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On total coloring of 1-planar graphs without 4-cycles
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abstract

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other

edge. In this paper, we con�rm the total-coloring conjecture for 1-planar graphs without 4-cycles

with maximum degree ∆ ≥ 10.
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1. Introduction

All graphs considered are �nite, simple and undirected. Let G be a graph. We use V (G), E(G), ∆(G)

and δ(G) to denote its vertex set, edge set, maximum degree and minimum degree, respectively. For

a vertex v ∈ V (G), NG(v) denotes the set of vertices that are adjacent to v in G. By d(v) := |NG(v)|
denotes the degree of v in G. For planar graphs G, F (G) denotes its face set, the degree of a face f ,

denoted by d(f), is the length of a boundary walk around f in G. We call v a k-vertex, or a k+-vertex,

or a k−-vertex if d(v) = k, or d(v) ≥ k, or d(v) ≤ k respectively and call f a k-face, or a k+-face,

or a k−-face if d(f) = k, or d(f) ≥ k, or d(f) ≤ k respectively. Any unde�ned notation follows that

of Bondy and Murty [2]. A total − k − coloring of a graph G is a coloring of V (G) ∪ E(G) using k

colors such that no two adjacent or incident elements receive the same color. The total chromatic

number χ′′(G) of G is the smallest integer k such that G has a total-k-coloring. It is clearly that

χ′′(G) ≥ ∆(G)+1. Behzad and Vizing [1, 6] posed independently the conjecture, χ′′(G) ≤ ∆(G)+2

for any graph G, which is known as the total coloring conjecture.

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other

edge. The notion of a 1-planar graph was introduced by Ringel [4] in connection with the problem

of simultaneous coloring of adjacent/incident vertices and faces of plane graphs. In [10], Zhang et al.

proved that every 1-planar graph with maximum degree ∆(G) ≥ 16 is totally (∆(G) + 2)-choosable,
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which implies that the total-coloring conjecture holds for 1-planar graphs with maximum degree at

least 16. Later, Czap [3] proved (Without discharging method) that for every 1-planar graph G with

∆(G) ≥ 10 it holds χ′′(G) ≤ ∆(G)+ 3. Moreover, if χ(G) ≤ 4, then χ′′(G) ≤ ∆(G)+ 2. In the same

paper, the author also veri�ed that for every 1-planar graph G without adjacent triangles and with

∆(G) ≥ 10 it holds χ′′(G) ≤ ∆(G) + 3. Moreover, if χ(G) ≤ 4, then χ′′(G) ≤ ∆(G) + 2. Zhang and

Hou [7] showed the following theorem which improve the lower bound for the maximum degree in

the corollary of [10] to 13.

Recently, Sun and Wu [5] veri�ed the total coloring χ′′(G) ≤ r + 2, for every 1-planar graph G if

∆(G) ≥ 9 and g(G) ≥ 4 where ∆(G) is the maximum degree of G and g(G) is the girth of G

Theorem 1.1. Let G be a 1-planar graph with maximum degree ∆(G) and let r be an integer. If

∆ ≤ r and r ≥ 13, then χ′′(G) ≤ r + 2.

In this paper, we shall prove the following results:

Theorem 1.2. Let G be a 1-planar graph without 4-cycles, with maximum degree ∆(G) ≥ 10. Then

χ′′(G) ≤ ∆(G) + 2.

2. Preliminaries

Let G in this paper has been embedded on a plane such that every edge is crossed by at most one

other edge and the number of crossings is as small as possible. The associated plane graph G× of

G is obtained by turning all crossings of G into new 4-vertices on a plane. For convenience, a vertex

in G× is called false if it is not a vertex of G and real otherwise. A false face means a face f

in G× that is incident with at least one false vertex; otherwise, f is a normal face. For a vertex

v ∈ V (G×), we use fk(v) to denote the number of k-faces which are incident with v, ni(v) to denote

the number of i-vertices which are adjacent to v, and nc(v) to denote the number of false vertices

which are adjacent to v.

For convenience, we use v1, v2, · · ·, vd to denote the neighbors of a d-vertex v in G× that occur

around it in a clockwise order. By fi denote the face incident with vvi and vvi+1 in G×, where the

addition on subscripts are taken modulo d.

Let G be a counterexample with |E(G)| as small as possible to Theorem 1.2. By minimality of G

we can assume that it is connected and that it has no total (∆(G) + 2)-colorings. First we investigate

some structural of properties of G. Here, we give some known lemmas.

Lemma 2.1. [10] Let uv be an edge in G. If min{dG(u), dG(v)} ≤ ⌊∆+1
2

⌋, then dG(u)+dG(v) ≥ ∆+3.

