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ABSTRACT

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other
edge. In this paper, we confirm the total-coloring conjecture for 1-planar graphs without 4-cycles
with maximum degree A > 10.
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1. Introduction

All graphs considered are finite, simple and undirected. Let G be a graph. We use V(G), E(G), A(G)
and §(G) to denote its vertex set, edge set, maximum degree and minimum degree, respectively. For
a vertex v € V(G), Ng(v) denotes the set of vertices that are adjacent to v in G. By d(v) := | Ng(v)|
denotes the degree of v in G. For planar graphs G, F'(G) denotes its face set, the degree of a face f,
denoted by d(f), is the length of a boundary walk around f in G. We call v a k-vertex, or a k™ -vertex,
or a k~-vertex if d(v) = k, or d(v) > k, or d(v) < k respectively and call f a k-face, or a k™-face,
or a k—-face if d(f) =k, or d(f) > k, or d(f) < k respectively. Any undefined notation follows that
of Bondy and Murty [2]. A total — k — coloring of a graph G is a coloring of V(G) U E(G) using k
colors such that no two adjacent or incident elements receive the same color. The total chromatic
number x"(G) of G is the smallest integer k such that G has a total-k-coloring. It is clearly that
X"(G) > A(G) + 1. Behzad and Vizing |1, 6] posed independently the conjecture, x"(G) < A(G) +2
for any graph G, which is known as the total coloring conjecture.

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other
edge. The notion of a 1-planar graph was introduced by Ringel [1] in connection with the problem
of simultaneous coloring of adjacent /incident vertices and faces of plane graphs. In [10], Zhang et al.
proved that every 1-planar graph with maximum degree A(G) > 16 is totally (A(G) + 2)-choosable,
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which implies that the total-coloring conjecture holds for 1-planar graphs with maximum degree at
least 16. Later, Czap 3| proved (Without discharging method) that for every 1-planar graph G with
A(G) > 10 it holds x"(G) < A(G) 4 3. Moreover, if x(G) < 4, then x"(G) < A(G) + 2. In the same
paper, the author also verified that for every 1-planar graph G without adjacent triangles and with
A(G) > 10 it holds x"(G) < A(G) + 3. Moreover, if x(G) < 4, then x"(G) < A(G) + 2. Zhang and
Hou [7] showed the following theorem which improve the lower bound for the maximum degree in
the corollary of [10] to 13.

Recently, Sun and Wu [5] verified the total coloring x”(G) < r + 2, for every 1-planar graph G if
A(G) > 9 and g(G) > 4 where A(G) is the maximum degree of G and ¢(G) is the girth of G

Theorem 1.1. Let G be a I-planar graph with mazimum degree A(G) and let v be an integer. If
A <7 andr > 13, then X" (G) <r+ 2.

In this paper, we shall prove the following results:

Theorem 1.2. Let G be a 1-planar graph without 4-cycles, with maximum degree A(G) > 10. Then
X'(G) < A(G) + 2.

2. Preliminaries

Let GG in this paper has been embedded on a plane such that every edge is crossed by at most one
other edge and the number of crossings is as small as possible. The associated plane graph G* of
G is obtained by turning all crossings of GG into new 4-vertices on a plane. For convenience, a vertex
in G* is called false if it is not a vertex of G and real otherwise. A false face means a face f
in G* that is incident with at least one false vertex; otherwise, f is a normal face. For a vertex
v e V(G*), we use fr(v) to denote the number of k-faces which are incident with v, n;(v) to denote
the number of i-vertices which are adjacent to v, and n.(v) to denote the number of false vertices
which are adjacent to v.

For convenience, we use vy, vs, - - -, g to denote the neighbors of a d-vertex v in G* that occur
around it in a clockwise order. By f; denote the face incident with vv; and vv;,; in G*, where the
addition on subscripts are taken modulo d.

Let G be a counterexample with |E(G)| as small as possible to Theorem 1.2. By minimality of G
we can assume that it is connected and that it has no total (A(G) + 2)-colorings. First we investigate
some structural of properties of GG. Here, we give some known lemmas.

