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abstract

A proper total coloring of a graph G such that there are at least 4 colors on those vertices and

edges incident with a cycle of G, is called an acyclic total coloring. The acyclic total chromatic

number of G, denoted by χ
′′
a(G), is the smallest number of colors such that G has an acyclic total

coloring. In this article, we prove that for any graph G with ∆(G) = ∆ which satis�es χ
′′
(G) ≤ A

for some constant A, and for any integer r, 1 ≤ r ≤ 2∆, there exists a constant c > 0 such that if

g(G) ≥ c∆
r
log ∆2

r
, then χ

′′
a(G) ≤ A+ r.
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1. Introduction

In this paper, all graphs considered are �nite and undirected. Let G = (V,E) be a graph, where

V = V (G) and E = E(G) are the vertex set and the edge set of G, respectively [6]. We use ∆(G),

δ(G) to denote the maximum degree and the minimum degree of a graph G, respectively. The girth

of a graph G, denoted by g(G), is the length of the shortest cycle in G. As usual, [k] stands for the

set {1, 2, . . . , k}.
A proper vertex (or edge) k-coloring of a graph G is a mapping φ from V (G) (or E(G)) to the color

set [k] such that no pair of adjacent vertices (or adjacent edges) are colored with the same color. A

proper vertex (or edge) coloring of a graph G is called acyclic if there is no 2-chromatic cycle (cycle

colored with precisely two colors) in G, i.e., the union of any two color classes induces a forest in G.

The acyclic chromatic number of G, denoted by χa(G), is the smallest number k of colors such that

G has an acyclic k-coloring. The acyclic chromatic index of G, denoted by χ
′
a(G), is the smallest

number k of colors such that G has an acyclic edge k-coloring.
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The concept of acyclic coloring of a graph was introduced by Grünbaum [14] who conjecture that

every planar graph is acyclically 5-colorable, which was proved by Borodin [7]. In 2011, Kostochka

et al. [21] proved that every graph with maximum degree 5 has an acyclic 7-coloring, i.e., χa(G) ≤ 7.

In 2014, Zhao and Miao et al. [31] proved that every graph with maximum degree 6 is acyclically

10-colorable, i.e., χa(G) ≤ 10.

In 2001, Alon et al. [2] proposed the Acyclic Edge Coloring Conjecture, which states that for every

graph G, χ
′
a(G) ≤ ∆(G)+2. This conjecture was justi�ed for several classes of graphs, including non-

regular graphs with maximum degree at most 4 [4], subcubic graphs [3, 26], outerplanar graphs [17,

23], series-parallel graphs [16], planar graphs without small cycles [15, 16], etc. In 2010, Borowiecki

et al. [11] proved the conjecture for planar graphs with girth at least 5 and for planar graphs not

containing cycles of length 4, 6, 8 and 9. They also show that χ
′
a(G) ≤ ∆(G) + 1 if G is planar

with girth at least 6. In 2012, Lin et al. [22] proved that for a graph G with maximum degree ∆

and girth g(G), and for any integer r with 1 ≤ r ≤ 2∆, there exists a constant c > 0 such that if

g(G) ≥ c∆
r
log(∆

2

r
), then χ

′
a(G) ≤ ∆+ r + 1.

A proper total k-coloring of a graph G is a mapping ϕ : E(G)∪V (G) → {1, 2, . . . , k} such that no

two adjacent or incident elements receive the same color. The total chromatic number of G, χ
′′
(G),

is the smallest integer k such that G has a proper total k-coloring. An acyclic total k-coloring is

a proper total k-coloring of a graph G such that there are at least 4 colors on those vertices and

edges incident with a cycle of G. The acyclic total chromatic number of G, denoted by χ
′′
a(G), is the

smallest number k of colors such that G has an acyclic total k-coloring.

Behzad [5] and Vizing [29] independently conjectured that ∆(G) + 1 ≤ χ
′′
(G) ≤ ∆(G) + 2 (the

Total Coloring Conjecture). In 1971, Rosenfeld [24] proved that if G is a graph with ∆(G) ≤ 3,

then χ
′′
(G) ≤ 5. In 1977, Kostochka [19] proved that if G is any multigraph with ∆(G) ≤ 4, then

χ
′′
(G) ≤ 6. In 1996, Kostochka [20] proved that for each multigraph G with ∆(G) ≤ 5, χ

′′
(G) ≤ 7.