From this lemma, we deduce that δ(G) ≥ 3.

Lemma 2.2. [7] Let Vi be the set of i-vertices in G. We have |V∆|> 2|V3|.

Lemma 2.3. Let G be a 1-planar graph without 4-cycles and let G× be its associated plane graph.

Then for every 5+ vertex v ∈ V (G), v is incident with at most ⌊4
5
dG(v)⌋ 3-faces in G×.

The proof is just similar to the one in [8], with only quite a little minor changes. So we omit it

here and refer the reader to Lemma 4 of [8].
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Lemma 2.4. [9] Let G be a 1-plane graph and let G× be its associated plane graph.Then the following

hold:

1) For any two false vertices u and v in G×, u and v are not adjacent in G×.

2) If dG(u) = 3 and v is a false vertex in G×, then either u and v are not adjacent in G×, or uv

is not incident with two 3-faces.

3) Let v be a 3-vertex in G. If v is incident with two false 3-faces vv1v2 and vv1v3 in G×, then v2
and v3 are both false and v is incident with a 5+-face in G×.

Lemma 2.5. Let G be a 1-plane graph and let G× be its associated plane graph. Then, every 5-face

in G× is incident with at most four 5−-vertices.

The proof is just similar to the one in [7], with only quite a little minor changes. So we omit it

here and refer the reader to Lemma 9 of [7].

Lemma 2.6. [10] For each integer 3 ≤ k ≤ 5, let Xk = {x ∈ V (G)|dG(x) ≤ k}, Yk =
⋃

x∈Xk
NG(x).

If Xk ̸= ∅, then there exists a bipartite subgraph Mk = (Xk, Yk) of G such that dMk
(x) = 1 for any

x ∈ Xk and dMk
(y) ≤ k − 2 for any y ∈ Yk. We call y the k-master of x if xy ∈ Mk and x ∈ Xk.

By this lemma, we deduce that each k-vertex (3 ≤ k ≤ 5) has a j-master (k ≤ j ≤ 5).

Lemma 2.7. [7] Let G be a 1-plane graph and let v be a vertex of G. If dG(v) = 3, then, v cannot

be contained in a triangle in G. If dG(v) = 4 with NG(v) = v1, v2, v3, v4, then, for any i,(1 ≤ i ≤ 4),

the edge vvi can not be contained in two triangles.

Lemma 2.8. Let G be a 1-plane graph without 4-cycles and G× be its associated plane graph. Let

v be a vertex of G, then, there are no �ve consecutive 3-faces that are incident with v in G×. If v

is incident with i consecutive 3-faces f1, f2, · · ·, fi, (3 ≤ i ≤ 4) in G×, then, there is at most a real

small vertex among the neighbors of v on these consecutive 3-faces. Moreover, if v is incident with

4 consecutive 3-faces f1, f2, f3, f4, then v1, v3, v5 are false vertices, v2, v4 are real vertices.

The proof is just similar to the one in [8], with only quite a little minor changes. So we omit it

here and refer the reader to Lemma 4 of [8].

3. The proof of Theorem 1.2

Then, we begin to prove the main result of the paper.

A vertex v in G is small if d(v) ≤ 5 and is big if d(v) ≥ 6. Note that the degree of a false vertex

in G× is four, so every false vertex is small.

In the following, we apply the discharging method on associated 1-planar graph G× of G and

complete the proof by a contradiction. Since G× is a plane graph, we have∑
v∈V (G×)

(d (v)− 6) +
∑

f∈F (G×)

(2d (f)− 6) = −12,

by the well-known Euler's formular. Now we de�ne the initial charge function ch(x) of x ∈ V (G×)∪
F (G×). Let ch(v) = d(v) − 6 if x ∈ V (G×) and ch(f) = 2d(f) − 6 if x ∈ F (G×). And we de�ne

suitable discharging rules below to change the initial charge function ch(x) to the �nal charge function

ch′(x) on V (G×)∪F (G×). Then we still have
∑

x∈V (G×)∪F (G×) ch
′(x) =

∑
x∈V (G×)∪F (G×) ch(x) = −12,
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since any discharging procedure preserves the total charge of G×.

Our discharging rules are de�ned as follows.

R1. Each f in G× where d(f) ≥ 4 sends 2d(f)−6
t(f)

to each small vertex incident with it, where t(f)

is the number of small vertices incident with the face f .

R2. Each 3-vertex in G receives 2
9
from its i-master (3 ≤ i ≤ 5).

R3. Each 4-vertex in G receives 6
25

from its i-master (4 ≤ i ≤ 5).

