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ABSTRACT

Given a connected graph H, its first Zagreb index M;(H) is equal to the sum of squares of the degrees
of all vertices in H. In this paper, we give a best possible lower bound on M;(H) that guarantees
H is 7-path-coverable and 7-edge-Hamiltonian, respectively. Our research supplies a continuation of
the results presented by Feng et al. (2017).
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1. Introduction

We study simple, undirected, connected, and finite graphs throughout this paper. Let H be a
graph with vertex set V/(H) = {v1, va,..., v,}, i.e., p = |V(H)|. For a vertex vy € V(H), the degree
degy (vs) (= ds) of v is the number of edges incident with v in H. Denote by (dy, ds, . .., d,) the degree
sequence of H with d; < dy < --- < d,. We remove the footnote H from the symbols in the following
context if there is no ambiguity. Furthermore, any given integer sequence m = (d; < dy < -+ < d,,)
is called a graphical sequence if there exists a graph G having 7 as its vertex degree sequence.

We shall use H; U Hy, H; + Hs to denote the union and the join of two vertex-disjoint graphs H,
and Hy, respectively. We use K, to denote the complete graph of order p, and by H we denote the
complement of H.

A path with |V (H)| vertices is called a Hamiltonian path of H. If H contains a Hamiltonian path,
then H is traceable. We say a graph H, T-path-coverable (T is a positive integer), if the vertex set of
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H can be covered by 7 or fewer vertex-disjoint paths. In particular, the notions “1-path-coverable"
and “traceable" are equivalent. A graph H is 7-edge-Hamiltonian if any collection of pairwise vertex-
disjoint paths altogether with at most 7 edges belong to a Hamiltonian cycle in H. We refer the
reader to [6] for undefined notation and terminology.

The first and second Zagreb indices of a graph H, which were introduced by Gutman and Trinajsti¢
in [13], are defined as:

Z deg(z)® and My(H Z deg(z) deg(y).

eV (H ryeE(H)

For historical background and mathematical properties of Zagreb indices, one can refer to |7, 8, 9,

10, 12, 23].

A popular research topic in graph theory is to study whether a given graph has some important
property (such as Hamiltonian or traceable). It is shown in [15] that determining whether a graph
has a Hamiltonian cycle is NP-complete. Although there are some literatures |11, 14, 16, 17, 18,
19, 20, 21] using the bounds of topological indices (or spectral conditions) to confirm the structure
of graphs, there are still few results related to them. Recently, results concerning the first Zagreb
index or reciprocal degree distance have been utilized to study the x-connectivity, S-deficiency [3],
Hamiltonian-connectedness [I| and A-Hamiltonicity, hi-path-coverability and h-edge-Hamiltonicity
[1] of graphs. By employing the Wiener (or Harary) index, some vulnerability parameters (such as
integrity, toughness, tenacity and binding number) of graphs have been studied [2, 22|. However,
from the findings above, one can find that there are still some unsolved problems, such as the 7-path
coverable and 7-edge Hamiltonian property of graphs in terms of M.

In this paper, we have partially solved the problems above, that is to say, we give a best possible
lower bound on M;(H) that guarantees H is T-path-coverable and 7-edge-Hamiltonian, respectively.

2. Tt-path-coverable results

In this section, we give a best possible lower bound on M;(H) that guarantees H is T-path-coverable.
First, we present the following important conclusion.

Theorem 2.1. [5] Let (dy,ds, ..., d,) be a graphical sequence, and T > 1. Suppose that there is no
integer k with 1 < k < %(p — 1) such that dyr < k and d,_, <p—k —7—1. Then any graph with
this degree sequence s T-path-coverable.

For any positive integer p, let 7 = §(8p—9—+/37p? — 54p + 9) and 71 = $(8p—12—+/37p> — 30p + 9),
and deIlOte H — {Kl + (Kp—T—2 U K7-+1 )7 Kp*ﬂ'*Q + (K2 U Kp+7'72 ), Kp+7'+1 + Kp*T*l }

Theorem 2.2. Let H be a graph with p > 10 vertices and 7 € [1, p—3|. If M1(H) > (p —7)(p —
T —1)2+ F(p,7), then H is T-path-coverable if and only if H ¢ H, where

(

—47% 4+ (8p — 10)7 — 3p* + 9p — 6, if p— 7 is even and T € [1, 7;
orp—7is odd and T € [1, 7{;