Borodin [8] proved that every planar graph with ∆(G) ≥ 9 is total (∆(G)+ 2)-colorable. This result

was improved to the case ∆(G) ≥ 8 by employing Four-Color Theorem and Vizing's Theorem on

the edge coloring [18]. More recently, Sanders and Zhao [25] further settled the ∆(G) = 7 case.

For planar graphs, the Total Coloring Conjecture remains open only for the ∆(G) = 6 case. It was

shown that χ
′′
(G) = ∆(G) + 1 if G is a planar graph with ∆(G) ≥ 14 [8], with ∆(G) ≥ 12 [9], with

∆(G) = 11 [10] and with ∆(G) = 10 [30].

The acyclic total coloring was introduced by Sun and Wu [28], who proved that the acyclic total

chromatic number of a planar graphG is at most∆(G)+2 if∆(G) ≥ 12, or if∆(G) ≥ 6 and g(G) ≥ 4,

or if ∆(G) ≥ 5 and g(G) ≥ 5, or if g(G) ≥ 6. Furthermore, they proved that χ
′′
a(G) = ∆(G) + 1 if G

is a series-parallel graph with ∆(G) ≥ 3. They also showed in the same paper that χ
′′
a(G) ≤ ∆(G)+2

for a bipartite graph G. Lastly, they posed the following conjucture.

Conjecture 1.1. ∆(G) + 1 ≤ χ
′′
a(G) ≤ ∆(G) + 2 for any graph G.

For a planar graph G of maximum degree at least k and without l cycles, the conjecture is proved

to be true if (k, l) ∈ {(6, 3), (7, 4), (6, 5), (7, 6)} [27]. For every plane graph G, χ
′′
a(G) = ∆(G) + 1 if

∆(G) ≥ 9 and g(G) ≥ 4, or if ∆(G) ≥ 6 and g(G) ≥ 5, or if ∆(G) ≥ 4 and g(G) ≥ 6, or if ∆(G) ≥ 3

and g(G) ≥ 14 [12].

To the best of our knowledge, there are not many results on the bounds of the acyclic total

chromatic number. In this paper, we investigate the acyclic total coloring of graphs with large

girths, and prove the following theorem.



acyclic total coloring of graphs with large girths 5

Theorem 1.2. For any graph G with ∆(G) = ∆ which satis�es χ
′′
(G) ≤ A for some constant A,

and for any integer r, 1 ≤ r ≤ 2∆, there exists a constant c > 0 such that if g(G) ≥ c∆
r
log ∆2

r
, then

χ
′′
a(G) ≤ A+ r.

Corollary 1.3. For any graph G with ∆(G) = ∆ which satis�es χ
′′
(G) = ∆+1, and for any integer

r, 1 ≤ r ≤ 2∆, there exists a constant c > 0 such that if g(G) ≥ c∆
r
log ∆2

r
, then χ

′′
a(G) ≤ ∆+ r + 1.

Thus, for r = 1 such graphs also satisfy Conjecture 1.1.

Corollary 1.4. For any graph G with ∆(G) = ∆ which satis�es χ
′′
(G) = ∆+2, and for any integer

r, 1 ≤ r ≤ 2∆, there exists a constant c > 0 such that if g(G) ≥ c∆
r
log ∆2

r
, then χ

′′
a(G) ≤ ∆+ r + 2.

In Section 2, we give some preliminaries, including the de�nitions, symbols and conclusions used

in this paper. We then give the proof of the main result in Section 3.

2. Preliminary lemmas

A cycle is a graph such that each its vertex is of degree two. The length of a cycle is the number of

its edges. A cycle of length k is called a k-cycle. A half-edge contains a vertex and one of its incident

edges.

Lemma 2.1. [28] If G is a cycle, then χ
′′
a(G) = 4.

The proof of Theorem 1.2 relies heavily on the following general form of the Lovász local lemma

[1, 13].

Lemma 2.2. Let A1, A2, . . . , An be the random events, and suppose that there exist real numbers

x1, x2, . . . , xn such that 0 < xi < 1, i = 1, 2, . . . , n, and

Pr(Ai) ≤ xi

∏
{i,j}∈E(D)

(1− xj). (1)

Then Pr(
⋂n

i=1Ai) > 0.