R4. Each ∆-vertex gives 1
2
to a common pot from which each 3-vertex receives 1, if |V3|> 0.

R5. Let w be a false vertex and w is incident with a 3-face f in G×, then each 8+-neighbor of w

on f sends 13
50

to w.

R6. Let w be a real 4-vertex and w is incident with a normal 3-face f in G×, then each 8+-neighbor

of w on f sends 13
50

to w.

R7. Let u be a real 4 -vertex, v is a false vertex in G×, uv ∈ E(G×) and uv is incident with two

3-faces in G×, then v sends 13
25

to u.

R8. If a false vertex v in G× is incident with four 4+-faces in G×, then v sends 5
12

to each 4-neighbor

of v.

R9. If a false vertex v in G× is incident with exactly one 3-face f in G×, then v sends 1
3
to its

3-neighbor on f .

R10. Let v be a 3-vertex and v is not incident with any 3-face in G×, then v sends 1
6
to each false

vertex which is adjacent to v.

R11. If a real 4-vertex v in G× is incident with four 4+-faces in G×, then v sends 11
75

to each false

vertex which is adjacent to v.

R12. If a false vertex u in G× is adjacent to a 5-vertex v in G×, and uv is incident with 4+-faces

f1 and f2 which are adjacent in G×, then v sends 1
6
to u.

In the following, we check that the �nal charge ch′(x) on each vertex and face is nonnega-

tive, and we also show the �nal charge of the common pot is nonnegative. This implies that∑
x∈V (G×)∪F (G×) ch

′(x) ≥ 0 for all x ∈ V (G×) ∪ F (G×), a contradiction. This completes the proof

of Theorem 1.2.

First of all, by R4, the �nal charge of the common pot is at least 1
2
|V∆|−|V3|> 0 since |V∆|> 2|V3|

by Lemma 2.2. One can also check that the �nal charge of every face in F (G×) is nonnegative by

R1. Thus in the following we consider the vertices in G×.

Case 1. d = 3. By R2 and R4, v receives 1 from the common pot and 2
9
×3 = 2

3
from its i-masters,

where 3 ≤ i ≤ 5. Since G is a 1-planar graph without 4-cycles, v is incident with at most two 3-faces

in G× by Lemma 2.4 and Lemma 2.7. Now, we consider three subcases.

Case 1.1. If v is not incident with any 3-face in G×, then f1, f2, f3 are all 4
+-faces.

First, assume that v is incident with at least one 5+-face, without loss of generality, assume that f1,

then v would receive at least 1 from f1, and
2
4
× 2 = 1 from f2, f3, by Lemma 2.5 and R1. By R10, v

sends at most 1
6
×3 = 1

2
to false vertices which are adjacent to v. Thus, ch′(v) ≥ −3+1+ 2

3
+1+1− 1

2
>

0.

Second, assume that f1, f2, f3 are all 4-faces. If v is adjacent to at least one real vertex in G×,

say v1, then d(v1) ≥ 10, thus f1, f3 sends at least 2
3
× 2 = 4

3
to v, and f2 sends at least 2

4
= 1

2
to v

by R1. By R10, v sends at most 1
6
× 3 = 1

2
to false vertices which are adjacent to v. Thus,ch′(v) ≥

−3+1+ 2
3
+ 4

3
+ 1

2
− 1

2
= 0. Otherwise, v1, v2, v3 are all false vertices. Let xi be the fourth(unde�ned)

vertices of the 4-faces fi (i = 1, 2, 3). It is easy to check that x1x2, x2x3, x3x1∈E(G) by the drawing

of G. Since f1, f2, f3 are all 4-faces, there are at least two big vertices among x1, x2, x3 by Lemma

2.1, without loss of generality, assume that x1, x2, thus, f1, f2 send at least 2
3
× 2 = 4

3
to v, and f3
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sends at least 2
4
= 1

2
to v by R1. By R10, v sends at most 1

6
× 3 = 1

2
to false vertices which are

adjacent to v. Thus, ch′(v) ≥ −3 + 1 + 2
3
+ 4

3
+ 1

2
− 1

2
= 0.

Case 1.2. If v is incident with exactly one 3-face in G×, then without loss of generality assume

that f3 is a 3-face. Since no two false vertices are adjacent in G× by Lemma 2.4, there is a real

vertex, among v1 and v3, say v1, then d(v1) ≥ 10.