Lemma 2.1. [10] Let uv be an edge in G. If min{dg(u),dc(v)} < |28 ], then dg(u)+d(v) > A+3.
From this lemma, we deduce that §(G) > 3.
Lemma 2.2. 7] Let V; be the set of i-vertices in G. We have |Va|> 2|V3].

Lemma 2.3. Let G be a 1-planar graph without 4-cycles and let G* be its associated plane graph.
Then, for every 5 vertez v € V(G), v is incident with at most | 2dg(v)] 3-faces in G*.

The proof is just similar to the one in [8], with only quite a little minor changes. So we omit it
here and refer the reader to Lemma 4 of [3].
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Lemma 2.4. |9] Let G be a 1-plane graph and let G* be its associated plane graph. Then the following
hold:

1) For any two false vertices u and v in G*, u and v are not adjacent in G*.

2) If dg(u) = 3 and v is a false vertex in G*, then either u and v are not adjacent in G*, or uv
15 not incident with two 3-faces.

3) Let v be a 3-vertex in G. If v is incident with two false 3-faces vvive and vuvyvs in G*, then vy
and v are both false and v is incident with a 5" -face in G*.

Lemma 2.5. Let G be a 1-plane graph and let G* be its associated plane graph. Then, every 5-face
i G 1s incident with at most four 5~ -vertices.

The proof is just similar to the one in [7], with only quite a little minor changes. So we omit it
here and refer the reader to Lemma 9 of [7].

Lemma 2.6. [10] For each integer 3 < k <5, let X}, = {x € V(G)|da(r) <k}, Vi = U,ex, No(®).
If Xy # 0, then there exists a bipartite subgraph My = (X, Yk) of G such that dy, (x) = 1 for any
r € Xy and dy (y) < k —2 for any y € Yy,. We call y the k-master of x if vy € My and x € Xj,.

By this lemma, we deduce that each k-vertex (3 < k < 5) has a j-master (k < j <5).

Lemma 2.7. [7] Let G be a I-plane graph and let v be a verter of G. If dg(v) = 3, then, v cannot
be contained in a triangle in G. If dg(v) = 4 with Ng(v) = vy, va, v3, v4, then, for any i,(1 <i<4),
the edge vv; can not be contained in two triangles.

Lemma 2.8. Let G be a I-plane graph without /-cycles and G* be its associated plane graph. Let
v be a vertexr of G, then, there are no five consecutive 3-faces that are incident with v in G*. If v
is incident with i consecutive 3-faces fi, fa,- -+, fi, (3 < i < 4)in G*, then, there is at most a real
small vertex among the neighbors of v on these consecutive 3-faces. Moreover, if v is incident with
4 consecutive 3-faces f1, fo, f3, fa, then vi,v3, vs are false vertices, vy, vy are real vertices.

The proof is just similar to the one in [8], with only quite a little minor changes. So we omit it
here and refer the reader to Lemma 4 of [8].

3. The proof of Theorem 1.2

Then, we begin to prove the main result of the paper.

A vertex v in G is small if d(v) <5 and is big if d(v) > 6. Note that the degree of a false vertex
in G* is four, so every false vertex is small.

In the following, we apply the discharging method on associated 1-planar graph G* of G and
complete the proof by a contradiction. Since G* is a plane graph, we have

Y. @) =6+ Y (2d(f)-6)=-12,

VeV (GX) FEF(GX)

by the well-known Euler’s formular. Now we define the initial charge function ch(z) of x € V (G*)U
F(G*). Let ch(v) =d(v) —6 if x € V(G*) and ch(f) = 2d(f) — 6 if z € F (G*). And we define
suitable discharging rules below to change the initial charge function ch(z) to the final charge function
ch/(z) on V (G*)UF (G*). Then we still have 3y oxyupax) 0 (%) = D cvoxyurx) @) = —12,
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since any discharging procedure preserves the total charge of G*.

Our discharging rules are defined as follows.

R1. Each f in G* where d(f) > 4 sends th({};G to each small vertex incident with it, where ¢(f)
is the number of small vertices incident with the face f.

R2. Each 3-vertex in G receives % from its i-master (3 <i <5).

R3. Each 4-vertex in G receives = from its i-master (4 < i < 5).