The graphD involved in the lemma above is called dependency graph. The vertex set V (D) consists

of all events Ai, in which every event Ai is mutually independent of all Aj with {i, j} ̸∈ E(D).

3. Proof of Theorem 1.2

The technique used in the proof is similar to that in [22].

In the following, we will prove the theorem by showing that if g(G) ≥ c∆
r
log(∆

2

r
), then there exists

an acyclic total coloring of G with A + r colors. Without loss of generality, we suppose that the

graph G is connected.

If ∆ = 0, namely G is a trivial graph, then χ
′′
a(G) = 1.

If ∆ = 1, namely G is an edge, then χ
′′
a(G) = 3.

If ∆ = 2, then G is a path, a parallel edge or a cycle. If G is a path, then χ
′′
a(G) = 3. If G is a

parallel edge, then χ
′′
a(G) = 4. Otherwise, χ

′′
a(G) = 4 by Lemma 2.1.

So we can suppose that ∆ ≥ 3. The proof consists of two steps. First, since χ
′′
(G) ≤ A, we
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can properly color the vertices and edges of G by A colors. Let c denote this total coloring. Next,

each vertex and each edge is recolored with the remaining r colors randomly and independently with

probability p1, p2, respectively. Let us denote the set of those remaining r colors by [r] = {1, 2, . . . , r}.
Now, it su�ces to show that with positive probability:

(A) the total coloring remains proper: no two adjacent or incident elements are colored with color

i for some i ∈ [r], and

(B) the total coloring becomes acyclic: every cycle of G contains at least four di�erent colors. To

assume that (A) and (B) hold, we need only to avoid the following six types of �bad" events.

Type 1. For each pair of adjacent vertices L = {v1, v2}, let EL be the event that both v1 and v2
are recolored with i for some i ∈ [r].

Type 2. For each pair of adjacent edges C = {e1, e2}, let EC be the event that both e1 and e2
are recolored with i for some i ∈ [r].

Type 3. For each half-edge D = {v1, e1}, let ED be the event that both v1 and e1 are recolored

with i for some i ∈ [r].

Type 4. For each 3k-cycle F which has three colors in the �rst total coloring, let EF be the event

that both of V (F ) and E(F ) are not recolored.

For each 3k-cycleH = v0e1v1e2v2 · · · e3k−1v3k−1e3kv0 = x1x2 · · ·x6k−1x6kx1. We markO = {x1, x4, . . . , x6k−2},
P = {x2, x5, . . . , x6k−1}, Q = {x3, x6, . . . , x6k}. After the �rst total coloring c in G, a 3k-cycle H is

called partial-monochromatic if at least one of the sets O, P , Q is monochromatic. Note that this

includes cycles which contain three colors by the �rst total coloring.

Type 5. For each partial-monochromatic 3k-cycle H in the �rst total coloring, let EH denote

the event that at least 1
3
of the vertices and edges of H are recolored such that H is properly total

3-chromatic in the new total coloring.

Type 6. For each 3k-cycle J which is not a partial-monochromatic cycle in the �rst total coloring,

let EJ be the event that J is properly total 3-chromatic in the new total coloring.

We claim that if no events of Types 1-6 appear, then (A) and (B) hold. It is easy to see that (A)

holds if no events of Types 1, 2 or 3 appear. Since total colorings of (3k+1)-cycles and (3k+2)-cycles

are acyclic, only 3k-cycles can be 3-chromatic in the new total coloring. If no element of such the

3k-cycle was recolored with some new color, then the cycle would be of Type 4. Otherwise, if the

3k-cycle was recolored, then such the cycle would be either partial-monochromatic and consequently

of Type 5 or non-partial-monochromatic and consequently of Type 6. Thus (B) holds if no elements

of Types 4, 5 or 6 appear. Thus it su�ces to show that none of these events occur with positive

probability, namely, the probability that both (A) and (B) hold is positive. Now, let K be the

dependency graph whose vertex set consists of all the events of the six types, in which two vertices

EX and EY (X, Y ∈ {L,C,D, F,H, J}) are adjacent if and only if X and Y share a common vertex

or a common edge. It is immediate that the probabilities of the above six types are as follows.

1) Pr(EL) = rp21 for each event EL of Type 1.

2) Pr(EC) = rp22 for each event EC of Type 2.