(973 — (25p — 22)72 + (19p2 — 28p)7

—3p® — 2p* + 24p — 16) /8, if p— 7 is even and T € (11,p — 4];

(973 — (25p — 19)72 + (19p? — 26p + 7)T

—3p® + 3p* + 3p — 3)/8, if p— 7 is odd and T € (17,p — 3].
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Proof. Sufficiency. Suppose that H is not 7-path-coverable. According to Theorem 2.1, there exists
an integer s with 1 < s < %(p — 7 — 1) such that dyy, < s and d,_s < p—s—7 — 1. Recall that
1 <7 <p-—3. Then

M, (H) :zp:dz <(s+7)+(p—2s—7)p—s—1—1)*+s(p—1)*
j=1
=+ Bp—4r -4+ [(p—-1)2-2(pp—7—1)(2p—27—1)]s
+p-T)p-T1-1)>%
Now we consider the following function
fla) ==’ + (5p — 41 = )2 + [(p = 1)* = 2(p — 7 = 1)(2p — 27 — )],
with 1 <z < %(p—T—l). So we get
fl(x) = =322 +205p—4r —4)x+ (p—1)* =2(p—7—1)(2p— 27 — 1), f"(x) = —62 + 2(5p — 47 — 4).
Since p > 10, z < %(p—T—l) and 7 < p — 3, we have
ff(x)y=3[-22+(p—7—-1)]+7p—57—-5>2p+10> 0,

implying that f(z) is concave up for x € [1, =2,

Case 1. p — 7 is even. Then the maximum value of f(z) can only be f(1) or f(22=2) as x is an
integer. Note that in this case 7 # p — 3. Elementary computations yield

f(1) = —47% + (8p — 10)7 — 3p* + 9p — 6, (1)
and
p—T—2 1 3 2 2 3 2
f —y )= §(97' — (25p — 22)7° 4 (19p~ — 28p)T — 3p° — 2p” + 24p — 16).
By subtracting Eq. (1),
p—T—2 1 3 2 2 3 2

f — ) f(1) = §(9T — (25p — 54)7% + (19p” — 92p + 80)T — 3p° + 22p~ — 48p + 32).
Define

®1(1) = 97° — (25p — 54)72 + (19p® — 92p + 80)7 — 3p* + 22p* — 48p + 32 for 7 € [1, p — 4].

One can check that 7 = §(8p—9— V/37p2 — 54p + 9) is a root of ®,(7) = 0, where 37p? — 5dp + 9
is increasing if p > 10 and hence is always positive at p > 10. We can show that ®;(7) = 0 has two
other solutions, say 7, and 73. Without loss of generality, we may suppose that 7, < 75. With the
help of Matlab, we obtain 75 = p — 4 and 73 = %(Sp —9+4/37p% — 54p +9).

Since p > 10, we get 71 < p—4, 73 > p— 3, and 37p* — 54p +9 < (8p — 18)%. Hence 7, >
5(8p — 9 — \/(8p —18)?) = 1. Note that ®;() is continuous on [1,p —4]. We now consider the
following two subcases.

Subcase 1.1. 7 € [1,71]. Thus ®1(7) < 0= f(E2=2)—f(1) < 0. So f(z) < f(1) forz € [1,222-2].
Therefore

M(H)<(p—7)(p—7—1)2=47>+8p—10)1 —3p* +9p —6
=(p-7)p—7-1*+f(p, 7).
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In combination with the conditions of the theorem, the inequality above can only be true if we
take the equal sign. Thus s = 1, and correspondingly di =dy = - =d;41 =1, dryo = =dp_1 =
p—7—2andd,=p—1. So H~ K, + (K, , UK, ), contradicting the assumption.

Subcase 1.2. 7 € (m1,p —4]. Thus &1(7) > 0 = f(ZZ=2) — f(1) > 0. So f(x) < f(22=2) for

2 2
x € [17;)—;—2]. Hence

Mi(H) < (p—7)(p—7—-1)+ 2[973 — (25p — 22)7% + (19p* — 28p)T
—3p* — 2p® + 24p — 16]
= (p—71)p—7-1%+ f(p, 7).

In combination with the conditions of the theorem, the inequality above can only be true if the
equality holds. So s

= p*;*Z, and correspondingly dy = dy = --- = dp+;72 = p7;72, dMTT = dp+72'+2 =

B+, and dL;H =..-=d, =p— 1. Therefore H = KW + (KU Kp+;_z ), a contradiction.
Case 2. p— 7 is odd. Then the maximum value of f(z) can only be f(1) or f(22=). Note that

—7-1 1
f(]%) = §(9T3 — (25p — 19)7% + (19p* — 26p + 7)7 — 3p* + 3p* + 3p — 3).

