus W_i$ still has an efficient coloring which is not totally efficient since there is an edge color lacking incidence to each particular vertex of $G \setminus W_i$. To establish item (II)1, note that removal of E_i from $G \setminus W_i$ for $h > 4$, leaves us with the graph induced by the edges of all colors other than color i , which necessarily disconnects $G\!\setminus\!W_i$, again because of the definition of totally effective coloring. To establish item $(II)2$, the removal of the edges with color i leaves their endvertices with

degree $h-3$ and forming a vertex subset of the resulting $G \setminus E_i$, while the remaining vertices have color i, degree $h-2$ and form a stable vertex set. This completes the proof of the theorem. All of this can be verified without loss of generality via the proof of Theorem [3.1,](#page-3-1) for $h = 2k$. \Box

Let $\ell \in \{0, 1\}$. In Section [5,](#page-8-0) we generalize via ℓ -set permutations, (see Section [2\)](#page-2-0), the result of [\[6\]](#page-12-3) that the star transposition graphs form a dense segmental neighborly E-chain. In Section [6,](#page-11-0) we generalize star transposition graphs to pancake transposition graphs and related intermediate graphs [\[6\]](#page-12-3), leading to an adequate version of dense neighborly E-chain [\[6\]](#page-12-3), with obstructions preventing any convenient version of segmental E-chain [\[6\]](#page-12-3).

2. Families of Multiset Transposition Graphs with E-Sets

Let $0 < \ell \in \mathbb{Z}$ and let $1 < k \in \mathbb{Z}$. We say that a string over the alphabet [k] that contains exactly ℓ occurrences of i, for each $i \in [k]$, is an ℓ -set permutation. In denoting specific ℓ -set permutations, commas and brackets are often omitted.

Let V^{ℓ}_k be the set of all ℓ -set permutations of length $k\ell$. Let the star ℓ -set transposition graph ST_k^{ℓ} be the graph on vertex set V_k^{ℓ} with an edge between each two vertices $v =$ $v_0v_1 \cdots v_{k\ell-1}$ and $w = w_0w_1 \cdots w_{k\ell-1}$ that differ in a star transposition, i.e. by swapping the first entry v_0 of $v = v_0v_1 \cdots v_{k\ell-1} \in V_k^{\ell}$ with any entry v_j $(j \in [k\ell] \setminus \{0\})$ whose value differs from that of v_0 (so $v_j \neq v_0$), thus obtaining either $w = w_0 \cdots w_j \cdots w_{k\ell-1} =$ $v_j \cdots v_0 \cdots w_{k\ell-1}$ or $w = w_0 \cdots w_{k\ell-1} = v_{k\ell-1} \cdots v_0$. In other words, each edge of ST_k^{ℓ} is given by the transposition of the initial entry of an endvertex string with an entry that contains a different symbol than that of the initial entry. The graphs ST_{k}^{ℓ} are a particular case of the graphs treated in [\[9\]](#page-12-9) in a context of determination of Hamilton cycles.

It is known that all k-permutations, (that is all 1-set permutations of length k), form the *symmetric group*, denoted Sym_k , under composition of k-permutations, each kpermutation $v_0v_1 \cdots v_{k-1}$ taken as a bijection from the *identity* k-permutation $01 \cdots (k-1)$ onto $v_0v_1 \cdot v_{k-1}$ itself. A graph ST_k^1 with $k > 1$ (which excludes ST_1^1) is the Cayley graph of Sym_k with respect to the set of transpositions $\{(0, i); i \in [k] \setminus \{0\}\}\)$. Such a graph is denoted ST_k in [\[1,](#page-12-0) [6\]](#page-12-3), where is proven its vertex set admits a partition into k E-sets, exemplified on the left of Figure [1](#page-2-1) for $ST_3^1 = ST_3$, with the vertex parts of the partition differentially colored in black, red and green, for respective first entries $0, 1$ and $2.$ Figure [1](#page-2-1) of [\[6\]](#page-12-3) shows a similar example for $ST_4^1 = ST_4$. Also, the graph ST_k^{ℓ} is vertex transitive, but is neither a Cayley graph nor a Shreier graph; see Subsection [5.1,](#page-10-0) below.

Fig. 1. The 6-cycles $ST_3^1 = ST_3$ and ST_2^2

3. E-sets of Star 2-set Transposition Graphs

Let $i \in [2k] \setminus \{0\} = \{1, \ldots, 2k-1\}$. Let Σ_i^k be the set of vertices $v_0v_1 \cdots v_{k\ell-1}$ of ST_k^{ℓ} such that $v_0 = v_i$, $(i = 1, ..., 2k - 1)$. Let E_i^k be the set of edges having color i in $G \setminus \Sigma_i^k$. We will show that Σ_i^k is an E-set of ST_k^2 . Clearly, no edge of E_i^k is incident to the vertices of Σ_i^k .

Theorem 3.1. Let $k > 1$. (I) The graph ST_k^2 has $\frac{(2k)!}{2^k}$ vertices and regular degree $2(k-1)$. (II) Let $i \in [2k] \setminus \{0\} = \{1, \ldots, 2k-1\}$ and let Σ_i^k be the set of vertices $v_0v_1 \ldots v_{2k-1}$ of ST_k^2 such that $v_0 = v_i$. Then, V_k^2 admits a vertex partition into $2k - 1$ E-sets Σ_i^k , $(i \in [2k] \setminus \{0\})$. (III) Let $k > 2$, let $j \in [2k] \setminus \{0\}$ and let E_j^k be the set of all edges of color j. Then, $ST_k^2 \setminus \Sigma_i^k \setminus E_i^k$ is the disjoint union of k^2k-1 copies of ST_{k-1}^2 .