Assume that v2 is also a real vertex, then d(v2) ≥ 10. Thus, f1 sends at least 1 to v, f2 sends at

least 2
4−1

= 2
3
to v by R1, Thus,ch′(v) ≥ −3 + 1 + 2

3
+ 1+ 2

3
> 0. Otherwise, v2 is a false vertex. Let

xi be the second neighbors of v2 on fi (i = 1, 2), it is easy to check that x1x2∈E(G) by the drawing

of G. Thus, at least one of x1 and x2 is big by Lemma 2.1. This implies that v receives at least

min{1 + 1
2
, 2
3
× 2}= 4

3
, from f1 and f2 by R1. Therefore, ch′(v) ≥ −3 + 1 + 2

3
+ 4

3
= 0.

Case 1.3. If v is incident with exactly two 3-faces in G×, then without loss of generality assume

that f2 and f3 are 3-faces. By Lemma 2.4 and Lemma 2.7, v3 must be a real vertex, v1 and v2 are

false vertices, and f1 is a 5+-face. Thus, f1 sends at least
4

5−1
= 1 to v by Lemma 2.5 and R1. Since

G is a 1-planar graph without 4-cycles, so, there is at least a vertex among v1 and v2 which is incident

with exactly one 3-face, say v2. Then, v2 sends
1
3
to v by R9. Thus, ch′(v) ≥ −3+ 1+ 2

3
+1+ 1

3
= 0.

Case 2. d = 4 and v is a real vertex, then v has one 4-master and one 5-master. So v receives

totally 6
25
×2 = 12

25
from its masters by R3. Since G is a 1-planar graph without 4-cycles, v is incident

with at most three 3-faces in G× by Lemma 2.7.

If v is incident with exactly one 3-face in G×, say f1, then there is at most one false vertex

among v1 and v2 by Lemma 2.4. Suppose that v1 is a false vertex, then, d(v2) ≥ 9 by Lemma 2.1,

thus, v receives at least 2
4−1

= 2
3
from f2, receives

1
2
× 2 = 1 from f3 and f4 by R1. Therefore,

ch′(v) ≥ −2 + 12
25

+ 2
3
+ 1 = 11

75
.

If v is not incident with any 3-face, then v is incident with four 4+-faces.

First, assume that v is incident with at least one 5+-face, say f1, then, v receives at least 1 from

f1 by Lemma 2.5 and R1, receives 1
2
× 3 = 3

2
from f2, f3 and f4 by R1. v sends at most 11

75
× 4 = 44

75

to false vertices that are adjacent to v by R11. Therefore, ch′(v) ≥ −2 + 12
25

+ 1 + 3
2
− 44

75
> 0.

Second, assume that v is incident with four 4-faces, if the neighbors of v are all false vertices,

then, let xi be the fourth(unde�ned) vertices of the 4-faces fi (i = 1, 2, 3, 4). It is easy to check

that x1x2, x3x4∈E(G) by the drawing of G. Thus, at least one of x1 and x2 is big, similarly to x3

and x4 by Lemma 2.1. This implies that v receives at least 1
2
× 2 + 2

3
× 2 = 7

3
from f1, f2,f3 and

f4 by R1. v sends at most 11
75

× 4 = 44
75

to false vertices that are adjacent to v by R11. Therefore,

ch′(v) ≥ −2+ 12
25
+ 7

3
− 44

75
= 17

75
. Otherwise, v is adjacent to at least one real vertex. Thus, v receives

at least 1
2
× 4 = 2 from f1, f2,f3 and f4 by R1. v sends at most 11

75
× 3 = 33

75
to false vertices that are

adjacent to v by R11. Therefore, ch′(v) ≥ −2 + 12
25

+ 2− 33
75

= 3
75
.

If v is incident with exactly three 3-faces, then without loss of generality assume that f1 f2 and

f4 are 3-faces. Since G is a 1-planar graph without 4-cycles, so, v is adjacent to exactly two false

vertices by Lemma 2.4 and Lemma 2.7 in G×, and moreover f3 is a 5+-face. First, assume that two

false vertices are not adjacent, say v1 and v3, then d(v2) ≥ 9, d(v4) ≥ 9 by Lemma 2.1. Then, f3
sends at least 1 to v by R1, v1 sends

13
25

to v by R7. Thus, ch′(v) ≥ −2 + 12
25

+ 1 + 13
25

= 0.

Second, assume that two false vertices are v3 and v4, then, d(v1) ≥ 9, d(v2) ≥ 9 by Lemma 2.1.

Thus, f3 sends at least 1 to v by R1, v1 and v2 send 13
50

× 2 = 13
25

to v by R6. This implies that

ch′(v) ≥ −2 + 12
25

+ 1 + 13
25

= 0.

If v is incident with exactly two 3-faces in G×, we consider four subcases.