R4. Each A-vertex gives § to a common pot from which each 3-vertex receives 1, if [V3]> 0.

R5. Let w be a false vertex and w is incident with a 3-face f in G*, then each 8" -neighbor of w
on f sends % to w.

R6. Let w be a real 4-vertex and w is incident with a normal 3-face f in G, then each 8 -neighbor
of w on f sends % to w.

R7. Let u be a real 4 -vertex, v is a false vertex in G*, uv € E(G*) and wv is incident with two
3-faces in G*, then v sends ;—g’ to u.

RS. If a false vertex v in G* is incident with four 4*-faces in G*, then v sends 2

15 to each 4-neighbor
of v.

R9. If a false vertex v in G* is incident with exactly one 3-face f in G*, then v sends % to its
3-neighbor on f.

R10. Let v be a 3-vertex and v is not incident with any 3-face in G*, then v sends % to each false
vertex which is adjacent to v.

R11. If a real 4-vertex v in G* is incident with four 4"-faces in G*, then v sends % to each false
vertex which is adjacent to v.

R12. If a false vertex u in G* is adjacent to a 5-vertex v in G*, and wv is incident with 4% -faces
f1 and f5 which are adjacent in G*, then v sends % to u.

In the following, we check that the final charge ch/(x) on each vertex and face is nonnega-
tive, and we also show the final charge of the common pot is nonnegative. This implies that
> veveure) W (x) = 0 for all z € V(G*) U F (G*), a contradiction. This completes the proof
of Theorem 1.2.

First of all, by R4, the final charge of the common pot is at least 2|Va|—|V3|> 0 since [Va|> 2|V3]
by Lemma 2.2. One can also check that the final charge of every face in F'(G*) is nonnegative by
R1. Thus in the following we consider the vertices in G*.

Case 1. d = 3. By R2 and R4, v receives 1 from the common pot and g X3 = % from its i-masters,
where 3 <7 < 5. Since GG is a 1-planar graph without 4-cycles, v is incident with at most two 3-faces
in G* by Lemma 2.1 and Lemma 2.7. Now, we consider three subcases.

Case 1.1. TIf v is not incident with any 3-face in G, then fi, fo, f3 are all 4*-faces.

First, assume that v is incident with at least one 5-face, without loss of generality, assume that f;,
then v would receive at least 1 from f;, and % x 2 =1 from fs, f3, by Lemma 2.5 and R1. By R10, v
sends at most ¢ x3 = 3 to false vertices which are adjacent to v. Thus, ch’(v) > =3+1+3+1+1—3 >
0.

Second, assume that fi, fo, f3 are all 4-faces. If v is adjacent to at least one real vertex in G*,
say vy, then d(vy) > 10, thus fi, f3 sends at least % X 2= % to v, and fy sends at least % = % to v
by R1. By R10, v sends at most ¢ x 3 = 1 to false vertices which are adjacent to v. Thus,ch/(v) >
—3+1+ % + % + % — % = 0. Otherwise, vy, vy, v3 are all false vertices. Let x; be the fourth(undefined)
vertices of the 4-faces f; (i = 1,2,3). It is easy to check that xixs, Toxs, v321€E(G) by the drawing
of G. Since fi, fo, f3 are all 4-faces, there are at least two big vertices among z1, x9, x3 by Lemma
2.1, without loss of generality, assume that xq, xo, thus, fi, fo send at least % X 2= % to v, and f3
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sends at least to v by R1. By R10, v sends at most =X 3 = to false vertices which are
adjacent to v. Thus, ch(v) > 3+1+3+3+5—%_0.

Case 1.2. If v is incident with exactly one 3-face in G*, then without loss of generality assume
that f3 is a 3-face. Since no two false vertices are adjacent in G* by Lemma 2.4, there is a real
vertex, among vy and v, say vy, then d(vy) > 10.

Assume that v, is also a real vertex, then d(vy) > 10. Thus, f; sends at least 1 to v, fo sends at
least ﬁ = % to v by R1, Thus,ch/(v) > =3+ 1+ % +1+ % > 0. Otherwise, v, is a false vertex. Let
x; be the second neighbors of vy on f; (i = 1,2), it is easy to check that z122,€ E(G) by the drawing
of G. Thus at least one of x; and x5 is big by Lemma 2.1. This implies that v receives at least
min{1l + 3, % x 2}= 3, from f; and f> by R1. Therefore, ch'(v) > =3+ 1+ 2 + 3 = 0.