Proof. Let $i = 2k - 1$ and let $j \in [2k]$. Then, each vertex $v = v_0v_1 \cdots v_{2k-3}v_{2k-2}v_{2k-1}$ $0v_1 \cdots v_{2k-3}j0$ is the neighbor of vertex $w = jv_1 \cdots v_{2k-3}00$ via an edge of color $k-1$. But $v \in \Sigma_i^k = \Sigma_{2k-1}^k$. Being w at distance 1 from Σ_{2k-1}^k , then w is in the *open neighborhood* $N(\Sigma_i^k)$ [\[6\]](#page-12-3) of Σ_{2k-1}^k in ST_k^2 , so $w \in N(\Sigma_i^k) = N(\Sigma_{2k-1}^k) \subseteq ST_k^2 \setminus \Sigma_i^k \setminus E_i^k = ST_k^2 \setminus$ $\Sigma_{2k-1}^k \setminus E_{2k-1}^k$. In fact, $N(\Sigma_i^k) = N(\Sigma_{2k-1}^k)$ is a connected component of $ST_k^2 \setminus \Sigma_i^k \setminus E_i^k =$ $ST_k^2 \backslash \Sigma_{2k-1}^k \backslash E_{2k-1}^k$. A similar conclusion holds for each other open neighborhoods $N(\Sigma_i^k),$ $(1 \leq i \leq 2k-1).$ \Box

Remark 3.2. The total coloring of ST_k^2 will be referred to as its *color structure*. The $k2^{k-1}$ copies of ST_{k-1}^2 in ST_k^2 whose disjoint union is $ST_k^2 \setminus \Sigma_i^k \setminus E_i^k$ inherit each a color structure that generalizes that of Examples [3.3-](#page-3-2)[3.4,](#page-3-3) below, and is similar to the color structure of ST_{k-1}^2 .

Example 3.3. The graph ST_2^2 has the totally efficient coloring depicted on the right of Figure [1,](#page-2-1) where $\Sigma_1^2 = \{0011, 1100\}$ is color blue, as is $E_1^2 = \{(0101, 1001), (0110, 1010)\};$ $\Sigma_2^2 = \{0101, 1010\}$ is color green, as is $E_2^2 = \{(0110, 1100), (0011, 1001)\}; \Sigma_3^2 = \{0110, 1001\}$ is color red, as is $E_3^2 = \{(0011, 1010), (0101, 1100)\}.$

Example 3.4. The graph ST_3^2 has the E-set Σ_5^3 with 18 vertices denoted as in display $(1):$ $(1):$

A planar interconnected disposition of the 6-cycles of the subgraph $ST_3^2 \setminus \Sigma_5^3$ of ST_3^2 is shown in Figure [2.](#page-4-0) The edges of such 6-cycles are alternatively colored with 2 or 3 colors of the color form (ababab) or (abcabc) respectively, where $\{a, b, c\} \subseteq \{1, 2, 3, 4\}$ is a subset of colors provided by the respective positions 1,2,3,4 of the 6-tuples taken as the vertices of ST_3^2 .

The tessellation suggested in Figure [2](#page-4-0) can be extended to the whole plane as an unfolding of the fundamental region delimited by the shown dash-border rectangle $-$ call it R.

Fig. 2. A fundamental region of a lattice suggests a rhomboidal torus cutout of ST_3^2

This R appears partitioned via dashed segments into two right triangles and a rhomboid in between. By transporting the left right triangle – call it $T_l \subset R$ – to a new position T_l' to the right so that the vertical side of T'_{l} coincides with the right side of R , a rhomboid R' is obtained. Identification of the tilted sides of R' and of its horizontal sides allows to view a toroidal embedding of $ST_3^2 \setminus \Sigma_5^3$.

Edge colors in Figure [2](#page-4-0) are numbered as follows (indicating corresponding subsequent positions in the 6-tuples representing the vertices of ST_3^2):

$$
1 = green, 2 = blue, 3 = hazard, 4 = red, 5 = black.
$$
 (2)

In Figure [2,](#page-4-0) the 3-colored 6-cycles are exactly those containing in their interiors (next to their corresponding denoting vertices) the (possibly underlined) capital letters of display [\(1\)](#page-3-4), but each such letter colored as indicated in display [\(2\)](#page-4-1). Each such number color $a \in \{1, 2, 3, 4\}$ $a \in \{1, 2, 3, 4\}$ $a \in \{1, 2, 3, 4\}$ as in display [\(2\)](#page-4-1) of a symbol $X \in \{A, \ldots, J, \underline{A}, \ldots, \underline{J}\}$ in Figure 2 indicates the existence of an (absent) *a*-colored edge between $V_3^2 \backslash \Sigma_5^3$ $V_3^2 \backslash \Sigma_5^3$ $V_3^2 \backslash \Sigma_5^3$ and Σ_5^3 in ST_3^2 . Figure 3 shows each such edge in exactly one copy Υ of $K_{1,4}$ with its endvertex in Σ_5^3 represented by X (in black) and its other endvertex being the sole element of $\Upsilon \cap V_3^2 \setminus \Sigma_5^3$, namely the $a\text{-colored}$ X, that we denote as X^a in Table [1.](#page-5-0) In fact, Table [1](#page-5-0) reproduces the data of Figure [2](#page-4-0) in a likewise disposition, with the vertex notation X^a instead of the a-colored X notation of Figure [2.](#page-4-0) In Table [1,](#page-5-0) edges are represented by their numeric symbols (display [\(2\)](#page-4-1)) and appear interspersed with the symbols X^a in representing the 3-colored 6-cycles, while 2-colored 6-cycles are represented by the disposition of their numeric symbols. Note in Figure [2](#page-4-0) that each 3-colored 6-cycle is bordered by six 2-colored 6-cycles via edges colored in $\{1, 2, 3, 4, \}$, while each 2-colored 6-cycle, call it Θ , is bordered by three 3-colored 6cycles (via edges in one fixed color of $\{1, 2, 3, 4\}$) alternated with three 2-colored 6-cycles via an edge matching bordering Θ and whose color is 1.

