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abstract

A q-total coloring of G is an assignment of q colors to the vertices and edges of G, so that

adjacent or incident elements have di�erent colors. The Total Coloring Conjecture (TCC)

asserts that a total coloring of a graph G has at least ∆+1 and at most ∆+2 colors. In

this paper, we determine that all members of new in�nite families of snarks obtained by

the Kochol superposition of Goldberg and Loupekine with Blowup and Semiblowup snarks

are Type 1. These results contribute to a question posed by Brinkmann, Preissmann and

D. Sasaki (2015) by presenting negative evidence about the existence of Type 2 cubic

graphs with girth at least 5.
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1. Introduction

The study of a particular class of cubic graphs, known as snarks, was sparked by the Four

Color Conjecture. Snarks are cyclically 4-edge-connected cubic graphs that cannot have

their edges colored with only three colors (no two incident edges have the same color). The

Petersen graph is the earliest and smallest example of a snark. Additional snarks, such as

the Flower and Loupekine snarks were introduced by Isaacs [8], as well as an operation

called dot product, leading to the construction of in�nitely many snarks. Snarks have been
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extensively studied due to their relevance in various problems, including coloring, the cycle

double cover conjecture, and the 5-�ow conjecture (Esperet and Mazzuoccolo [5]).

In this paper, we focus on �nite, undirected and simple graphs G = (V,E), where V

is the set of vertices and E is the set of edges. The maximum degree of G is denoted as

∆(G), or simply ∆.

A q-total coloring of G involves assigning q colors to the vertices and edges of G in

such a way that adjacent or incident elements have distinct colors. The total chromatic

number of G, denoted by χ′′(G) (or simply χ′′), is the minimum value of q required for a

q-total coloring of G. We note that if the cardinality of any two color classes di�ers by at

most one, then it is called an equitable q-total coloring.

The Total Coloring Conjecture (TCC) states that the total chromatic number of a

graph G is at least ∆ + 1, but at most ∆ + 2 (Behzad [1], Vizing [15]). This conjecture

led to the classi�cation of graphs into two types: Type 1, if χ′′ = ∆ + 1, and Type 2, if

χ′′ = ∆ + 2. While the TCC has been veri�ed for speci�c graph families, it remains an

open problem for many graph classes, spanning over �ve decades. For cubic graphs G,

Rosenfeld [12] and Vijayaditya [14] independently established that 4 ≤ χ′′(G) ≤ 5.

The girth of G is the length of a shortest cycle contained in G. In 2003, Cavicchioli et

al. [4] showed, with the assistance of a computer, that all snarks with girth at least 5 and

fewer than 30 vertices are Type 1, and asked the following question:

Problem 1.1 ([4]). Find (if any) the smallest snark (with respect to the order) which is

of Type 2.

Later, Brinkmann, Preissmann and D. Sasaki [2] divided this problem into two questions

to investigate the true obstruction that makes �nding these graphs (if they exist at all)

challenging: either being snarks or having a girth of at least 5.

Question 1.2 ([2]). Does there exist a Type 2 cubic graph with girth at least 5?

Question 1.3 ([2]). Does there exist a Type 2 snark?

In [2], the authors addressed Question 1.3 by �nding an in�nite number of Type 2

snarks. The question about the existence of a Type 2 cubic graph with girth at least 5

remains open.

In 2011, Campos, Dantas, and Mello [3] provided an equitable total coloring, using four

colors for each Flower and Goldberg snark. Notably, all of these graphs have girth 5.

Kochol [10] introduced the concept of the superposition construction, yielding in�nite

families of snarks with large girth. In 2016, Hägglund [7] de�ned two additional in�nite

snark families: Blowup and SemiBlowup. In 2022, Palma et al. [11] proved that the

SemiBlowup snarks have equitable total colorings with 4 colors. This work contributes to

Question 1.2 by presenting in�nite families of Type 1 graph with girth at least 5.

The paper is structured as follows: Section 2 provides the de�nitions, the construction

of Goldberg, Loupekine, t-SemiBlowup, and t-Blowup snarks, with their respective known

4-total colorings; and the construction and notation of the Kochol superposition. From
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Sections 3 to 6, we determine 4-total colorings for all members of the newly derived

in�nite families obtained through the Kochol superposition of Goldberg and Loupekine

snarks with t-Blowup and t-SemiBlowup snarks. These results establish that all these

members are Type 1.

2. Preliminaries

A semi-graph is a 3-tuple G = (V,E, SE), where V is a �nite set of vertices of G, E is a set

of edges with two distinct endpoints in V , and SE is a multiset of semiedges with at most

one endpoint in V . A semiedge without endpoints is called an isolated edge. A semiedge

with endpoint v is denoted by v·, and an edge with endpoints v and w is denoted by vw.

Given two semiedges v· and w·, the junction of v· and w· is formed by replacing v· and w·
with the edge vw. The de�nitions applicable for simple graphs can be naturally extended

to semi-graphs. Indeed, a graph G = (V,E) is a semi-graph G = (V,E, SE) with an empty

set of semiedges (SE = ∅).

2.1. Goldberg snarks

In this subsection, we study the Goldberg family of snarks that was introduced by Gold-

berg [6] in 1981. Goldberg snarks involves a recursive construction arising from linking

basic blocks.