Case 2.1. If v is not adjacent to any false vertex, then vi ≥ 9 (i = 1, 2, 3, 4) by Lemma 2.1, and the

two 3-faces that are incident with v have no common edge by Lemma 7, without loss of generality
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assume that f2 and f4 are 3-faces. Then, v receives a total of 2
4−2

× 2 = 2 from f1 and f3, thus,

ch′(v) ≥ −2 + 12
25

+ 2 > 0.

Case 2.2. If v is adjacent to exactly one false vertex, without loss of generality assume that v1, then

d(vi) ≥ 9 (i = 2, 3, 4) by Lemma 2.1. First, assume that the two 3-faces that are incident with v have

no common edge, say f2 and f4, then, v receives at least 2
4−2

= 1 from f3, receives at least
2

4−1
= 2

3

from f1 by R1, and v receives 13
50
×2 from v2 and v3 by R6. Thus, ch′(v) ≥ −2+ 12

25
+1+ 2

3
+ 13

50
×2 = 2

3
.

Second, assume that the two 3-faces that are incident with v have one common edge, since G has

no 4-cycles, then, v1 is incident with at least one 3-face. If v1 is incident with exactly one 3-face,

without loss of generality assume that f1, then f2 is a real 3-face in G×. By R6, v receives 13
50

× 2

from v2 and v3, v receives at least 2
4−2

= 1 from f3 and receives at least 2
4−1

= 2
3
from f4 by R1.

Thus, ch′(v) ≥ −2 + 12
25

+ 1 + 2
3
+ 13

50
× 2 = 2

3
. If v1 is incident with two 3-faces, say f1 and f4, then,

v receives at least 2
4−2

× 2 = 2 from f2 and f3. Therefore, ch
′(v) ≥ −2 + 12

25
+ 2 = 12

25
.

Case 2.3. If v is adjacent to exactly two false vertices.

First, assume that two faces which are incident with v are not adjacent, say f2 and f4 are both

3-faces, then, f1 and f3 are both 4+-faces. If two false vertices that are adjacent to v are incident

with the same 4+-face, say f1, then, v1 and v2 are both false vertices, v3 and v4 are both big vertices.

Since G has no 4-cycles, then, f1 is a 5+-face. It implies that f1 sends at least 1 to v and f3 sends

at least 2
4−2

= 1 to v by Lemma 2.5 and R1. Thus, ch′(v) ≥ −2 + 12
25

+ 1 + 1 = 12
25
. Otherwise, two

false vertices that are adjacent to v are incident with di�erent 4+-faces, say f1 and f3, since G has

no 4-cycles, then, f1 and f3 are 5+-faces. Thus, v receives at least 4
5−1

× 2 = 2 from f1 and f3 by

Lemma 2.5 and R1. Therefore, ch′(v) ≥ −2 + 12
25

+ 2 = 12
25
.

Second, assume that two faces which are incident with v are adjacent, say f1 and f2 are both

3-faces, then, f3 and f4 are both 4+-faces. If two false vertices that are adjacent to v are incident

with the same 4+-face, without loss of generality assume that v1 and v4 are both false vertices, then,

d(vi) ≥ 9(i = 2, 3) by Lemma 2.1. So, v receives 13
50

× 2 = 13
25

from v2 and v3 by R6, v receives at

least 2
4
× 2 = 1 from f3 and f4 by R1, therefore, ch′(v) ≥ −2 + 12

25
+ 13

25
+ 1 = 0. If two false vertices

that are adjacent to v are incident with di�erent 4+-faces, say f3 and f4, then, v1 and v3 are both

false vertices, and d(vi) ≥ 9(i = 2, 4) by Lemma 2.1. Since G has no 4-cycles, then, f3 and f4 are

all 5+-faces. So, v receives at least 4
5−1

× 2 = 2 from f3 and f4 by Lemma 2.5 and R1, Therefore,

ch′(v) ≥ −2 + 12
25

+ 2 = 12
25
. If two false vertices that are adjacent to v are v2 and v4, since G has no

4-cycles, there is at least one 5+-face among f3 and f4, say f3. Thus, f3 sends at least
4

5−1
= 1 to v,

f4 sends at least
2

4−1
= 2

3
to v by Lemma 2.5 and R1. Therefore,ch′(v) ≥ −2 + 12

25
+ 1 + 2

3
= 11

75
.