Case 1.3. If v is mcident with exactly two 3-faces in G*, then without loss of generality assume
that f, and f; are 3-faces. By Lemma 2.4 and Lemma 2.7, v3 must be a real vertex, v; and vy are
false vertices, and f; is a 57-face. Thus, f; sends at least ;%1 =1 to v by Lemma 2.5 and R1. Since
G is a 1-planar graph without 4-cycles, so, there is at least a vertex among v; and vy which is incident
with exactly one 3-face, say vo. Then, vy sends % to v by R9. Thus, ch/(v) > -3+ 1+ % +1 +% =0.

Case 2. d = 4 and v is a real vertex, then v has one 4-master and one 5-master. So v receives
totally 0 X2 = ?) from its masters by R3. Since G is a 1-planar graph without 4-cycles, v is incident
with at most three 3-faces in G* by Lemma 2.7.

If v is incident with exactly one 3-face in G*, say fi, then there is at most one false vertex
among v, and vy by Lemma . Suppose that v; is a false vertex, then, d(ve) > 9 by Lemma 2.1,
thus, v receives at least E = 3 from fy, receives % x 2 =1 from f3 and f; by R1. Therefore,
ch'(v)> =2+ Z+2+1=14.

If v is not incident with any 3-face, then v is incident with four 4" -faces.

First, assume that v is incident with at least one 5'-face, say fi, then, v receives at least 1 from
f1 by Lemma 2.5 and R1, receives % X 3= % from f5, f3 and f; by R1. v sends at most 11 X 4 =
to false vertices that are adjacent to v by R11. Therefore, ch/(v) > —2 + % + 1+ % 75 > 0.

Second, assume that v is incident with four 4-faces, if the neighbors of v are all false vertices,
then, let z; be the fourth(undefined) vertices of the 4-faces f; (i = 1,2,3,4). It is easy to check
that z1xs, r324€ E(G) by the drawing of G. Thus, at least one of z; and o is big, similarly to 3
and x, by Lemma 2.1. This implies that v receives at least l X 2+ 2 X 2 = Z from fy, fo,f3 and
fa by R1. v sends at most % X 4 = 44 to false vertices that are adJacent to v by R11. Therefore,
ch'(v) > 2+Z+1I-%= Otherw1se v is adjacent to at least one real vertex. Thus, v receives
at least =X 4= 2 from f1, fg,fg and f; by R1. v sends at most X 3 = 32 to false vertices that are
adJacent to v by R11. Therefore, ch'(v) > -2+ £ +2 - 2 = 735.

If v is incident with exactly three 3-faces, then without loss of generality assume that f; fo and
f1 are 3-faces. Since G is a 1-planar graph without 4-cycles, so, v is adjacent to exactly two false
vertices by Lemma 2.4 and Lemma 2.7 in G*, and moreover f3 is a 5*-face. First, assume that two
false vertices are not adjacent, say vl and v, then d(vy) > 9, d(vs) > 9 by Lemma 2.1. Then, f3
sends at least 1 to v by R1, vy sends 32 to v by R7. Thus, ch'(v) > =2+ % +1+ % =0.

Second, assume that two false Vertlces are vs and vy, then, d(v1) > 9, d(ve) > 9 by Lemma 2.1.
Thus, f3 sends at least 1 to v by R1, v; and v, send ég X 2 = 13 to v by R6. This implies that
ch'(v) > =2+ Z +1+ 3 =0.

If v is incident with exactly two 3-faces in G*, we consider four subcases.

Case 2.1. If v is not adjacent to any false vertex, then v; > 9 (i = 1,2,3,4) by Lemma 2.1, and the
two 3-faces that are incident with v have no common edge by Lemma 7, without loss of generality
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assume that fo and f; are 3-faces. Then, v receives a total of ﬁ x 2 = 2 from f; and f3, thus,
ch(v)>-2+2+2>0.