(a) (b) (c)

Fig. 1. (a) Goldberg snark G3; (b) Link semi-graph Li, with odd i ≥ 5; and (c) Goldberg snark G5

In Figures 1(a) and 1(b), we depict the �rst Goldberg snark G3 and the link semi-

graph Li, with V (Li) = {si−1, ti−1, ui−1, vi−1, wi−1, xi−1, yi−1, zi−1, si, ti, ui, vi, wi, xi, yi, zi},
for odd i ≥ 5. The second member of this family, Goldberg snark G5 (see Figure 1(c)),

is obtained by deleting the edges {t3s1, y3x1, u3u1} from G3 (depicted as dashed lines in

Figure 1(a)); and adding the semiedges t3·, s1·, y3·, x1·, u3·, and u1·; thereafter, we make

their corresponding junction with the following semiedges of the link semi-graph L5, say

s4·, t5·, x4·, y5·, u4·, and u5·, respectively.
All subsequent members in this family, denoted as Gi with odd i ≥ 7, are similarly

constructed. This involves the junctions of the semiedges of Li with the corresponding

semiedges of the semi-graph obtained from Gi−2, with odd i ≥ 7. The construction of

this semi-graph consists of removing three edges {ti−2s1, yi−2x1, ui−2u1} from Gi−2, and

replacing them with their respective semiedges.

In [3], the Campos, Dantas and Mello showed that Goldberg snarks admit 4-total

colorings using the colorings of the �rst Goldberg snark G3 and of the link graph Li, odd
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i ≥ 5. Figures 2(a) and 2(b) depict 4-total colorings for G3 and for the link graph Li,

respectively.

A 4-total coloring for Goldberg snark G5 is obtained from the 4-total colorings of G3 and

Li presented in Figure 3. For each odd i ≥ 7, a 4-total coloring for Gi is obtained from the

4-total colorings of Gi−2 and Li, using the recursive de�nition of Goldberg snarks. That is,

to obtain the 4-total coloring for Gi, each element receives the color of its corresponding

element in Gi−2 or Li, odd i ≥ 5. The remaining edges are colored as follows: ti−2si−1,

tis1, yi−2xi−1 = yix1 receives color 1; ui−2ui−1 and uiu1 receives color 4.

(a) (b)

Fig. 2. The 4-total colorings of: (a) Goldberg snark G3; and (b) Link graph Li, with odd i ≥ 5

Fig. 3. Goldberg snark G5 and its respective 4-total coloring obtained from the 4-total colorings of G3

and L5

Theorem 2.1 ([3]). Each Goldberg snark Gi, with odd i ≥ 3, is Type 1.

2.2. Loupekine snarks

In this subsection, we study the Loupekine family of snarks that was introduced in 1976,

by Isaacs [9]. These snarks are also obtained through a recursive construction as follows.

In Figures 4(a) and 4(b), we depict the �rst Loupekine snark L3 and the link semi-graph

Hi, with V (Hi) = {vi1, . . . , vi7, ui1, . . . , ui7}, for odd i ≥ 5. The second member of this

family, Loupekine snark L5 (see Figure 4(c)), is obtained by deleting the edges v6w6,

v2w2, u2w3, u6w7 from L3 (depicted as dashed lines in Figure 4(a)); adding the semiedges

v6·, v2·, u2·, u6·, w6·, w2·, w3·, w7·, and then making their corresponding junction with

the following semiedges of the link semi-graph H5, say v
5
7·, v53·, u53·, u57·, v56·, v52·, u52·, u56·,

respectively.
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(a) (b) (c)

Fig. 4. (a) Loupekine snark L3; (b) link semi-graph Hi, with odd i ≥ 5; and (c) Loupekine snark L5

All subsequent members in this family, denoted as Li with odd i ≥ 7, are similarly

constructed. This involves the junctions of the semiedges of Hi with the corresponding

semiedges of the semi-graph obtained from Li−2, with odd i ≥ 7. The construction of this

semi-graph consists of removing four edges v6v
i−2
7 , v2v

i−2
3 , u2u

i−2
3 , and u6u

i−2
7 from Li−2,

and replacing them with their respective semiedges. This procedure is analogous to the

construction of L5 where the dashed edges are removed from L3.

Fig. 5. Loupekine snark L7

Sasaki, Dantas, Figueiredo, and Preissmann [13] constructed a 4-total coloring for the

Loupekine snarks Li, with odd i ≥ 5.

Theorem 2.2 ([13]). Each Loupekine snark Li, with odd i ≥ 5, is Type 1.

Building upon the proof of this result, we present a 4-total coloring that shows to be

useful in simplifying the proof of our main results. This coloring takes advantage of the

recursive construction of this class.

First, we refer to Figures 6(a) and 6(c) for the 4-total colorings of L3 and L5, respec-

tively. The 4-total colorings of all subsequent members Li with odd i ≥ 7, are recursively
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(a) (b) (c)

Fig. 6. The 4-total colorings of: (a) Loupekine snark L3, (b) link semi-graph Hi, with odd i ≥ 5, and

(c) Loupekine snark L5. The dashed line represents the placement of the link semi-graph H5 in the

construction of a 4-total coloring of L5

constructed as follows. We remove four edges v6v
i−2
7 , v2v

i−2
3 , u2u

i−2
3 , and u6u

i−2
7 from the

colored Li−2 (replace them with their respective semiedges), and make the junction with

the corresponding semiedges of the colored link semi-graph Hi of Figure 6(b). It is easy

to verify that this construction produces a 4-total coloring for Li. Indeed, we consider

the same coloring for every link semi-graph Hi that preserves the coloring of the removed

edges and the endpoints of the semiedges. We depict in Figure 7(a) a 4-total coloring of

Loupekine L7. Figure 7(b) highlights the upper part of the Loupekine snarks, demon-

strating that the coloring remains the same on the subgraph induced by these vertices in

Li with odd i ≥ 5.