Case 2.4. If v is adjacent to exactly three false vertices, say v1, v2 and v3, since G has exactly

two 3-faces, so, f3 and f4 are all 3-faces by Lemma 2.4, f1 and f2 are all 4+-faces. Since G has not

4-cycles, so, f1 and f2 are either all 4-faces, or all 5+-faces, or there is at least one 6+-face. First

assume that there is one 6+-face among f1 and f2, say f1. Let xi (i = 1, 2) be the second(unde�ned)

neighbors of v2 on fi, it is easy to check that x1x2∈E(G) by the drawing of G. Thus, at least one of

x1 and x2 is big by Lemma 2.1. Then, v receives at least min{ 6
6−1

+ 1
2
, 6
6
+ 2

4−1
} = 5

3
from f1 and f2

by R1.

Therefore, ch′(v) ≥ −2 + 12
25

+ 5
3
= 11

75
. Second, assume that f1 and f2 are all 5+-faces, then, v

receives at least 4
5−1

× 2 = 2 from f1 and f2 by Lemma 2.5 and R1, thus, ch′(v) ≥ −2 + 12
25

+ 2 = 12
25
.

Third, assume that f1 and f2 are all 4-faces, then, v2 is incident with four 4-faces, because otherwise,

G has 4-cycles. By R8, v receives 5
12

from v2. Let xi (i = 1, 2) be the fourth(unde�ned) vertices of

the 4-faces fi, it is easy to check that x1x2∈E(G) by the drawing of G. Thus, at least one of x1

and x2 is big by Lemma 2.1. This implies that v receives at least 1
2
+ 2

3
= 7

6
from f1 and f2 by R1.
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Therefore, ch′(v) ≥ −2 + 12
25

+ 5
12

+ 7
6
= 19

300

Case 3. d = 4 and v is a false vertex, then, the neighbors of v are real vertices, and v is adjacent

to at most two small vertices in G by Lemma 2.1. Since G has no 4-cycles, so, v is incident with at

most two 3-faces, we consider three subcases.

Case 3.1. If v is not incident with any 3-face in G×, then v is incident with four 4+-faces in G×.

Assume �rst that v has at least one 4-neighbor, say v1, then, d(v3) ≥ 9, moreover, there is at least

one big among v2 and v4 by Lemma 2.1, say v2, thus, v would receive at least 2
4−2

= 1 from f2, at least
2

4−1
×2 = 4

3
from f1 and f3, at least

2
4
= 1

2
from f4 by R1, v sends at most 5

12
×2 = 5

6
to its 4-neighbors

by R8. Therefore, ch′(v) ≥ −2 + 1 + 4
3
+ 1

2
− 5

6
= 0. Otherwise, v does not have any 4-neighbors,

then, v sends out nothing by R8, v would receive at least 2
4
× 4 = 2, Thus,ch′(v) ≥ −2 + 2 = 0.

Case 3.2. If v is incident with exactly one 3-face in G×, then without loss of generality assume

that f1 is the 3-face. There is at least one big among v1 and v2, say v2.

Assume �rst that v1 is a 3-vertex, then, both v2 and v3 are 10+-vertices by Lemma 2.1. Thus, v

would receive at least 2
4−2

= 1 from f2, at least
2

4−1
= 2

3
from f3, at least

2
4
= 1

2
from f4 by R1, v would

receive 13
50

from v2 by R5, v sends at most 1
3
to v1 by R9. Thus, ch′(v) ≥ −2+1+ 2

3
+ 1

2
+ 13

50
− 1

3
= 7

75
.

Second, assume that 4 ≤d(v1)≤ 7, then, both v2 and v3 are 6+-vertices by Lemma 2.1. So, v

would receive at least 2
4−2

= 1 from f2, at least 2
4−1

= 2
3
from f3, at least 2

4
= 1

2
from f4 by R1,

v sends out nothing by R9. Therefore,ch′(v) ≥ −2 + 1 + 2
3
+ 1

2
= 1

6
. Third, assume that v1 is a

8+-vertex, then, v1 sends 13
50

to v by R5. There is at least a big vertex among v2 and v4, so, f2 and

f4 send min{ 2
4−2

+ 1
2
, 2
4−1

× 2} = 4
3
to v, f3 sends 2

4
= 1

2
to v by R1, v sends out nothing by R9.

Therefore,ch′(v) ≥ −2 + 13
50

+ 4
3
+ 1

2
= 7

75
.

Case 3.3. If v is incident with two 3-faces in G×, since G has no 4-cycles, then, the two 3-faces

have a common edge, without loss of generality assume that f3 and f4 are 3-faces. There is a big

vertex among v1 and v3, say v1.

First assume that 6 ≤d(v4)≤ 7 , then, both v2 and v3 are big by Lemma 2.1, moreover, f1 and f2
send at least 2

4−2
×2 = 2 to v by R1, v sends out nothing by R7. Thus, ch′(v) ≥ −2+2 = 0. Second,

assume that d(v4) ≤ 5, then, vi (i = 1, 2, 3) is 8+-vertex by Lemma 2.1, moreover, f1 and f2 send at

least 2
4−2

× 2 = 2 to v by R1, v1 and v3 send
13
50
× 2 = 13

25
to v by R5, v sends at most 13

25
to v4 by R7.