Fig. 3. The eighteen stars $K_{1,4}$ in ST_3^2 centered at the vertices of the E-set Σ_5^3

Table [2](#page-6-0) represents the twelve 3-colored 6-cycles, as follows. The six centers $X \in$ $\{A, \ldots, J, A, \ldots, J\}$ of copies of $K_{1,4}$ involved with one such 3-colored 6-cycle, call it Φ, are represented by 6-tuples that are expressed in Table [2](#page-6-0) in a 6-row section of a

$1J^23G^2\bar{4}$			$4C^32A^31$			$1F^23D^24$		$4J^3 2G^3 1$		$1C^23A^24$		$4F^3 2D^3 1$	
H^2	H^2	$\overline{5}$	B^3	B^3	E^2 5°	$\,E^2$	H^3 5°	H^3	B ² $\overline{5}$	B ²	E^3 $\overline{5}$	E^3	$5\,$
$4G^23J^21$			$\overline{1A^3}2C^34$			$\overline{4D^23F^21}$		$1G^3 2J^3 4$		$4A^23C^21$		$1D^3 2F^3 4$	
$5\overline{)}$	5		5 ⁵	$\overline{5}$	5	5	5	5	$5\overline{)}$	$\overline{5}$	5	5	
	$3F^41D^42$				$2J^14G^13$		$3C^4 1A^4 2$		$2F^14D^13$		$3J^4 1G^4 2$		$2C^14A^13$
5	E^4		E^4 $\overline{5}$	H^1	H^1	B^4 $\overline{5}$	$\bar{B^4}$	E^1 5	E^1	H^4 $\overline{5}$	H^4	B^1 $\overline{5}$	B^1
	$2D^41F^43$				$3G^14J^12$		$2A^41C^43$		$3D^{1}4F^{1}2$		$2G^41J^43$		$3A^14C^12$
5	5		5°	5	5	5	$\overline{5}$	5	5	5	5	5	
$4J^3 2G^3 2$			$1C^23A^24$			$4F^3 2D^3 1$		$1J^23G^24$		$4C^3 2A^3 1$		$1F^23D^24$	
$H^{\overline{3}}$	H^3	$\overline{5}$	B ²	B ²	E^3 5 ⁵	E^3	$\overline{5}$	H^2 H^2	5°	B^3 B^3	E^2 5°	\overline{E}^2	$\overline{5}$
$1\overline{G^3 2J^3 4}$			$4A^23C^21$			$1D^3 2F^3 4$		$4G^23J^21$		$\overline{1A^32C^34}$		$4D^23F^21$	

Table 1. Notational disposition of elements of ST_3^2 ST_3^2 in Figure 2

column whose heading is Σ_5^3 . To the immediate right of each such 6-row section, another 6-row section of 6-tuples expresses the corresponding neighbors X^b , for a fixed color $b \in \{1, 2, 3, 4\}$, via b-colored edges. Such neighbors X^b conform $V(\Phi)$ and induce Φ . In fact, Table [2](#page-6-0) contains the twelve instances of such representations.

Notice that the vertices in display [\(1\)](#page-3-4) are of the form $ia_1a_2a_3a_4i$. Centered inside each 3-colored 6-cycle Φ in Figure [2,](#page-4-0) a pair (i, b) of digits (written as ib) indicates the fixed double entry $i \in \{0, 1, 2\}$ of the vertices $ia_1a_2a_3a_4i$ of Σ_5^3 in Φ and the fixed color b their representing symbols have in the figure.

To facilitate viewing the edge colors along each Φ , the second row in Table [2](#page-6-0) shows the 6-tuple x of subsequent positions (or colors), 012345, of the 6-tuples representing each X and X^b . In each such x under the heading Σ_5^3 , the entry $b \in \{1, 2, 3, 4\}$ of the corresponding X^b is underlined, while under each subsequent heading X^b , the other three entries in $\{1, 2, 3, 4\}$ are underlined to indicate the entries successively transposed with the initial entry in the subsequent vertically disposed 6-tuples of each particular Φ.

Observe the difference between 3-colored 6-cycles appearing here and 2-colored 6-cycles in that the former are created by transpositions not involving the initial entry while the latter do involve transpositions with the initial entry.