(a) (b)

Fig. 7. (a) A 4-total coloring of Loupekine L7 constructed from the 4-total colorings of L5 and H7 of

Figure 6 (link graph is highlighted with dashed lines). (b) The upper part of the Loupekine snarks shows

that the coloring remains the same for each Li, with odd i ≥ 7. The dashed line represents the placement

of the link semi-graph Hi+2 in the construction of a 4-total coloring of Li+2, with odd i ≥ 5
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2.3. SemiBlowup and Blowup snarks

The SemiBlowup family of snarks was introduced in 2016 by Hägglund [7]. Let Sp be

the semi-graph depicted in Figure 8(a), with V (Sp) = {ap, bp, cp, dp, fp, gp, hp, ip, jp, kp}.
The t-SemiBlowup is a snark constructed by connecting t ≥ 5 copies of semi-graph Sp,

with 1 ≤ p ≤ t (as a cycle). Precisely, the t-SemiBlowup is constructed as follows: for

2 ≤ p ≤ t, we make the junctions of semiedges ap· with cp−1·, ip· with jp−1·, kp· with kp−1·;
and for p = 1, a1· with ct·, i1· with jt·, and k1· with kt·.
Now, let S ′

p be the semi-graph depicted in Figure 8(b), with

V (S ′
p ) = {ap, bp, cp, dp, ep, fp, gp, hp, ip, jp, kp, lp} .

The t-Blowup is a snark constructed by connecting t ≥ 5 copies of semi-graph S ′
p , with

1 ≤ p ≤ t (as a cycle). That is, the t-Blowup is constructed as follows: for 2 ≤ p ≤ t,

we make the junctions of semiedges ap· with dp−1·, jp· with kp−1·, lp· with lp−1·; and for

p = 1, a1· with dt·, j1· with kt·, and l1· with lt·.

(a) (b)

Fig. 8. (a) Semi-graph Sp of t-SemiBlowup snarks, and (b) Semi-graph S′
p of t-Blowup snarks

Palma et al. [11] presented equitable 4-total colorings for these graphs proving that

these graphs are Type 1. They observed that the 4-total coloring of semi-graph B4 (a

junction of four semi-graphs Sp), depicted in Figure 9 (resp. semi-graph B′
4, a junction

of four semi-graphs S ′
p , depicted Figure 10), appears in every t-SemiBlowup (resp. t-

Blowup) snark, with t ≥ 6. We refer to Figures 11(a) and 11(b) for the 6-SemiBlowup

and 6-Blowup, and their respective 4-total colorings.

Theorem 2.3 ([11]). Each t-SemiBlowup and t-Blowup snarks, with t ≥ 5, are Type 1.

2.4. Kochol superposition

In this section, we de�ne the Kochol superposition construction as presented in [10]. Given

a cubic semi-graph M(V,E, SE), with SE ̸= ∅, the set SE of semiedges is partitioned into

q pairwise disjoint nonempty sets Q1, Q2, . . ., Qq such that |Qi|= ki with i = 1, 2, . . . , q

and
∑q

i=1 ki = |SE|. Following the notation of [10], we call the sets Qi connectors, and

denote the semi-graph M by (k1, k2, . . ., kq)-semi-graph M .
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Fig. 9. A 4-total coloring of semi-graph B4

Fig. 10. A 4-total coloring of semi-graph B′
4

(a) (b)

Fig. 11. The 4-total colorings for (a) 6-SemiBlowup, and (b) 6-Blowup snarks

Fig. 12. Superedge M ′ obtained from snark G, superedge L′, supervertex J ′, and supervertex K ′ for

Kochol superposition

A superedge ξ is a semi-graph with two connectors, and a supervertex ϑ is a semi-graph

with three connectors. We consider the following semi-graphs depicted in Figure 12:



Type 1 Kochol Superpositions 143

i. (3, 3)-semi-graph M ′ (superedge) is obtained by removing two nonadjacent vertices

v1 and v2 from a snark G, and replacing each edge incident to v1 or v2 by semiedges.

ii. (1, 1)-semi-graph L′ (superedge) is an isolated edge (two semiedges);

iii. (1, 3, 3)-semi-graph J ′ (supervertex) consists of two isolated edges and a vertex;

iv. (1, 1, 1)-semi-graph K ′ (supervertex) consists of a vertex and three semiedges.

Let G′ = (V ′, E ′) be a snark. Replace every edge e ∈ E ′ by a superedge ξe, and every

vertex v ∈ V ′ by a supervertex ϑv. If v ∈ V ′ is incident to e ∈ E ′ then a connector in ϑv

is linked with a connector in ξe through the junction of semiedges. The obtained cubic

graph is called superposition of G′ with G and it is a snark [10].

Figure 13 depicts an example of isomorphic representations of superedge ξ1, which are

obtained by removing the two nonadjacent vertices b2 and c1 from the t-SemiBlowup snark

shown Figure 14. In these representations, every edge incident to b2 or c1 is replaced by

the corresponding semiedge.

Fig. 13. Examples of isomorphic representations of superedge ξ1

Fig. 14. A 4-total coloring of semi-graph B4 that appears in every t-SemiBlowup, with t ≥ 6. Vertices

that are removed to construct the superedges ξ are highlighted in colors

3. Superposition: Goldberg with t-SemiBlowup

In this section, we present a construction of an in�nite family of snarks obtained from

a Kochol superposition of Goldberg snarks with t-SemiBlowup snarks, and show that all

members of the presented family are Type 1. For each odd i ≥ 3, let Rt(i) be the snark

obtained by a superposition of Goldberg snark Gi with a t-SemiBlowup snark, t ≥ 6.