Thus,ch′(v) ≥ −2 + 2 + 13
25

− 13
25

= 0.

Third assume that v4 is a 8+-vertex. If there is at least one 5+-face among f1 and f2, say f1,

then, f1 sends at least 4
5−1

= 1 to v, f2 sends at least 2
4
= 1

2
to v by Lemma 2.5 and R1, v4 sends

13
50
×2 = 13

25
to v by R5. Thus, ch′(v) ≥ −2+1+ 1

2
+ 13

25
= 1

50
. Otherwise, f1 and f2 are all 4-faces. Let

xi(i = 1, 2) be the second(unde�ned) neighbors of v2 on fi, since G has no 4-cycles, then, both x1

and x2 are false vertices. Suppose that v2 is a 6+-vertex, then, f1 sends at least
2

4−2
= 1 to v, f2 sends

at least 2
4−1

= 2
3
to v by R1, v4 sends

13
50

× 2 = 13
25

to v by R5. Thus, ch′(v) ≥ −2 + 1 + 2
3
+ 13

25
= 14

75
.

Suppose that v2 is a 3-vertex or a 4-vertex, since G has no 4-cycles, then, v2 is not incident with any

3-faces. By R10 and R11, v2 sends at least 11
75

to v. Suppose that v2 is a 5-vertex, by R12,v2 sends
1
6
to v. Thus, when v2 is a 5−-vertex, this implies that v2 sends at least 11

75
to v. And moreover, we

consider the degree of v3. If v3 is a 5−-vertex, then, v1 is a 8+-vertex by Lemma 2.1, v1 sends 13
50

to

v, v4 sends 13
50

× 2 = 13
25

to v by R5, f1 sends at least 2
4−1

= 2
3
to v, f2 sends at least 2

4
= 1

2
to v by

R1. Therefore, ch′(v) ≥ −2 + 11
75

+ 13
50

+ 13
25

+ 2
3
+ 1

2
= 7

75
. If v3 is a 6+-vertex, since v1 is big, then,

each of f1 and f2 sends at least 2
4−1

= 2
3
to v by R1, v4 sends 13

50
× 2 = 13

25
to v by R5, therefore,

ch′(v) ≥ −2 + 11
75

+ 2
3
× 2 + 13

25
= 0.

Case 4. d = 5. v is incident with at most four 3-faces in G× by Lemma 2.3. If v would send

charges to a false vertex which adjacent to v by R12, then v is incident with at most three 3-faces in
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G×. First assume that v is incident with exactly four 3-faces in G×, say f1, f2, f3 and f4, then v1,v3,

and v5 are false vertices, v2 and v4 are real vertices by Lemma 2.8. Since G has no 4-cycles, then, f5
is a 6+-face. Thus, f5 sends 1 to v by R1, therefore, ch′(v) ≥ −1 + 1 = 0. Second assume that v is

incident with exactly three 3-faces in G×, then, v is incident with two 4+-faces. If the two 4+-faces are

not adjacent, then, v sends out nothing by R12, v would receive at least 2
4
× 2 = 1 from two 4+-faces

which are incident with v. Thus, ch′(v) ≥ −1 + 1 = 0. If two 4+-faces are adjacent, without loss

of generality, assume that f1 and f2 are 4+-faces. Moreover, if v2 is a real vertex, then, v sends out

nothing by R12, v would receive at least 2
4
×2 = 1 from f1 and f2 by R1. Thus, ch′(v) ≥ −1+1 = 0.

Otherwise, v2 is a false vertex, then, v sends at most 1
6
to v2 by R12. Let xi be the second(unde�ned)

neighbors of v2 on fi (i = 1, 2), it is easy to check that x1x2∈E(G) by the drawing of G. Thus, at

least one of x1 and x2 is big by Lemma 2.1. This implies v would receive at least 2
4
+ 2

4−1
= 7

6
from

f1 and f2 by R1, therefore, ch′(v) ≥ −1 + 7
6
− 1

6
= 0. Third assume that v is incident with at most

two 3-faces in G×, then, v is incident with at least three 4+-faces. v sends at most 1
6
× 3 = 1

2
to false

vertices which are adjacent to v by R12. v would receive at least 2
4
× 3 = 3

2
from 4+-faces which are

incident with v, thus, ch′(v) ≥ −1 + 3
2
− 1

2
= 0.