3) Pr(ED) = rp1p2 for each event ED of Type 3.

4) Pr(EF ) = (1− rp1)
3x(1− rp2)

3x for each event EF of Type 4, where F is of length 3x.

5) Pr(EH) ≤ 3
(
r
1

)
px1p

x
2 for each event EH of Type 5, where H is of length 3x.

6) Pr(EJ) ≤ 3!
(
r
3

)
p3x1 p3x2 for each event EJ of Type 6, where J is of length 3x.

In order to apply the Lovász local lemma, we also need to estimate the degrees of vertices of each

type in K.
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Lemma 3.1. For any given vertex v in G, we have that

(1) at most ∆ vertices are adjacent to v;

(2) at most ∆ half-edges contain v;

(3) at most ∆ 3k-cycles which are properly total 3-chromatic contain v;

(4) fewer than ∆2k partial-monochromatic 3k-cycles contain v;

(5) fewer than ∆3k−1 3k-cycles contain v.

Proof. It is obvious that (1), (2) hold. To prove (3), we �nd a total 3-chromatic 3k-cycle H =

ve1v1e2v2 · · · e3k−1v3k−1e3kv as follows. For vertex v in G, select an edge e1 which is incident to v (at

most ∆ possibilities). We use v1 to denote the other endpoint of e1. Then, select an edge e2 which is

adjacent to e1 such that c(e2) = c(v) and c(v2) = c(e1), where v2 is the other endpoint of e2. There

is at most one such edge e2 since the total coloring c is proper. If such a vertex v2 does not exist, the

number of cycles is smaller than the bound presented in the lemma. Then, for i = 2, 3, . . . , 3k, there

is at most one possible edge ei such that the 3k-cycle H is total 3-chromatic. Therefore the number

of 3k-cycles which are properly total 3-chromatic that contain vertex v is at most ∆.

To prove (4), we �nd a partial-monochromatic 3k-cycle M = ve1v1e2v2 · · · e3k−1v3k−1e3kv

= x1x2 · · ·x6k−1x6kx1 (without loss of generality, we assume that v = x1 and Q is monochromatic,

since other cases are similar) as follows. Select an edge x2 which is incident to x1 (at most ∆

possibilities). Next, select an edge x4 which is adjacent to x2 (at most ∆ − 1 possibilities). Then,

select an edge x6 which is adjacent to x4 such that c(x6) = c(x3). There is at most one such edge x6

since the total coloring c is proper. If such an edge does not exist, the number of cycles is smaller

than the bound presented in the lemma. Next, we proceed similarly. For i = 2, . . . , k, we select in

turn the edge x6i−4 (at most ∆−1 possibilities), x6i−2 (at most ∆−1 possibilities) and x6i such that

c(x6i) = c(x6i−3) (at most one possibility). Therefore the number of partial-monochromatic 3k-cycles

that contain v is fewer than ∆2k.

To prove (5), we �nd a 3k-cycle N = ve1v1e2v2 · · · e3k−1v3k−1e3kv as follows. For vertex v in G,

select an edge e1 which is incident to v (at most ∆ possibilities). Next, for i = 2, . . . , 3k − 1, there

are at most ∆ − 1 possible edges ei and at most one possible edges e3k such that N is a 3k-cycle.

Therefore the number of 3k-cycles that contain vertex v is fewer than ∆3k−1.

This completes the proof of Lemma 3.1.

Lemma 3.2. For any given edge e in G, we have that

(1) fewer than 2∆ edges are adjacent to e;

(2) exactly two half-edges contain e;

(3) exactly one 3k-cycle which is properly total 3-chromatic contains e;

(4) fewer than 2∆2k−1 partial-monochromatic 3k-cycles contain e;

(5) fewer than 2∆3k−2 3k-cycles contain e.

Proof. It is obvious that (1), (2), (3) hold.