We refer to Table 1 and Figure 14 with the semi-graph B4 (which appears in every

t-SemiBlowup with t ≥ 6) and the superedges that are necessary for the construction of

Rt(i).

The superedges ξi, with 1 ≤ i ≤ 5, depicted in Figure 15, are formed by deleting,

from the t-SemiBlowup snark, with t ≥ 6, the two nonadjacent vertices of semi-graph B4
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Superedge Deleted Superedge Deleted

ξ1 {c1, b2} ξ4 {h1, b2}
ξ2 {g2, g4} ξ5 {a2, g4}
ξ3 {c2, g4}

Table 1. Deleted vertices in t-SemiBlowup snark and their corresponding superedges

Fig. 15. The colored super edges ξ1, ξ2, ξ3, ξ4 and ξ5

(Figure 14) represented in Table 1, and replacing each edge incident to these vertices with

the corresponding semiedge. The superedge ξ1 is formed by deleting two nonadjacent

vertices, c1 and b2 , from the t-SemiBlowup snark (with t ≥ 6), and replacing each edge

incident to c1 and b2 with the corresponding semiedge. Similarly, the superedges ξ2, ξ3,

ξ4, and ξ5 are obtained by removing, from the t-SemiBlowup snark (with t ≥ 6), the

nonadjacent vertices: {g2, g4}, {c2, g4}, {h1, b2}, and {a2, g4} respectively. Again, each

edge incident to these vertices is replaced by the corresponding semiedge.

Fig. 16. A 4-total coloring of a superposition Rt(3) of G3 with a t-SemiBlowup snark, with t ≥ 6

Consider the Goldberg snark G3 depicted in Figure 1(a). To obtain its superposition

Rt(3), depicted in Figure 16, �rst replace the following edges by the corresponding su-

peredges: edge u1u2 by a copy of the superedge ξ1; edge u2u3 by a copy of the superedge

ξ2; and edge u3u1 by a copy of the superedge ξ3. Second, make the junction of the re-

maining semiedges (those that are of the same color and whose respective endpoints have

di�erent colors), between pairs of consecutive superedges accordingly, say ξ1 with ξ2, ξ2
with ξ3, and ξ3 with ξ1.

We refer to Figures 17 and 18(b), for the superpositions Rt(5) and Rt(7) obtained from

G5 (Figure 3) and G7 (Figure 18(a)), respectively. Similarly, the superpositions Rt(i)

with odd i ≥ 5 and t ≥ 6 are obtained by replacing: the edges u1u2, u2u3, u3u4, u4u5,

by the superedges ξ1, ξ2, ξ3, ξ4 respectively; the edges ujuj+1, for 5 ≤ j ≤ i and odd
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i ≥ 7 (ui+1 = u1), by the superedge ξ5, for odd j; and by the superedge ξ4 for even j; and

make the junctions of the remaining semiedges between pairs of consecutive superedges,

respectively.

Following Kochol's construction, the remaining edges (resp. vertices) are replaced by

superedges L′ (resp. supervertices K ′), which is equivalent to maintain the original edges

(resp. vertices) of the Gi, for odd i ≥ 5. Moreover, if v ∈ V is incident to e ∈ E, then a

connector in ϑv is linked with a connector in ξe through the junction of semiedges.

Fig. 17. A 4-total coloring of a superposition Rt(5) of G5 with a t-SemiBlowup snark

(a)

(b)

Fig. 18. (a) A 4-total coloring of G7 indicating the superegdes ξ that replace each edge ujuj+1, 1 ≤ j ≤ 7

(u8 = u1) to obtain Rt(7). (b) A 4-total coloring of a superposition Rt(7)

Theorem 3.1. All snarks Rt(i) obtained by a superposition of a Goldberg snark Gi, odd

i ≥ 3, with a t-SemiBlowup snark, t ≥ 6, have χ′′(Rt(i)) = 4.
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Proof. Let t ≥ 6. The proof is by induction. As previously explained, Rt(i), odd i ≥ 3

is obtained from Gi by replacing edges ujuj+1 with superedges ξ, for 1 ≤ j ≤ i, where

ui+1 = u1.

It is easy to verify that the assignment presented in Figure 16 (resp. 17) is a 4-

total coloring for Rt(3) (resp. Rt(5)). Indeed, this coloring preserves the colors of the

corresponding elements in G3 (resp. G5); and the junctions are made between semiedges

of the same color (say semiedge u· and a semiedge of superedges ξ or between semiedges

of superedges ξ), whose endpoints have di�erent colors.

The 4-total coloring of each superedge ξ is obtained from the 4-total coloring of the t-

SemiBlowup snark with the two deleted nonadjacent vertices of B4 represented in Table 1

(Figure 14). The colors of the semiedges are the colors of the respective edges incident to

these deleted vertices. This is possible since the 4-total coloring of semi-graph B4 appears

in every t-SemiBlowup, with t ≥ 6.

that the coloring of the superposition Rt(i − 2), with odd i ≥ 7 and t ≥ 6, obtained

from Gi by replacing: the edges u1u2, u2u3, u3u4, u4u5, by the colored superedges ξ1, ξ2,

ξ3, ξ4 respectively; the edges ujuj+1, for 5 ≤ j ≤ i− 2 and odd i ≥ 9 (ui+1 = u1), by the

colored superedge ξ5, for odd j; and by the colored superedge ξ4 for even j is a 4-total

coloring. We depict in Figure 18(b) a 4-total coloring for Rt(7) satisfying this property.