Case 2.2. If v is adjacent to exactly one false vertex, without loss of generality assume that v, then
d(v;) > 9 (i =2,3,4) by Lemma 2.1. First, assume that the two 3-faces that are incident with v have
no common edge, say fs and fy, then, v receives at least ﬁ = 1 from f3, receives at least ﬁ = %
from f; by R1, and v receives % x 2 from vy and v by R6. Thus, ch/(v) > —2+%+1+§+% X2 = %
Second, assume that the two 3-faces that are incident with v have one common edge, since G has
no 4-cycles, then, vy is incident with at least one 3-face. If vy is incident with exactly one 3-face,
without loss of generality assume that f;, then f5 is a real 3-face in G*. By R6, v receives % X 2
from vy and v3, v receives at least ﬁ = 1 from f3 and receives at least ﬁ = % from f; by R1.
Thus, ch/(v) > =2 + % +14+ % + % X 2= % If vy is incident with two 3-faces, say f; and f4, then,
v receives at least ;%5 x 2 = 2 from f; and f3. Therefore, ch/(v) > -2+ 32 +2 = 2.

Case 2.3. If v is adjacent to exactly two false vertices.

First, assume that two faces which are incident with v are not adjacent, say f; and f; are both
3-faces, then, f; and f3 are both 4"-faces. If two false vertices that are adjacent to v are incident
with the same 4" -face, say f1, then, v; and v, are both false vertices, v3 and v, are both big vertices.
Since G has no 4-cycles, then, f; is a 5"-face. It implies that f; sends at least 1 to v and f3 sends
at least ;25 = 1 to v by Lemma 2.5 and R1. Thus, ch'(v) > =2+ 22 +1+1 = 2. Otherwise, two
false vertices that are adjacent to v are incident with different 4*-faces, say f1 and f3, since G has
no 4-cycles, then, f; and f3 are 5T-faces. Thus, v receives at least % x 2 =2 from f; and f3 by
Lemma 2.5 and R1. Therefore, ch’(v) > =2+ 2 +2 = 2.

Second, assume that two faces which are incident with v are adjacent, say f; and f, are both
3-faces, then, f3 and f; are both 47-faces. If two false vertices that are adjacent to v are incident
with the same 4*-face, without loss of generality assume that v; and v, are both false vertices, then,
d(v;) > 9(: = 2,3) by Lemma 2.1. So, v receives % X 2 = % from vy and v3 by R6, v receives at
least % x 2 =1 from f3 and f; by R1, therefore, ch/(v) > —2 + % + % + 1 =0. If two false vertices
that are adjacent to v are incident with different 4" -faces, say f3 and f4, then, v; and v3 are both
false vertices, and d(v;) > 9(i = 2,4) by Lemma 2.1. Since G has no 4-cycles, then, f; and f; are
all 5T-faces. So, v receives at least % x 2 = 2 from f3 and f; by Lemma 2.5 and R1, Therefore,
ch'(v) > =2+ 22 +2 = 2. If two false vertices that are adjacent to v are vy and vy, since G has no
4-cycles, there is at least one 5'-face among f3 and fy, say f3. Thus, f3 sends at least % =1tow,
f1 sends at least 27 = 2 to v by Lemma 2.5 and R1. Therefore,ch/(v) > -2+ 2+ 142 = 1.

Case 2.4. 1f v is adjacent to exactly three false vertices, say vy, v, and wvs, since G has exactly
two 3-faces, so, f3 and f; are all 3-faces by Lemma 2.4, f; and f, are all 4*-faces. Since G has not
4-cycles, so, fi and fo are either all 4-faces, or all 5T-faces, or there is at least one 6*-face. First
assume that there is one 67-face among f; and fo, say f1. Let z; (i = 1,2) be the second(undefined)
neighbors of vy on f;, it is easy to check that z129,€ E(G) by the drawing of G. Thus, at least one of
x1 and x5 is big by Lemma, 2.1. Then, v receives at least min{% + %, % - ﬁ} = g from f; and f,
by R1.