By subtracting Eq. (1),

—7r-1 1
f(p+> —f(1) = §(973 — (25p — 51)7% + (19p* — 90p + 87)7 — 3p°® + 27p? — 69p + 45).

Denote

®y(7) = 97° — (25p — 51)7% + (19p* — 90p + 87)7 — 3p® + 27p* — 69p + 45 for 7 € [1, p — 3].

Note that 71 = £(8p — 12 — \/37p> — 30p + 9) is a root of ®»(7) = 0, where 37p* — 30p + 9 is
increasing if p > 10 and hence is always positive at p > 10. We can show that ®3(7) = 0 has two
other solutions, say 75 and 7;. Without loss of generality, we may suppose that 75 < 73. Using
Matlab, one can get 75 = p — 3 and 75 = %(8}9 — 12+ +/37p2 — 30p + 9).

Since p > 10, we have 7, < p—3, 74 > p— 3, and 37p> —30p+9 < (8p — 21)%.. So 7, >
5(8p —12 — /(8 — 21)?) = 1. Note that ®,(7) is continuous on [1,p — 3].

Subcase 2.1. 7 € [1, 7]. Then ®,(7) < 0, which implies that f(22=1) — f(1) < 0. Hence
f(z) < f(1) for z € [1,2=7=1]. Therefore the remaining proof is the same as the proof in Subcase
1.1, and the conclusion holds.

Subcase 2.2. T € (17, p— 3]. Thus ®»(7) > 0 = f(E2=) — f(1) > 0. Hence f(z) < f(E2=2) for
z € [1,2271]. So

1
My(H) < (p—7)p—71—1)*+ 3 {973 — (25p — 19)7% + (19p* — 26p + 7)7

—3p® + 3p® +3p — 3}
= (p-7)p—7-1"+f(p, 7).

In combination with the conditions of the theorem, the inequality above can only be true if the

equality holds. Thus di = dp = -+ = duizns = =Tl dpires = -+ = d, = p— 1. Hence
2

H = Kpiri1 + Kp—--1, which contradicts the assumption. Therefore H is 7-path-coverable.
2 2
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Conversely, suppose that H € H. Then one can check that H is not 7-path-coverable. O]

From the proof of Theorem 2.2, if 7 = 1, then the following corollary regarding the traceable
property can be drawn.

Corollary 2.3. Let H be a graph with p > 10 vertices. If
M, (H) > p* — 8p* + 25p — 24,

then H is traceable if and only if H 2 K, + (K, 3 U Ky).

3. 7-edge-Hamiltonian results

Again, we begin with the degree sequence theorem.

Theorem 3.1. [5] Let (dy,ds, ... ,d,) be a graphical sequence, 0 < 7 < p — 3. Suppose that there is
no integer k with +1 < k < %(]H—T) such that dy—r < k and d,_, < p—k+71—1. Then any graph
with this degree sequence s T-edge-Hamiltonian.

For the following theorem, we will give a best possible lower bound on M;(H) that guarantees H
is 7-edge-Hamiltonian.

Theorem 3.2. Let H be a graph with p > 5 vertices and 7 € [0, p — 3|. If
M(H)>(p+7)(p+7—17? =7 +3(1 —p)r* — (3p* — 6p +2)7 — 3p*> + 9 — 6,
then H is T-edge-Hamiltonian if and only if H 2 K11 + (K1 U K, r_9).

Proof. Sufficiency. Suppose that H is not 7-edge-Hamiltonian. According to Theorem 3.1, there
exists an integer s with 741 < s < %(p+ 7 — 1) such that d,_, <'s, d,_s < p—s+7— 1. Note that
0<7<p-—3. We have
p
Mi(H) = ) d;
j=1

< (s=1)s*+(p—2s+71)p—s+17—1)>%+s(p—1)*
= "+ (Bp+ar—4)s+[(p—1)*—2(p+7—-1)2p+27 —1)]s
+Hp+T1)(p+T—1)%

We define

(p+7-1).