By the induction hypothesis, we assume that a 4-coloring can be assigned to the su-

perposition Rt(i− 2), where odd i ≥ 7 and t ≥ 6. This superposition is constructed from

Gi by replacing: the edges u1u2, u2u3, u3u4, u4u5, by the colored superedges ξ1, ξ2, ξ3, ξ4
respectively; the edges ujuj+1, for 5 ≤ j ≤ i−2 and odd i ≥ 9 (ui+1 = u1), by the colored

superedge ξ5, for odd j; and by the colored superedge ξ4 for even j is a 4-total coloring.

We depict in Figure 18(b) a 4-total coloring for Rt(7) satisfying this property.

Now, we construct a 4-total coloring for Rt(i) from Rt(i− 2) as follows. For Rt(i), with

odd i ≥ 5, the edges ui−1ui and uiu1 are replaced by the colored superedges ξ4 and ξ5,

respectively. We also note that in the 4-total coloring of Gi with odd i ≥ 7: the color of

the edge ui−1ui is 2; the colors of the vertices ui−1 and ui are 1 and 3, respectively; the

color of the edge uiu1 is 4; and the colors of the vertices ui and u1 are 3 and 1, respectively.

The 4-total coloring of remaining superedges ξ in Rt(i) are obtained from the 4-total

coloring of the corresponding superedges in Rt(i− 2). That is, if the colored superedge ξ

of Rt(i− 2) replaced the edge ujuj+1 in Gi−2, for 1 ≤ j ≤ i− 2 and odd i ≥ 9, then the

coloring of the superedge ξ of Rt(i) is also obtained by replacing the same edge in Gi by

this corresponding colored superedge.

The 4-total coloring of the remaining elements Rt(i), with odd i ≥ 3, are obtained from

the 4-total coloring of Gi (presented in Subsection 2.1), without the edges {ui−1ui, uiu1}.
Again, the junctions are made between semiedges of the same color: between semiedge

u· and a semiedge of superedge ξ4 (or ξ5) (or between semiedges of superedges ξ4 and ξ5),

whose endpoints have di�erent colors. Note that the junctions of these semiedges preserve

the colors, since the same junctions are made in the 4-total coloring of Rt(7) depicted in

Figure 18(b).

Finally, by construction this 4-total coloring satis�es the conditions in the inductive

hypothesis. This ends the proof.



Type 1 Kochol Superpositions 147

4. Superposition: Goldberg with t-Blowup

In this section, we present a construction of an in�nite family of snarks obtained from a

Kochol superposition of Goldberg snarks with t-Blowup snarks, and show that all members

of the presented family are Type 1. For each odd i ≥ 3, let R′
t(i) be the snark obtained

by a superposition of Goldberg snark Gi with a t-Blowup snark, t ≥ 6.

Fig. 19. A 4-total coloring of semi-graph B′
4 that appears in every t-Blowup, with t ≥ 6. Vertices that

are removed do construct the superedges ξ′ are highlighted in colors

Superedge Deleted Superedge Deleted

ξ′1 {c2, d1} ξ′4 {c2, f3}
ξ′2 {e1, e2} ξ′5 {e3, f4}
ξ′3 {e1, d2}

Table 2. Deleted vertices in t-Blowup snark and their corresponding superedges

Fig. 20. The colored super edges ξ′1, ξ
′
2, ξ

′
3, ξ

′
4 and ξ′5

Similarly to the previous superposition, the superedges ξ′ are formed from the t-Blowup

snark, t ≥ 6, by deleting the two nonadjacent vertices of semi-graph B′
4 (Figure 19) repre-

sented in Table 2; and replacing each edge incident to these vertices with the corresponding

semiedge, see Figure 15.

Consider the Goldberg snark G3 depicted in Figure 1(a). To obtain its superposition

R′
t(3), depicted in Figure 21, �rst replace the following edges by the corresponding su-

peredges: edge u1u2 by a copy of the superedge ξ′1; edge u2u3 by a copy of the superedge

ξ′2; and edge u3u1 by a copy of the superedge ξ′3. Second, make the junction of the re-

maining semiedges (which are those of the same color and respective endpoints of di�erent

colors), between pairs of consecutive superedges accordingly, say ξ′1 with ξ′2, ξ
′
2 with ξ′3,

and ξ′3 with ξ
′
1.

We refer to Figures 22 and 23(b) for the superpositions R′
t(5) and R

′
t(7) obtained from

G5 (Figure 3) and G7 (Figure 23(a)), respectively. Similarly, the superpositions R′
t(i)
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with odd i ≥ 5 and t ≥ 6 are obtained by replacing: the edges u1u2, u2u3, u3u4, u4u5,

by the superedges ξ′1, ξ
′
2, ξ

′
3, ξ

′
4 respectively; the edges ujuj+1, for 5 ≤ j ≤ i and odd

i ≥ 7 (ui+1 = u1), by the superedge ξ′5, for odd j; and by the superedge ξ′4 for even j; and

make the junctions of the remaining semiedges between pairs of consecutive superedges,

respectively.

Again, following Kochol's construction, the remaining edges (resp. vertices) are replaced

by superedges L′ (resp. supervertices K ′) which is equivalent to maintain the original

edges (resp. vertices) of Gi for i odd and i ≥ 5. Finally, if v ∈ V is incident to e ∈ E,

then a connector in ϑv is linked with a connector in ξe through the junction of semiedges.