In Figure [2,](#page-4-0) deletion of the edges colored 1 from $ST_3^2 \setminus \Sigma_5^3$ leaves a subgraph with twelve components, each being a 3-colored 6-cycle. Note that $E(ST_3^2)$ has a 1-factorization into five 1-factors $E_1^3, E_2^3, E_3^3, E_4^3, E_5^3$, each E_i^3 composed by those edges colored $i, (i \in [6] \setminus \{0\})$. Moreover, $ST_3^2 \setminus \Sigma_5^3 \setminus E_5^3$ is the union of the twelve 3-colored 6-cycles in Table [2.](#page-6-0)

Corollary 3.5. Let $k > 2$. Then:

- (a) ST_k^2 has $\frac{2k!}{2^k}$ vertices having $\frac{2k!}{2^k(2k-1)}$ vertices in each color $1, 2, ..., 2k-1$;
- (b) ST_k^2 has $\frac{2k!}{2^k} \times (k-1)$ edges;
- (c) color $k\ell-1$ provides exactly $\frac{2k!}{2^k(2k-1)} = y$ vertices forming a PDS Σ_{2k-1}^k of ST_k^2 ;
- (d) the y resulting dominating copies of $K_{1,2k-2}$ have a total of $y \times (2k-2) = z$ edges;
- (e) there are exactly $\frac{2k!}{2^k} \times (k-1) z = h$ edges in ST_{2k-1}^k not counted in item 4;
- (f) the h edges in item 5. contain $\frac{h}{2k-1}$ edges in each color $1, 2, \ldots, 2k-1$;
- (g) so they contain $h \frac{h}{2k}$ $\frac{h}{2k-1}$ edges in colors $\neq 2k-1$, (namely, $1, 2, \ldots, 2k-2$);
- (h) there are $\frac{2k!}{2^k} y$ vertices in $ST_k^2 \setminus \sum_{k=1}^k$ dominated by $\sum_{k=1}^k$;
- (i) the $\frac{2k!}{2^k} y$ vertices in item 8. appear in $k \times (2k-2)$ copies of ST_{k-1}^2 ;
- (j) there are $\frac{h}{(2k-1)^2k}$ edges in each copy of ST_{2k-1}^k in $ST_k^2 \setminus \Sigma_{2k-1}^k$.

X	Σ_5^3	X^1	X	Σ_5^3	X^2	X	Σ_5^3	X^3	X	Σ_5^3	X^4
\mathcal{X}	012345	012345	\mathcal{X}	012345	012345	\mathcal{X}	012345	012345	\boldsymbol{x}	012345	012345
\boldsymbol{A}	011220	101220	\boldsymbol{A}	011220	110220	\boldsymbol{A}	011220	211020	\boldsymbol{A}	011220	211200
\overline{B}	021120	201120	\boldsymbol{B}	012210	210210	B	021120	121020	\boldsymbol{B}	012210	112200
\overline{C}	012120	102120	$\mathcal{C}_{0}^{(n)}$	021210	120210	$\mathcal C$	021210	221010	\mathcal{C}	012120	212100
\underline{A}	022110	202110	\overline{A}	022110	220110	\overline{A}	022110	122010	\overline{A}	022110	122100
\boldsymbol{B}	012210	102210	\boldsymbol{B}	021120	120120	\boldsymbol{B}	012210	212010	\boldsymbol{B}	021120	221100
\mathcal{C}	021210	201210	\overline{C}	012120	210120	\overline{C}	012120	112020	\mathcal{C}	021210	121200
\boldsymbol{D}	122001	212001	D	122001	221001	\boldsymbol{D}	122001	022101	\boldsymbol{D}	122001	022011
$E_{\!\!\!\perp}$	102201	012201	$E\,$	120021	021021	E	102201	202101	E	120021	220011
\overline{F}	120201	210201	\boldsymbol{F}	102021	201021	\boldsymbol{F}	102021	002121	\overline{F}	120201	020211
\overline{D}	100221	010221	\boldsymbol{D}	100221	001221	\boldsymbol{D}	100221	200121	\boldsymbol{D}	100221	200211
E	120021	210021	E	102201	201201	E	120021	020121	$\,E$	102201	002211
\varGamma	102021	012021	\boldsymbol{F}	120201	021201	$\,F$	120201	220101	\boldsymbol{F}	102021	202011
G	200112	020112	G	200112	002112	G	200112	100212	$G\$	200112	100122
\boldsymbol{H}	210012	120012	H	201102	102102	H_{\rm}	210012	010212	H	201102	001122
\boldsymbol{J}	201012	021012	$\cal J$	210102	012102	\overline{J}	210102	110202	\boldsymbol{J}	201012	101022
G	211002	121002	G	211002	112002	$G\$	211002	011202	$\mathcal G$	211002	011022
H	201102	021102	H_{\rm}	210012	012012	H	201102	101202	$H_{\!\!\!i}$	210012	110022
\overline{J}	210102	120102	J	201012	102012	J	201012	001212	\boldsymbol{J}	210102	010122

Table 2. The twelve 6-cycles whose vertices start with 00, 11 and 22

Proof. The ten items of the corollary can be verified directly from the enumerative facts involved with the graphs ST_k^2 . \Box

Example 3.6. For ST_3^2 , we have that:

- (a) ST_3^2 has $\frac{6!}{2^3} = 90$ vertices containing $\frac{90}{5} = 18$ vertices in each color 1, 2, 3, 4, 5;
- (b) ST_3^2 has $90 \times 4/2 = 180$ edges;
- (c) color 5 provides 18 vertices that form a PDS Σ_5^3 of ST_3^2 ;
- (d) the 18 resulting dominating copies of $K_{1,4}$ in ST_3^2 have $18 \times 4 = 72$ edges;
- (e) outside that, there are still $180 72 = 108$ edges;
- (f) they contain $\frac{108}{5} = 36$ edges in each color 1, 2, 3, 4, 5;
- (g) so they contain $108 36 = 72$ edges in colors $\neq 5$, (namely, 1, 2, 3, 4);
- (h) there are $90 18 = 72$ remaining vertices in ST_3^2 , dominated by Σ_5^3 ;
- (i) they appear in $3 \times 4 = 12$ copies of ST_2^2 ;
- (j) there are $\frac{72}{3\times4} = \frac{72}{12} = 6$ edges in each copy of ST_2^2 in $ST_3^2 \setminus \Sigma_5^3$.