N | —

g(x) = =2+ Bp+ar —)2* +[(p—1)*-2(p+7-1)2p+27— 1]z with7+1 <z <
Thus

g () = =32 +2(5p+47 —d)x+ (p—1)* =2(p+7—1)(2p+ 27— 1),¢"(x) = =63+ 2(5p + 47 — 4).
Since p > 5, x < %(p—I—T — 1) and 7 > 0, we obtain

g'(x)=3[-2x+(p+7—-1]+Tp+57—-5>Tp—5>0.
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So g(z) is concave up for 7+ 1 < x < p++_1.
Case 1. p+ T is even. Thus the maximum value of g(z) can only be g(r + 1) or g (22=2). Note
that in this case 0 < 7 < p — 4. Elementary computations yield

g(t+1)= -7 +3(1 — p)r? — (3p* — 6p +2)7 — 3p® + 9p — 6, (2)
and
g(p++_2) - %( — 978 — (25p — 22)7% — (19p* — 28p)T — 3p° — 2p* + 24p — 16).
Then
g(7”+_2) —g(r+1)= —é(TS + (p+2)7% — (5p* — 20p + 16)7 + 3p* — 22p” + 48p — 32).
Let

Ui(1) =72+ (p+2)7% — (5p* — 20p + 16)7 + 3p® — 22p® +48p — 32 for 7 € [0,p — 4].

Claim 1. ¥i(7) > 0for0 <7 <p—4.
In fact, the first derivative of Wy(7) is

V) (1) =37 + 2(p + 2)7 — 5p* + 20p — 16.

So the discriminant of ¥ (7) = 0is A = 16(4p*—14p+13). Since p > 5, ¥ (0) = —5p(p—4)—16 < 0
and A > 0. By direct calculation, one can obtain that the two real solutions 7| and 75 (say 71 < 73)
of W(7) =0 are

—p —2F 2/4p® — 14p + 13
3 :
Clearly, 71 < 0 and 7 > p — 4 for p > 5. Note that the function ¥} (7) is continuous on [0, p — 4].

, JR—
T2 =

Thus V) (7) < 0 for 0 < 7 < p — 4, implying that U,(7) is a decreasing function on 7 € [0,p — 4].
An elementary calculation gives Wy(p — 4) = 0. Therefore ¥y(7) > ¥y(p —4) = 0, and Claim 1 is
proven.

By Claim 1, we immediately have g(22=2) — g(7 + 1) = —1W(7) < 0 for 0 < 7 < p — 4. Thus
g(B2=2) < g(7 +1) for 0 < 7 < p — 4 (the equality holds only if 7 = p — 4).

Case 2. p+ 7 is odd. Thus the maximum value of g(z) can only be g(7 + 1) or g(p++_1). Recall
that 0 <7 <p—3 (7 # p—4). Note that

p+7—1
g —_—

1
5 ) = —§(97'3 + (25p — 19)7% + (19p* — 26p + 7)7 + 3p® — 3p* — 3p + 3).

By subtracting Eq. (2),

—1 1
g(z%) —g(t+1)= —g(T?’ +(p+ 5)T2 — (5102 —22p+9)T + 3p3 — 27p? + 69p — 45).

Consider the following function
Uy(7) =72+ (p+5)72 — (5p* — 22p + 9)7 + 3p® — 27p* + 69p — 45 for 7 € [0, p — 3].

Let 7, 7% and 7§ be the three roots of Uy(7) = 0. Without loss of generality, we may suppose that
' < 1) <74. Using Matlab, one can obtain 77 =3 —3p, 7/ =p—>5and 7§ =p — 3.
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Since p > 5, we get 77" < 0. Note that ¥5(0) > 0 and Wy(7) is continuous on [0,p — 5]. So
Wy(7) > 0 for 7 € [0,p — 5] or 7 =p — 3, and consequently g(E2=) < g(7 + 1).
From Case 1 and Case 2, we always have g(z) < g(7 + 1) for 7+ 1 <z < 22—, Hence

My(H)< (p+7)p+7—1)* =7 +3(1 —p)7* — (3p® — 6p +2)7 — 3p* + 9p — 6.

In combination with the conditions of the theorem, the inequality above can only be true if the
equality holds. Hence s = 7 + 1, and correspondingly di = 7+ 1, dy = -+ = dpr1 = p — 2,
dy—r =---=d, =p—1. Therefore H = K, + (K; U K,_,_2), contradicting the assumption. So H
is 7-edge-Hamiltonian.

Conversely, suppose that H = K, + (K; U K,_;_5). Then one can check that H is not 7-edge-
Hamiltonian. L]
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