Fig. 21. A 4-total coloring of a Kochol superposition R′
t(3) of G3 with a t-Blowup snark

Fig. 22. A 4-total coloring of a Kochol superposition R′
t(5) of Goldberg snark G5 with t-Blowup snarks

Theorem 4.1. All snarks R′
t(i) obtained by a superposition of a Goldberg snark Gi, odd

i ≥ 3, with a t-Blowup snark, t ≥ 6, have χ′′(R′
t(i)) = 4.

Proof. Let t ≥ 6. The proof is by induction. As previously explained, R′
t(i), odd i ≥ 3

is obtained from Gi by replacing edges ujuj+1 with superedges ξ′, for 1 ≤ j ≤ i, where

ui+1 = u1.

It is easy to verify that the assignment presented in Figure 21 (resp. 22) is a 4-

total coloring for R′
t(3) (resp. R′

t(5)). Indeed, this coloring preserves the colors of the
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corresponding elements in G3 (resp. G5); the junctions are made between semiedges of

the same color (say semiedge u· and a semiedge of superedges ξ′ or between semiedges of

superedges ξ′), and whose endpoints have di�erent colors.

The 4-total coloring of each superedge ξ′ is obtained from the 4-total coloring of the

t-Blowup snark with the two deleted nonadjacent vertices of B′
4 represented in Table 2

(Figure 19). The colors of the semiedges are the colors of the respective edges incident to

these deleted vertices. This is possible since the 4-total coloring of semi-graph B′
4 appears

in every t-Blowup, with t ≥ 6.

The proof is similar to the proof of Theorem 2.3 considering the new colored superedges

ξ′. The 4-total coloring of the superedges that replaced the edges ui−1ui and uiu1 are the

same of the coloring of ξ′4 and ξ′5, respectively; and the 4-total coloring of the remaining

superedges ξ′ in R′
t(i) is obtained from the 4-total coloring of its corresponding superedge

in R′
t(i− 2).

(a)

(b)

Fig. 23. (a) A 4-total coloring of G7 indicating the superegdes ξ
′ that replace each edge to obtain R′

t(7);

(b) A 4-total coloring of a superposition R′
t(7)

Again, the junctions are made between semiedges of the same color: between semiedge

u· and a semiedge of superedge ξ4 (or ξ5); or between semiedges of superedges ξ4 and

ξ5. Moreover, the endpoints of the edges corresponding to these junctions have di�erent

colors. Note that the junctions of these semiedges preserve the colors, since the same

junctions are made in the 4-total coloring of R′
t(7) depicted in Figure 23(b). This ends

the proof.
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5. Superposition: Loupekine with t-Semi Blowup

In this section, we present a construction of an in�nite family of snarks obtained from a

Kochol superposition of Loupekine snarks with t-SemiBlowup snarks, and show that all

members of the presented family are Type 1. For each odd i ≥ 3, let Lt(i) be the snark

obtained by a superposition of Loupekine snark Li with a t-SemiBlowup snark, t ≥ 6.

Fig. 24. A 4-total coloringof semigraph B4 that appears in every t-SemiBlowup, with t ≥ 6. Vertices

that are removed to construct the superedges ξ are highlighted in colors

Superedge Deleted Superedge Deleted

ψ1 {b1, i3} ψ4 {c1, d1}
ψ2 {c2, h1} ψ5 {h1, k3}
ψ3 {d1, h1} ψ6 {c2, c1}

Table 3. Deleted vertices in t-SemiBlowup snark and their corresponding superedges

Fig. 25. The colored superedges ψ1, ψ2, ψ3, ψ4, ψ5 and ψ6

We refer to Table 3 and Figure 24 with the semigraph B4 (which appears in every

t-SemiBlowup with t ≥ 6) and the superedges that are necessary for the construction of

Rt(i). Similarly to the previous superpositions, the superedges ψi for 1 ≤ i ≤ 6, depicted

in Figure 25, are formed by deleting, from the t-SemiBlowup snark, with t ≥ 6 (Figure 24),

the two nonadjacent vertices represented in Table 3, and replacing each edge incident to

these vertices with the corresponding semiedge.

Consider the Loupekine snark L3 presented in Figure 4(a). To obtain its superpo-

sition Lt(3), depicted in Figure 26(a), replace the following edges by the corresponding

superedges: edge v6v7 by a copy of the superedge ψ1; edge v7u7 by a copy of the superedge
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ψ3; edge u7u6 by a copy of the superedge ψ1; edge u6w7 by a copy of the superedge ψ4;

edge w7w6 by a copy of the superedge ψ1; and edge w6v6 by a copy of the superedge ψ2.

Second, make the junction of the remaining semiedges (which are those of the same

color and extreme vertices of di�erent colors), between pairs of clockwise consecutive

superedges accordingly, say ψ1 with ψ3, ψ3 with ψ1, ψ1 with ψ4, ψ4 with ψ1, ψ1 with ψ2,

ψ2 with ψ1.

We refer to Figures 26(b) and 28(b), for the superpositions Lt(5) and Lt(7) obtained

from L5 (Figure 4(c)) and L7 (Figure 5), respectively. Similarly, the superpositions Lt(i)

with odd i ≥ 5 and t ≥ 6 are obtained by replacing: the edges v6v7, v7u7, u7u6, by a

copy of the superedge ψ1, ψ3, ψ1, respectively; the edges u6u
i
7, u

5
6w7, w7w6, w6v

5
6, v

i
7v6 by

a copy of the superedge ψ4, ψ6, ψ1, ψ2 and ψ5, respectively; the edges uj6u
j
7, v

j
6v

j
7, odd

5 ≤ j ≤ i by a copy of the superedge ψ1; the edges uj−2
7 uj6, v

j
6v

j−2
7 , for odd 5 ≤ j ≤ i by

a copy of the superedges ψ5, ψ6, respectively; and make the junctions of the remaining

semiedges between pairs of clockwise consecutive superedges, respectively.