To prove (4), we �nd a partial-monochromatic 3k-cycle M = v0ev1e2v2 · · · e3k−1v3k−1e3kv0 =

x1x2 · · ·x6k−1x6kx1 (without loss of generality, we assume that e = x2 and P is monochromatic, since

other cases are similar) as follows. Select an edge x4 which is adjacent to x2 such that c(x5) = c(x2) (at

most 2(∆− 1) possibilities). Next, for i = 2, . . . , k, we select in turn the edge x6i−6 which is adjacent

to x6i−8 (at most ∆ − 1 possibilities), x6i−4 which is adjacent to x6i−6 such that c(x6i−4) = c(x6i−7)

(at most one possibility), and x6i−2 which is adjacent to x6i−4 such that c(x6i−1) = c(x6i−4) (at most
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∆−1 possibilities). Finally, there is at most one possible edge x6k, for all k, such that M is a partial-

monochromatic 3k-cycle. Therefore the number of partial-monochromatic 3k-cycles that contain e

is fewer than 2∆2k−1.

To prove (5), we �nd a 3k-cycle N = v0ev1e2v2 · · · e3k−1v3k−1e3kv0 as follows. For edge e in G,

select an edge e2 which is adjacent to e (at most 2(∆− 1) possibilities). Then, for i = 3, . . . , 3k − 1,

there are at most ∆−1 possible edges ei and at most one possible edge e3k such that N is a 3k-cycle.

Therefore the number of 3k-cycles that contain edge e is fewer than 2∆3k−2.

This completes the proof of Lemma 3.2.

It follows from Lemma 3.1 and Lemma 3.2 that each event EX , where X contains x vertices and

y edges, is adjacent (in the dependency graph K) to

(1) at most ∆x events of Type 1;

(2) at most 2∆y events of Type 2;

(3) at most ∆x events of Type 3;

(4) at most ∆x+ y events of Type 4;

(5) at most (∆x+ 2y)∆2k−1 events of Type 5, for all k ≥ 1;

(6) at most (∆x+ 2y)∆3k−2 events of Type 6, for all k ≥ 1.

Now, we shall check that (1) holds for all events. To this end, let us put

p1 = p2 =
1

32∆
, g = g(G) ≥ 855

∆

r
log

∆2

r
,

x1 = x2 = x3 =
r

512∆2
,

for Type 1, 2, 3, respectively,

x4 =
r

512∆2
,

with 3k-cycle for Type 4,

x5 =
r

∆(2∆)2k
,

with 3k-cycle for Type 5,

x6 =
r

(2∆)3k
,

with 3k-cycle for Type 6 .

It remains to show that the following inequalities hold.

Pr(EL) = rp21 ≤x1(1− x1)
2∆(1− x3)

2∆(1− x4)
2∆

∏
k≥ g

3

(1− x5)
2∆2k

∏
k≥ g

3

(1− x6)
2∆3k−1

,
(2)

Pr(EC) = rp22 ≤ x2(1− x2)
4∆(1− x4)

2
∏
k≥ g

3

(1− x5)
4∆2k−1

∏
k≥ g

3

(1− x6)
4∆3k−2

,
(3)

Pr(ED) = rp1p2 ≤x3(1− x1)
∆(1− x2)

2∆(1− x3)
∆(1− x4)

∆+1∏
k≥ g

3

(1− x5)
(∆+2)∆2k−1

∏
k≥ g

3

(1− x6)
(∆+2)∆3k−2

, (4)
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Pr(EF ) =(1− rp1)
3x(1− rp2)

3x ≤ x4(1− x1)
3x∆(1− x2)

6x∆(1− x3)
3x∆(1− x4)

3x(∆+1)∏
k≥ g

3

(1− x5)
3x(∆+2)∆2k−1

∏
k≥ g

3

(1− x6)
3x(∆+2)∆3k−2

, for all x ≥ g

3
, (5)

Pr(EH) ≤3

(
r

1

)
px1p

x
2 ≤ x5(1− x1)

3x∆(1− x2)
6x∆(1− x3)

3x∆(1− x4)
3x(∆+1)∏

k≥ g
3

(1− x5)
3x(∆+2)∆2k−1

∏
k≥ g

3

(1− x6)
3x(∆+2)∆3k−2

, for all x ≥ g

3
,

(6)

Pr(EJ) ≤3!

(
r

3

)
p3x1 p3x2 ≤ x6(1− x1)

3x∆(1− x2)
6x∆(1− x3)

3x∆(1− x4)
3x(∆+1)∏

k≥ g
3

(1− x5)
3x(∆+2)∆2k−1

∏
k≥ g

3

(1− x6)
3x(∆+2)∆3k−2

, for all x ≥ g

3
.