Example 3.7. For ST_4^2 , we have that:

- (a) ST_4^2 has $\frac{8!}{2^4} = 2520$ vertices containing $\frac{2520}{7} = 360$ vertices in each color 1, ..., 7;
- (b) ST_4^2 has $2520 \times 6/2 = 7560$ edges;
- (c) color 7 provides 360 vertices that form a PDS Σ_7^4 of ST_4^2 ;
- (d) the 360 resulting dominating copies of $K_{1,6}$ in ST_4^2 have 360 \times 6 = 2160 edges;
- (e) outside that, there are still $7560 2160 = 5400$ edges;
- (f) they contain $\frac{5400}{7} = 1080$ edges in each color 1, 2, 3, 4, 5, 6, 7;
- (g) the h edges in item 6 have $5040-1080 = 4320$ edges in colors $\neq 7$, (namely, 1, ..., 6);
- (h) there are $2520 360 = 2160$ remaining vertices in $ST₄²$, dominated by Σ_{7}^{4} ;
- (i) they appear in $4 \times 6 = 24$ copies of ST_3^2 ;
- (j) there are $\frac{4320}{4\times6} = \frac{4320}{24} = 180$ edges in each copy of ST_3^2 in $ST_4^2 \setminus \Sigma_7^4$.

Example 3.8. The 24 copies of ST_3^2 in ST_4^2 , (item 5 of Example [3.7\)](#page-7-0), can be encoded as follows. We start by encoding the fundamental rectangle in Figure [2](#page-4-0) by arranging the pairs $(i, b) = ib$ as follows, following the disposition in the figure:

By further encoding this disposition as (012, 1234), we now have that the 24 copies of ST_3^2 in ST_4^2 can be expressed as:

(123, 123456),(013, 123456),(023, 123456),(012, 123456).

A characterization of the twenty-four 2-colored 6-cycles of $ST^2_3 \backslash \Sigma^3_1$ is also available from that of the twelve 3-colored 6-cycles in display [\(3\)](#page-7-1). Let us observe the triple $(0x_0, 1y_1, 2y_2)$ formed by the three pairs $0x_0$, $1x_1$, $2x_2$ denoting the three 3-colored 6-cycles that share each an edge e with a given 2-colored 6-cycle Θ_e . By shortening each such triple of pairs to the triple of colors $x_0x_1x_2$ and setting its missing color x_3 in $\{1, 2, 3, 4\}$ as a subindex,

with colors $i = 5$ and x_3 assigned alternatively to the edges of each Θ_e , we have now the disposition in display [\(4\)](#page-8-1) which is similar to that of Figure [2:](#page-6-0)

Again, this disposition is encoded as (123, 1234).

Theorem 3.9. The graphs ST_k^2 satisfy the conditions of Theorem [1.1,](#page-1-0) so they also satisfy its conclusions.

Proof. Because of the previous discussion, we see that in the hypotheses of Theorem [1.1](#page-1-0) it is enough to take $h = 2k$, $G = ST_k^2$, $W_i = \sum_i^k$ and $E_i = E_i^k$. \Box

4. Open Problems

We conjectured that the graph G in the statement of Theorem [1.1](#page-1-0) must necessarily coincide with some ST_k^2 . On the other hand, the twenty-four 2-colored 6-cycles of $ST_3^2 \setminus \Sigma_5^3$ generalize to 2-colored 6-cycles in $ST_k^2 \setminus \Sigma_{2k-1}^k$, for any $k > 3$, by similarly alternating three black edges (meaning color $2k-1$) with three edges of a common color different from $2k-1$ in order to obtain one such 2-colored 6-cycle. Performing this to include all edges of $ST_k^2 \setminus \Sigma_{2k-1}^k$, still we do not know how to generalize for $k > 3$ what happens between the $k2^{k-1}$ copies of ST_{k-1}^2 in Theorem [3.1](#page-3-1) and the black edges (colored via $2k-1$). The determination of this particular matter is left as an open problem.