Following Kochol's construction, the remaining edges (resp. vertices) are replaced by

superedges L′ (resp. supervertices K ′), which is equivalent to maintain the original edges

(resp. vertices) of the Li, for odd i ≥ 5. Moreover, if v ∈ V is incident to e ∈ E, then a

connector in ϑv is linked with a connector in ξe through the junction of semiedges.

Theorem 5.1. All snarks Lt(i) obtained by a superposition of a Loupekine snark Li, odd

i ≥ 3, with a t-SemiBlowup snark, t ≥ 6, have χ′′(Lt(i)) = 4.

Proof. Let t ≥ 6. The proof is by induction. As previously explained, Lt(i), odd i ≥ 3 is

obtained from Li by replacing certain edges with superedges ψ.

It is easy to verify that the assignment presented in Figure 26(a) (resp. 26(b)) is a

4-total coloring for Lt(3) (resp. Lt(5)), since this coloring preserves the colors of the

corresponding elements in L3 (resp. L5); the junctions are made between semiedges of

the same color; and the extreme vertices of the edges corresponding to these junctions

have di�erent colors.

The 4-total coloring of each superedge ψ is obtained from the 4-total coloring of the t-

SemiBlowup snark with the two deleted nonadjacent vertices of B4 represented in Table 3

(Figure 24). The colors of the semiedges are the colors of the respective edges incident to

these deleted vertices. This is possible since the 4-total coloring of semigraph B4 appears

in every t-SemiBlowup, with t ≥ 6.

The proof is similar to the previous proofs. For example, it is straightforward to

construct Lt(7) from Figures 27(a), and 27(b). In general, for Lt(i), the 4-total coloring of

the superedges that replaced the edges v6v
i
7, u6u

i
7 from Li−2 are the same of the coloring

of ψ5 and ψ4, respectively; the 4-total coloring of the superedges that replaced the edges

vi7v
i
6, u

i
7u

i
6 from the link graph Li are the same of the coloring of ψ1; the 4-total coloring

of the superedges that replaced the edges vi−2
7 vi6, u

i−2
7 ui6 from the link graph Li are the

same of the coloring of ψ5 and ψ6, respectively; and the 4-total coloring of the remaining

superedges ψ in Lt(i) is obtained from the 4-total coloring of its corresponding superedge

in Lt(i− 2).
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(a) (b)

Fig. 26. (a) A 4-total coloring for Lt(3), t ≥ 6; (b) A 4-total coloring for Lt(5), t ≥ 6

(a) (b)

Fig. 27. (a) A 4-total coloring for the link graph indicating the superedge that replaces each edge and

semiedge. (b) A 4-total coloring for L5 indicating the superedge that replaces each edge to obtain Lt(5)

Again, the junctions are made between semiedges of the same color whose endpoints

have di�erent colors. Note that the junctions of these semiedges preserve the colors, since

the same junctions are made in the 4-total coloring of Lt(7) (the superedges of L7 are

indicated in Figure 28(a) and depicted in Figure 28(b)). This ends the proof.

6. Superposition: Loupekine with t-Blowup

In this section, we present a construction of an in�nite family of snarks obtained from a

Kochol superposition of Loupekine snarks with t-SemiBlowup snarks, and show that all

members of the presented family are Type 1. For each odd i ≥ 3, let L′
t(i) be the snark
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(a) (b)

Fig. 28. (a) A 4-total coloring for L7 indicating the superedge ψ that replaces each edge to obtain Lt(7)

(link graph is highlighted with dashed lines); (b) A 4-total coloring of a semigraph of a superposition

Lt(i), for i ≥ 7

obtained by a superposition of Loupekine snark Li with a t-Blowup snark, t ≥ 6.

Fig. 29. A 4-total coloring of semigraph B′
4 that appears in every t-Blowup, with t ≥ 6. Vertices that

are removed do construct the superedges ψ′ are highlighted in colors.

Similarly to the previous superpositions, the superedges ψ′
i for 1 ≤ i ≤ 6, depicted in

Figure 30, are formed by deleting, from the t-Blowup snark, with t ≥ 6 (Figure 29), the

two nonadjacent vertices represented in Table 4, and replacing each edge incident to these

vertices with the corresponding semiedge.

Consider the Loupekine snark L3 presented in Figure 4(a). To obtain its superpo-

sition L′
t(3), depicted in Figure 31(a), replace the following edges by the corresponding

superedges: edge v6v7 by a copy of the superedge ψ′
3; edge v7u7 by a copy of the superedge

ψ′
4; edge u7u6 by a copy of the superedge ψ′

3; edge u6w7 by a copy of the superedge ψ′
5;

edge w7w6 by a copy of the superedge ψ′
1; and edge w6v6 by a copy of the superedge ψ′

2.

Second, make the junction of the remaining semiedges (which are those of the same

color and extreme vertices of di�erent colors), between pairs of clockwise consecutive

superedges accordingly, say ψ′
3 with ψ′

4, ψ
′
4 with ψ′

3, ψ
′
3 with ψ′

5, ψ
′
5 with ψ′

1, ψ
′
1 with ψ′

2

and ψ′
2 with ψ

′
3.