Therefore, ch/(v) > —2 + % + g = % Second, assume that f; and f, are all 5T-faces, then, v
receives at least = x 2 =2 from f; and f, by Lemma 2.5 and R1, thus, ¢h/(v) > =24 2 +2 = L2,
Third, assume that f; and f5 are all 4-faces, then, v, is incident with four 4-faces, because otherwise,
G has 4-cycles. By R8, v receives & from vs. Let z; (i = 1,2) be the fourth(undefined) vertices of
the 4-faces f;, it is easy to check that z122€ F(G) by the drawing of G. Thus, at least one of

and x5 is big by Lemma 2.1. This implies that v receives at least % + % = g from f; and f> by R1.
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Therefore, ch'(v) > =24 £ + 5 + £ = 3%

Case 3. d =4 and v is a false vertex, then, the neighbors of v are real vertices, and v is adjacent
to at most two small vertices in G by Lemma 2.1. Since G has no 4-cycles, so, v is incident with at
most two 3-faces, we consider three subcases.

Case 3.1. If v is not incident with any 3-face in G*, then v is incident with four 4"-faces in G*.

Assume first that v has at least one 4-neighbor, say vy, then, d(vs) > 9, moreover, there is at least
one big among vy and vy by Lemma 2.1, say Vg, thus, v would receive at least L = 1 from f5, at least
ﬁ X2 = % from f; and f3, at least 2 = frorn f4 by R1, v sends at most 15 X 2 = 5 to its 4-neighbors
by R8. Therefore, ch/(v) > —2 + 1 + 4 3 + 5 — g = 0. Otherwise, v does not have any 4-neighbors,
then, v sends out nothing by R8, v would receive at least 2 x 4 = 2, Thus,ch/(v) > -2+ 2 = 0.

Case 3.2. If v is incident with exactly one 3-face in G*, then without loss of generality assume
that f; is the 3-face. There is at least one big among v; and vs, say vs.

Assume first that v; is a 3-vertex, then, both v, and v3 are 10*-vertices by Lemma 2.1. Thus, v
would receive at least ; 2 = 1 from f5, at least 2 = 2 from f3, at least % = % from f; by R1, v would
receive o from vy by R5 v sends at most § to Ul by R9 Thus, ch/(v) > =24+ 1+2+3+2 -2 ==L
Second, assume that 4 <d(v)< 7, then, both v, and wvs are 6'-vertices by Lemma 2.1. So, v
would receive at least ﬁ = 1 from f5, at least % = % from f3, at least % = % from f, by R1,
v sends out nothing by R9. Therefore,ch/(v) > =2+ 1+ 2 + 4 = &. Third, assume that v is a
8T-vertex, then, v, sends 13 to v by R5. There is at least a blg vertex among vy and vy, so, fo and
fa send rnln{ s+ 1,7 T >< 2} = 4 to U f5 sends 2 : = 2 to v by R1, v sends out nothing by R9.
Therefore,ch/(v ) >-24+B+24+1=2=.

Case 3.3. If v is incident Wlth two 3-faces in G*, since G has no 4-cycles, then, the two 3-faces
have a common edge, without loss of generality assume that f; and f, are 3-faces. There is a big
vertex among vy and vs, say v;.

First assume that 6 <d(v4)< 7, then, both vy and vs are big by Lemma 2.1, moreover, f; and f,
send at least ﬁ X 2 =2 to v by R1, v sends out nothing by R7. Thus, ch/(v) > —2+2 = 0. Second,
assume that d(vy) <5, then, v; (i =1,2,3) is 8+—Vertex by Lemma 2.1, moreover, fi and f2 send at
least ﬁ X 2=2towv by Rl vl and vz send % X 2= to v by R5, v sends at most to vy by R7.
Thus,ch/(v) > =242+ 2 — 8 =0.