As a hint to illuminate the problem, let us recall that ST_k^2 has $\frac{(2k)!}{2^k}$ vertices and regular degree $2(k-1)$; then it has $\frac{(2k)!(k-1)}{2^k}$ edges and a total coloring via $2k-1$ colors. The number of vertices in ST_k^2 having a fixed color is $\frac{(2k)!}{2^k(2k-1)}$. The copies of stars $K_{1,2k-2}$ with centers on vertices of ST_k^2 having a fixed color contain a total of $\frac{(2k)!(2k-2)}{2^k(2k-1)} = \frac{2k!((k-1))}{2^{k-1}(2k-1)}$ $2^{k-1}(2k-1)$ edges. The numbers of remaining vertices and edges, namely those of $ST_k^2 \setminus \Sigma_{2k-1}^k$, are $(2k)!$ $\frac{2k)!}{2^k} - \frac{(2k)!}{2^k(2k-1)}$ $\frac{(2k)!}{2^k(2k-1)}$ and $\frac{(2k)!(2k-1)}{2^k} - \frac{(2k)!(k-1)}{2^{k-1}(2k-1)}$ $\frac{(2k)!(k-1)}{2^{k-1}(2k-1)}$, respectively. The edges of $ST_k^2 \setminus \Sigma_{2k-1}^k$ with a fixed color are divided into groups of three edges, each such group with alternate edges of a corresponding 2-colored 6-cycle, with the other three alternating edges in color $2k-1$. A conclusion here is that the number of 2-colored 6-cycles must be the third part of $(2k)!(2k-1)$ $\frac{(2k-1)}{2^k} - \frac{(2k)!(k-1)}{2^{k-1}(2k-1)}$ $\frac{(2k)!(k-1)}{2^{k-1}(2k-1)}$, which for $k=3$ equals 24, as can be counted for example via Figure [2.](#page-4-0)

5. Conclusions for Star 2-set Transposition Graphs

Let us recall from [\[6\]](#page-12-3) that:

(a) a countable family of graphs

$$
\mathcal{G} = \{\Gamma_1 \subset \Gamma_2 \subset \cdots \subset \Gamma_i \subset \Gamma_{i+1} \subset \cdots \},\
$$

is said to be an E-chain if every Γ_i is an induced subgraph of Γ_{i+1} and each Γ_i has an E-set C_i ;

- (b) for graphs Γ and Γ' , a one-to-one graph homomorphism $\zeta : \Gamma \to \Gamma'$ such that $\zeta(\Gamma)$ is an induced subgraph of Γ' is said to be an *inclusive map*;
- (c) for $i \geq 1$, let κ_i be an inclusive map of Γ_i into Γ_{i+1} ; if $C_{i+1} = N(\kappa_i(V(\Gamma_i)))$, then the E-chain G is said to be a *neighborly* E-chain:
- (d) a particular case of E-chain G is the one in which C_{i+1} has a partition into images $\zeta_i^{(j)}$ $\zeta_i^{(j)}(C_i)$ of C_i through respective inclusive maps $\zeta_i^{(j)}$ $i^{(J)}$, where j varies on a suitable finite indexing set. In such a case, the E-chain is said to be *segmental*.

The notion of neighborly E-chain in item 3 above is not suitable in our context of graphs ST_k^2 and their E-sets, that we denote Σ_{2k-1}^k (instead of C_i as in [\[6\]](#page-12-3)), like Σ_3^2 and Σ_5^3 in Example [3.4,](#page-3-3) with Σ_5^3 detailed both in display [\(1\)](#page-3-4) and Figures [2](#page-4-0)[-3,](#page-4-2) and also in Tables [1](#page-5-0)[-2.](#page-6-0) In this context, the graphs ST_k^2 form an E-chain

$$
\mathcal{ST}(2) = \{ST_1^2 \subset ST_2^2 \subset \cdots \subset ST_k^2 \subset ST_{k+1}^2 \subset \cdots \},\tag{5}
$$

with each inclusion $ST_k^2 \subset ST_{k+1}^2$ realized by a set of $k+1$ neighborly maps

$$
\kappa_k^j: ST_k^2 \to ST_{k+1}^2,\tag{6}
$$

 $(j \in [k+1]),$ (*neighborly* meaning that the images κ_k^j $\frac{d}{dk}(ST_i^2)$ are pairwise disjoint in ST_{k+1}^2 and that

$$
\Sigma_k^{k+1} = \bigcup_{j=1}^{k-1} N(\kappa_i^j(V_i^2)),\tag{7}
$$

as a disjoint union), these neighborly maps given by

$$
\kappa_k^j(a_0a_1\cdots a_{2k-2}a_{2k-1}) = (a_0^ja_1^j\cdots a_{2k-2}^ja_{2k-1}^jj),\tag{8}
$$

for $j \in [k+1]$, where

$$
a_i^k = a_i, \ a_i^{k+1} = a_i + 1 \mod (k+1), \ \ldots, a_i^{k+h} = a_i + h \mod (k+1), \ldots,
$$
 (9)

for $i = 0.1, \ldots, 2k - 1$, the superindices $k + h$ of the entries a_i^{k+h} j_j^{k+h} taken mod $k+1$.

As an example, the last column of Table [2](#page-6-0) offers disjoint neighborly maps κ_2^j $\frac{3}{2}$, for $j = 0, 1, 2$, yielding respectively the following images of the 6-cycle that comprises ST_2^2 :

 $\kappa_2^2(1001, 0011, 1010, 0110, 1100, 0101) = (100122, 001122, 101022, 011022, 110022, 010122);$ $\kappa_2^0(1001, 0011, 1010, 0110, 1100, 0101) = (211200, 112200, 212100, 122100, 221100, 121200);$ $\kappa_2^1(1001, 0011, 1010, 0110, 1100, 0101) = (022011, 220011, 020211, 200211, 002211, 202011).$

An E-chain as in display [\(5\)](#page-9-0) where each inclusion $ST_k^2 \subset ST_{k+1}^2$ is realized by $k+1$ neighborly maps κ_k^j \mathcal{L}_k^j , as defined in displays [\(6\)](#page-9-1) to [\(9\)](#page-9-2), is said to be a *disjoint neighborly* E-chain.