We refer to Figures 31(b) and 33(b), for the superpositions L′
t(5) and L

′
t(7) obtained
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Superedge Deleted Superedge Deleted

ψ′
1 {a2, a3} ψ′

4 {k1, l3}
ψ′
2 {b1, l3} ψ′

5 {k1, h4}
ψ′
3 {a2, j3} ψ′

6 {b1, b4}

Table 4. Deleted vertices in t-Blowup snark and their corresponding superedges

Fig. 30. The colored superedges ψ′
1, ψ

′
2, ψ

′
3, ψ

′
4, ψ

′
5 and ψ′

6

from L5 (Figure 4(c)) and L7 (Figure 5), respectively. Similarly, the superpositions L′
t(i)

with odd i ≥ 5 and t ≥ 6 are obtained by replacing: the edges v6v7, v7u7, u7u6, by a

copy of the superedge ψ′
3, ψ

′
4, ψ

′
3, respectively; the edges u6u

i
7, u

5
6w7, w7w6, w6v

5
6, v

i
7v6 by

a copy of the superedge ψ′
5, ψ

′
6, ψ

′
1, ψ

′
2 and ψ′

4, respectively; the edges uj6u
j
7, v

j
6v

j
7, odd

5 ≤ j ≤ i by a copy of the superedge ψ′
1, ψ

′
3 respectively ; the edges uj−2

7 uj6, v
j
6v

j−2
7 , for

odd 5 ≤ j ≤ i by a copy of the superedges ψ′
6, ψ

′
4, respectively; and make the junctions

of the remaining semiedges between pairs of clockwise consecutive superedges.

Following Kochol's construction, the remaining edges (resp. vertices) are replaced by

superedges L′ (resp. supervertices K ′), which is equivalent to maintain the original edges

(resp. vertices) of the Li, for odd i ≥ 5. Moreover, if v ∈ V is incident to e ∈ E, then a

connector in ϑv is linked with a connector in ξe through the junction of semiedges.

Theorem 6.1. All snarks L′
t(i) obtained by a superposition of a Loupekine snark Li,

i ≥ 0, with a t-Blowup snark, t ≥ 6, have χ′′(L′
t(i)) = 4.

Proof. Let t ≥ 6. The proof is by induction. As previously explained, L′
t(i), odd i ≥ 3 is

obtained from Li by replacing certain edges with superedges ψ′.

It is easy to verify that the assignment presented in Figure 31(a) (resp. 31(b)) is a

4-total coloring for L′
t(3) (resp. L′

t(5)), since this coloring preserves the colors of the

corresponding elements in L3 (resp. L5); the junctions are made between semiedges of

the same color; and the extreme vertices of the edges corresponding to these junctions

have di�erent colors.

The 4-total coloring of each superedge ψ′ is obtained from the 4-total coloring of the

t-Blowup snark with the two deleted nonadjacent vertices of B′
4 represented in Table 4

(Figure 29). The colors of the semiedges are the colors of the respective edges incident to

these deleted vertices. This is possible since the 4-total coloring of semigraph B′
4 appears

in every t-Blowup, with t ≥ 6.

The proof is similar to the previous proofs. For example, it is straightforward to

construct Lt(7) from Figures 32(a), and 32(b). In general, for L′
t(i), the 4-total coloring of
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(a) (b)

Fig. 31. (a) A 4-total coloring for L′
t(3), t ≥ 6; (b)A 4-total coloring for L′

t(5), t ≥ 6

the superedges that replaced the edges vi7v6, u6u
i
7 from L′

i−2 are the same of the coloring

of ψ′
4 and ψ

′
5, respectively; the 4-total coloring of the superedges that replaced the edges

vi7v
i
6, u

i
7u

i
6 from the link graph Li are the same of the coloring of ψ′

3 and ψ
′
1, respectively;

the 4-total coloring of the superedges that replaced the edges vi−2
7 vi6, u

i−2
7 ui6 from the

link graph Li are the same of the coloring of ψ′
4 and ψ′

6, respectively; and the 4-total

coloring of the remaining superedges ψ′ in L′
t(i) is obtained from the 4-total coloring of

its corresponding superedge in L′
t(i− 2).

(a) (b)

Fig. 32. (a) A 4-total coloring for the link graph indicating the superedge that replaces each edge. (b)

A 4-total coloring for L5 indicating the superedge that replaces each edge to obtain L′
t(5)

Again, the junctions are made between semiedges of the same color and the extreme

vertices of the edges corresponding to these junctions have di�erent colors. Note that the
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junctions of these semiedges preserve the colors, since the same junctions are made in the

4-total coloring of Lt(7) (the superedges of L7 are indicated in Figure 33(a) and depicted

in Figure 33(b). This ends the proof.

(a) (b)

Fig. 33. (a) A 4-total coloring for L7 indicating the superedge ψ
′ that replaces each edge to obtain L′

t(7)

(link graph is highlighted with dashed lines); (b) A 4-total coloring of a semigraph of a superposition

L′
t(i), for i ≥ 7

7. Conclusion

In this paper, we analyze Question 1.2, proposed by Brinkmann, Preissmann and D.

Sasaki [2], investigating the Problem 1.1 for cubic graphs. We emphasize that the

Loupekine, Goldberg, t-SemiBlowup and t-Blowup snarks studied in this paper have girth

greater than or equal to 5. Hence, once the studied graphs Rt(i), R
′
t(i), Lt(i) and L

′
t(i)

are obtained by Kochol's superposition, the girth of the resulting graph is determined by

the smallest cycle between the original graphs involved in this operation. Thus, for �xed

i or t, we construct a family of Type 1 cubic graphs with girth greater than or equal to

5, and these results provide evidence of negative answer for the Question 1.2.
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