Case 5. 6 ≤ d ≤ 7. Then it is trivial that ch′(v) = ch(v) ≥ 0.

Case 6. 8 ≤ d ≤ ∆(G)− 2. By Lemma 2.3, v is incident with at most ⌊4
5
d⌋ 3-faces in G×, then v

sends at most ⌊4
5
d⌋× 13

50
to false vertices and real 4-vertices which are adjacent to v on 3-faces by R5

and R6. Thus, ch′(v) ≥ d− 6− ⌊4
5
d⌋ × 13

50
≥ 99d−750

125
> 0, since d ≥ 8.

Case 7. d = ∆(G) − 1. By Lemma 2.3, v is incident with at most ⌊4
5
d⌋ 3-faces in G×. And by

Lemma 2.1, we have d(u) ≥ 4 if uv ∈ E(G). So v can be a 4-master vertex of at most two vertices

and a 5-master vertex of at most three vertices by Lemma 2.6.

Let ∆(G) = 10, Then, d = 9. By Lemma 2.3, v is incident with at most seven 3-faces in G×. If v

is incident with exactly seven 3-faces in G×, then, by Lemma 2.8, there are four consecutive 3-faces

and another three consecutive 3-faces which are incident with v, and v is adjacent to at most two real

small vertices. Thus, v sends at most 7× 13
50

to false vertices and real 4-vertices which are adjacent

to v by R5 and R6. v sends at most 6
25
× 2 = 12

25
by R3. Therefore, ch′(v) ≥ 9− 6− 7× 13

50
− 12

25
= 7

10
.

If v is incident with at most six 3-faces in G×, then, v sends at most 6× 13
50

to false vertices and real

4-vertices which are adjacent to v by R5 and R6, v sends at most 6
25

× 2 + 6
25

× 3 = 6
5
to real small

vertices which are adjacent to it by R3. Thus, ch′(v) ≥ 9− 6− 6× 13
50

− 6
5
= 6

25
.

Let∆(G) ≥ 11, then, d ≥ 10. By Lemma 2.3, v is incident with at most ⌊4
5
d⌋ 3-faces in G×. v sends

at most ⌊4
5
d⌋× 13

50
to false vertices and real 4-vertices which are adjacent to v by R5 and R6, v sends out

at most 6
25
×2+ 6

25
×3 = 6

5
by R3. Thus ch′(v) ≥ ∆(G)−1−6−⌊4

5
(∆(G)−1)⌋× 13

50
− 6

5
≥ 99∆(G)−999

125
≥ 0,

since ∆(G) ≥ 11.

Case 8. d = ∆(G). By Lemma 2.3, v is incident with at most ⌊4
5
d⌋ 3-faces in G×. And by Lemma

2.1, we have d(u) ≥ 3 if uv ∈ E(G). So v can be a 3-master vertex of at most one vertex, a 4-master

vertex of at most two vertices and a 5-master vertex of at most three vertices by Lemma 2.6.

If d = 10, then v is incident with at most eight 3-faces. When v is incident with exactly eight

3-faces, there are two groups four consecutive 3-faces that are incident with v in G×, so, v is adjacent

to at most two real small vertices by Lemma 2.8. Thus, v sends at most 6
25

× 2 = 12
25

to real

small vertices that are adjacent to it by R2 and R3, v sends at most 8 × 13
50

to false vertices and

real 4-vertices that are adjacent to v by R5 and R6, and 1
2
to the common pot by R4. Therefore,

ch′(v) ≥ 10− 6− 8× 13
50

− 12
25

− 1
2
= 47

50
≥ 0. When v is incident with at most seven 3-faces, v sends

at most 7 × 13
50

to false vertices and real 4-vertices that are adjacent to v by R5 and R6, v sends at

most 6
25

× 5 + 2
9
= 64

45
to real small vertices that are adjacent to it by R2 and R3, v sends 1

2
to the
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common pot by R4. Therefore, ch′(v) ≥ 10− 6− 7× 13
50

− 64
45

− 1
2
= 58

225
≥ 0.

If d ≥ 11, v sends at most ⌊4
5
d⌋ × 13

50
to false vertices and real 4-vertices that are adjacent to v by

R5 and R6, v sends at most 6
25

× 5 + 2
9
= 64

45
to real small vertices adjacent to it by R2, R3 and 1

2

to the common pot by R4. Thus ch′(v) ≥ ∆(G)− 6− ⌊4
5
∆(G)⌋ × 13

50
− 64

45
− 1

2
≥ 1782∆(G)−17825

2250
≥ 0,

since ∆(G) ≥ 11.

Therefore, we complete the proof of the Theorem.
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