The notion of segmental E-chain can also be generalized to the case of the graphs ST_k^2 , where in item 3 above we replace "neighborly" by "disjoint neighborly". In that case, the

E-chain will be said to be *disjoint segmental*. It is clear by symmetry that the E-chain $ST(2)$ $ST(2)$ $ST(2)$ of display [\(5\)](#page-9-0) is disjoint segmental, as exemplified via Figures 2 and [3](#page-4-2) and the related Tables [1](#page-5-0) and [2.](#page-6-0)

If, for each $i \geq 1$, there exists an inclusive map $\zeta_i : \Gamma_i \to \Gamma_{i+1}$ such that $\zeta(C_i) \subset C_{i+1}$, then [\[6\]](#page-12-3) calls the E-chain inclusive and observes that an inclusive neighborly E-chain has $\kappa_i \neq \zeta_i$, for every positive integer *i*.

5.1. Density

In addition, [\[6\]](#page-12-3) calls an E-chain G dense if, for each $n \geq 1$, one has $|V(\Gamma_n)| = (n+1)!$ and $|C_n|=n!$. However, this notion is not helpful in our present context.

For $k > 1$, note that $ST_{k\ell}^1$ is the Cayley graph of $Sym_{k\ell}$ generated by the transpositions $(0\ i)$, $(0 \ < i \ < k\ell)$, but that ST_k^{ℓ} is not even a Shreier coset graph of the quotient of $Sym_{k\ell}$ modulo say its subgroup H_{ℓ} generated by the transpositions $(a\ a+1),\ (0\leq a < k),$ because the edges of ST_k^ℓ are not given by transpositions $(0\ i)$ independently of the values *i* in different vertices of ST_k^{ℓ} . However, Table [3](#page-10-1) do generalize for every ST_k^2 , $(k \geq 2)$, where the table shows vertically:

- (a) the right cosets of V_4^1 mod the subgroup generated by transpositions $(0\ 1), (2\ 3)$;
- (b) the representations of such right cosets as vertices of ST_2^2 ; and
- (c) assigned generating sets of transpositions (0 i) per shown right coset of V_3^1 or its representing vertex in ST_2^2 .

Right cosets of V_4^1 mod H	0123	2301	0213	2031	0231	2013
	0132	2310	0312	2130	0321	2103
	1023	3201	1203	3021	1230	3012
	1032	3210	1302	3120	1320	3102
V_2^2	0011	1100	0101	1010	0110	$1001\,$
Gnr. set	$(0\ 2), (0\ 3)$	$(0\ 2), (0\ 3)$	$(0\ 1), (0\ 3)$	(01), (03)	$(0\ 1), (0\ 2)$	$(0\ 1), (0\ 2)$

Table 3. The right cosets of V_4^1 as the vertices of ST_2^2 and their generating sets

Tables like Table [3,](#page-10-1) but for $k > 2$, suggest extending the definition of a Shreier coset graph as follows: A *Shreier local coset graph* of a group G , a subgroup H of G and a generating set $S(Hg)$ for each right coset Hg of H in G, is a graph whose vertices are the right cosets Hg and whose edges are of the form (Hg, Hgs) , for $g \in G$ and $s \in S(Hg)$. The example in display [\(3\)](#page-10-1) shows that ST_2^2 is a Shreier local coset graph of the group V_4^1 , its subgroup H generated by the transpositions $(0 1)$ and $(2 3)$, and the local generators indicated in the last line of the display. In a similar way, it can be shown for $k > 2$ that ST_k^2 is a Shreier local coset graph of V_k^2 with respect to its subgroup generated by the transpositions $(2a \ 2a + 1)$ with $0 \le a \le k$. Now, the density observed in [\[6\]](#page-12-3) must be replaced to be useful in the present context of 2-set star transposition graphs. It is clear that in this sense, the E-sets found in the graphs ST_k^2 in Section [3](#page-3-0) are as dense as they can be, so we say that these E-sets are $\mathcal{Z}\text{-dense}$. Then, the final conclusion of the present section is the following result.

Theorem 5.1. The E-chain $ST(2)$ of display [\(5\)](#page-9-0) is a 2-dense, disjoint segmental, disjoint neighborly E-chain via the E-sets Σ_i^k of Theorem [3.1.](#page-3-1)

Proof. The discussion above in this Section [5](#page-8-0) provides all the properties in the statement. \Box

6. Pancake 2-set Transposition Graphs

Let π_i be an arbitrary product of independent transpositions on the set $\{1, \ldots, i-1\}$, $(i > 1)$, where π_1 and π_2 are the identity. For each integer $k \geq 1$, let

 $A(\pi_1,\ldots,\pi_i,\ldots,\pi_{2k-1})=\{(0\ 1)\pi_1,\ldots,(0\ i)\pi_i,\ldots,(0\ (2k-1))\pi_{2k-1}\}.$

Lemma 2 of [\[6\]](#page-12-3) implies that for $k \geq 1$ and any choice of the involutions π_i , $(i \geq 3)$, the set $A(\pi_1, \ldots, \pi_{2k-1})$ generates Sym_{2k-1} . For each choice of involutions π_1, π_2, \ldots , the sequence of Cayley graphs with generating set $A(\pi_1, \ldots, \pi_{2k-1})$ forms a chain of nested graphs with natural inclusions $\Gamma_k \subset \Gamma_{k+1}$.