(7)

Remark 3.3. If r ≤ 2, then there is no Type 6 and all∏
k≥ g

3

(1− x6)
3x(∆+2)∆3k−2

,

above shall be deleted.

Since (1− 1
a
)a ≥ 1

4
for all a ≥ 2, we have

∏
k≥ g

3

(1− x5)
∆2k ≥

∏
k≥ g

3

(
1

4

) r

22k∆

=

(
1

4

) r
∆

∑
k≥ g

3

1

22k

≥
(
1

4

) r

2
2g
3 −1

∆ ,

∏
k≥ g

3

(1− x5)
∆2k−1 ≥

∏
k≥ g

3

(
1

4

) r

22k∆2

=

(
1

4

) r
∆2

∑
k≥ g

3

1

22k

≥
(
1

4

) r

2
2g
3 −1

∆2
,

∏
k≥ g

3

(1− x6)
∆3k−1 ≥

∏
k≥ g

3

(
1

4

) r

23k∆

=

(
1

4

) r
∆

∑
k≥ g

3

1

23k

≥
(
1

4

) r
2g−1∆

,

∏
k≥ g

3

(1− x6)
∆3k−2 ≥

∏
k≥ g

3

(
1

4

) r

23k∆2

=

(
1

4

) r
∆2

∑
k≥ g

3

1

23k

≥
(
1

4

) r
2g−1∆2

.

Noting that r ≤ 2∆ and g ≥ 855∆
r
log ∆2

r
> 32, we have that

(1− x1)
2∆(1− x3)

2∆(1− x4)
2∆

∏
k≥ g

3

(1− x5)
2∆2k

∏
k≥ g

3

(1− x6)
2∆3k−1

is at least

(
1

4

) 3r
256∆

+ 2r

2
2g
3 −1

∆

+ 2r
2g−1∆

≥
(
1

2

) r
32∆

>
1

2
, (8)

which implies that (2) hold. Similarly,
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(1− x2)
4∆(1− x4)

2
∏
k≥ g

3

(1− x5)
4∆2k−1

∏
k≥ g

3

(1− x6)
4∆3k−2 ≥

(
1

4

) r
128∆

+ r
256∆2+

4r

2
2g
3 −1

∆2
+ 4r

2g−1∆2

≥
(
1

2

) r
32∆

>
1

2
,

(9)

(1− x1)
∆(1− x2)

2∆(1− x3)
∆(1− x4)

∆+1
∏
k≥ g

3

(1− x5)
(∆+2)∆2k−1

∏
k≥ g

3

(1− x6)
(∆+2)∆3k−2

≥
(
1

4

) r
128∆

+
r(∆+1)

512∆2 +
r(∆+2)

2
2g
3 −1

∆2
+

r(∆+2)

2g−1∆2

≥
(
1

4

) r
128∆

+ r
256∆

+ 2r

2
2g
3 −1

∆

+ 2r
2g−1∆

≥
(
1

2

) r
32∆

>
1

2
.

(10)

Eqs. (3) and (4) hold.

In order to prove inequality (5) , it su�ces to show that

e−
3rx
16∆ <

r

512∆2

(
1

2

) 3rx
16∆

, (11)

by (1 − rp)x ≤ e−rpx for all x > 0. It is immediate that (3.10) holds since x ≥ g
3
≥ 855∆

3r
log ∆2

r
>

16∆ log 512∆2

r

3r log e
2

and ∆ ≥ 3.

Using (10) we have

(1− x1)
3x∆(1− x2)

6x∆(1− x3)
3x∆(1− x4)

3x(∆+1)

∏
k≥ g

3

(1− x5)
3x(∆+2)∆2k−1

∏
k≥ g

3

(1− x6)
3x(∆+2)∆3k−2 ≥

(
1

2

) 3xr
32∆

>

(
1

2

)x

.
(12)

It is immediate that (6) holds since 128x

3
≥ 128

855∆
3r log ∆2

r

3
≥ 1

3

(
128
e

) 855
6

log ∆
2
(
∆
2

) 855
6 > ∆. Noting that

r − 1, r − 2 ≤ 2∆, we have that

3!

(
r

3

)
p3x1 p3x2 =

r(r − 1)(r − 2)

(32∆)6x
≤ 4∆2r

(32∆)6x
, (13)

which implies that (7) holds. This completes the proof of Theorem 1.2.
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