Let $\ell \in \{1,2\}$. If we choose the identity for each entry in $A(\pi_1,\ldots,\pi_{2k-1})$, then we get the ℓ -set star transposition graphs ST_k^{ℓ} . If $\pi_i = (1 \ (i-1)) \cdots (i/2 \mid i/2 \mid)$, for $i = 3, \ldots, k - 1$, then we get the *pancake l-set transpostion graph PC*^{ℓ}. In particular, the pancake 2-set transposition graph PC_k^2 has the same vertex set of ST_k^2 and its edges involve each the maximal product of concentric disjoint transpositions in any prefix of an endvertex string, including the external transposition being that of an edge of ST_k^2 . The graphs PC_k^1 were seen in [\[6\]](#page-12-3) to form a dense segmental neighborly E-chain $\mathcal{PC}(1)$ = $\{PC_1^1, PC_2^1, \ldots, PC_k^1, \ldots\}$. (Figure 2 of [\[6\]](#page-12-3) represents the graph PC_4^1). In a similar fashion to that of Section [5,](#page-8-0) the following partial extension of that result can be established.

Theorem 6.1. The chain $PC(2) = \{PC_1^2, PC_2^2, \ldots, PC_k^2, \ldots\}$ is a 2-dense, disjoint neighborly E-chain via the E-sets Σ_{2k-1}^k of Theorem [3.1,](#page-3-1) but it fails to be disjoint segmental. A similar result is obtained for any choice of the involutions $\pi_1, \pi_2, \ldots, \pi_i \ldots$ with not all the π_i s being identity permutations.

Proof. Adapting the arguments given for star 2-set transposition graphs in Section [5](#page-8-0) can only be done for the E-sets Σ_{2k-1}^k in pancake 2-set transposition graphs, since the feasibility for the sets Σ_i^k , $(1 \leq i < 2k-1)$, to be E-sets is obstructed by the pancake transpositions in $A(\pi_1, \ldots, \pi_{2k-1})$, meaning that we can only establish that the E-chain $\mathcal{PC}(2)$ is dense and disjoint neighborly, but not disjoint segmental. The "black'" vertices, those whose color is $2k-1$, form an E-set Σ_{2k-1}^k with the desired properties, and their removal leaves a $2k-2$ regular graph from which the removal of the "black" edges, forming an edge subset $E_{2k-1}^k,$ leaves the disjoint union of the open neighborhoods $N(v)$ of the vertices v in the E-set Σ^k_{2k-1} . This behavior is similar for any other choice of the involutions $\pi_1, \pi_2, \ldots, \pi_i \ldots$ with not all the π_i s being identity permutations, other than $\pi_i = (1 (i - 1)) \cdots (i/2) [i/2]$, for $i = 3, \ldots, k - 1$, which were used precisely to define the pancake graphs. \Box

References

- [1] S. Arumugam and R. Kala. Domination parameters of star graph. Ars Combinatoria, 44:9396, 1996.
- [2] D. W. Bange, A. E. Barkausas, L. H. Host, and P. J. Slater. Generalized domination and efficient domination in graphs. Discrete Mathematics, $159:1-11$, 1996 . [https://doi.org/](https://doi.org/10.1016/0012-365X(95)00094-D) [10.1016/0012-365X\(95\)00094-D.](https://doi.org/10.1016/0012-365X(95)00094-D)
- [3] D. W. Bange, A. E. Barkausas, and P. J. Slater. Efficient dominating sets in graphs. In R. D. Ringeisen and F. S. Roberts, editors, *Applications of Discrete Math.* Pages 189–199. SIAM, Philadelphia, 1988.
- [4] J. Borges and J. Rifá. A characterization of 1-perfect additive codes. IEEE Transactions on Information Theory, 46:1688-1697, 1999. [https://doi.org/10.1109/18.771247.](https://doi.org/10.1109/18.771247)
- [5] I. J. Dejter. Sqs-graphs of extended 1-perfect codes. Congressus Numerantium, 193:175 194, 2008.
- [6] I. J. Dejter and O. Serra. Efficient dominating sets in cayley graphs. *Discrete Applied* Mathematics, 129:319-328, 2003. [https://doi.org/10.1016/S0166-218X\(02\)00573-5.](https://doi.org/10.1016/S0166-218X(02)00573-5)
- [7] I. J. Dejter and O. Tomaiconza. Nonexistence of efficient dominating sets in the cayley graphs generated by transposition trees of diameter 3. Discrete Applied Mathematics, 232:116124, 2017. [https://doi.org/10.1016/j.dam.2017.07.013.](https://doi.org/10.1016/j.dam.2017.07.013)
- [8] J. Geetha, N. Narayanan, and K. Somasundaram. Total coloring-a survey. AKCE International Journal of Graphs and Combinatorics, $20(3):339-351$, 2023 . [https://doi.org/10.](https://doi.org/10.1080/09728600.2023.2187960) [1080/09728600.2023.2187960.](https://doi.org/10.1080/09728600.2023.2187960)
- [9] P. Gregor, A. Merino, and T. Mütze. Star transpositions gray codes for multiset permutations. Journal of Graph Theory, $103(2):212-270$, 2023 . [https://doi.org/10.1002/jgt.](https://doi.org/10.1002/jgt.22915) [22915.](https://doi.org/10.1002/jgt.22915)
- [10] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning. Efficient domination in graphs. In Domination in Graphs: Core Concepts, Springer Monographs in Mathematics, pages 259 289. Springer, 2023. [https://doi.org/10.1007/978-3-031-09496-5_9.](https://doi.org/10.1007/978-3-031-09496-5_9)