Third assume that 214 is a 8Jr vertex. If there is at least one 5T-face among f; and fy, say fi,
then, f; sends at least 5%—1 =1 to v, f5 sends at least % = % to v by Lemma 2.5 and R1, vy sends
2 %2 =22 tow by R5. Thus, ¢h/(v) > —2+1+435+32 = . Otherwise, f; and f; are all 4-faces. Let
z;(i = 1,2) be the second(undefined) neighbors of ve on f;, since G has no 4-cycles, then, both x4

and x5 are false vertices. Suppose that Ug is a 67 -vertex, then, fi sends at least ; 2 =1 to v, fg sends
at least ﬁ = 2 to v by R1, vy sends X 2= g to v by R5. Thus, ch/(v) > 2 +1 —i— —|— = %‘51

Suppose that U2 is a 3-vertex or a 4- vertex since G has no 4-cycles, then, vy is not 1nC1dent Wlth any
3 faces. By R10 and R11, vy sends at least to v. Suppose that vy is a b-vertex, by R12,v5 sends

to v. Thus, when vy is a 5™ -vertex, this 1rnp11es that vy sends at least 11 to v. And moreover, we
cons1der the degree of 1)3 If vg is a b~ -vertex, then, v1 is a 8Jr vertex by Lemrna 2.1, vl sends E to
v, U4 sends % X 2= to v by RS, f1 sends at least 1 = 2 to v, f, sends at least 2 1= 2 to v by
R1. Therefore, ch’(v) > -2+ = 11 —i— + —i— + s = 5. If v is a 6T -vertex, since v, is big, then,
each of f; and f; sends at least 471 = 3 to v by Rl, vy sends % X 2= ;—g to v by Rb, therefore,
ch'(v)>-2+H+2x2+2=0.

Case 4. d = 5. v is incident with at most four 3-faces in G* by Lemma 2.3. If v would send
charges to a false vertex which adjacent to v by R12, then v is incident with at most three 3-faces in
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G*. First assume that v is incident with exactly four 3-faces in G*, say f1, f2, f3 and fy, then vy,v3,
and vs are false vertices, v, and v, are real vertices by Lemma 2.8. Since G has no 4-cycles, then, f5
is a 67-face. Thus, f5 sends 1 to v by R1, therefore, ch/(v) > —1 4 1 = 0. Second assume that v is
incident with exactly three 3-faces in G*, then, v is incident with two 4" -faces. If the two 4"-faces are
not adjacent, then, v sends out nothing by R12, v would receive at least % x 2 =1 from two 4" -faces
which are incident with v. Thus, ch/(v) > =1+ 1 = 0. If two 4"-faces are adjacent, without loss
of generality, assume that f; and f, are 4"-faces. Moreover, if v, is a real vertex, then, v sends out
nothing by R12, v would receive at least % x 2 =1from f; and f, by R1. Thus, ch/(v) > —1+1=0.
Otherwise, vy is a false vertex, then, v sends at most % to ve by R12. Let x; be the second(undefined)
neighbors of vy on f; (i = 1,2), it is easy to check that z12,€ E(G) by the drawing of G. Thus, at
least one of x; and x5, is big by Lemma 2.1. This implies v would receive at least % + ﬁ = % from
fi and fy by R1, therefore, ch’(v) > —1 + % — % = 0. Third assume that v is incident with at most
two 3-faces in G, then, v is incident with at least three 47-faces. v sends at most % X 3= % to false
vertices which are adjacent to v by R12. v would receive at least % X 3= % from 4*-faces which are
incident with v, thus, ch/(v) > -1+ 3 — 1 =0.

Case 5. 6 < d < 7. Then it is trivial that ch/(v) = ch(v) > 0.

Case 6. 8 < d < A(G) — 2. By Lemma 2.3, v is incident with at most |5d] 3-faces in G*, then v
sends at most L%dj X % to false vertices and real 4-vertices which are adjacent to v on 3-faces by R5
and R6. Thus, ch/(v) > d— 6 — |2d] x £ > 94750 > () since d > 8.

Case 7. d = A(G) — 1. By Lemma 2.3, v is incident with at most L%d] 3-faces in G*. And by
Lemma 2.1, we have d(u) > 4 if uv € E(G). So v can be a 4-master vertex of at most two vertices
and a 5-master vertex of at most three vertices by Lemma 2.6.

Let A(G) = 10, Then, d = 9. By Lemma 2.3, v is incident with at most seven 3-faces in G*. If v
is incident with exactly seven 3-faces in G*, then, by Lemma 2.8, there are four consecutive 3-faces
and another three consecutive 3-faces which are incident with v, and v is adjacent to at most two real
small vertices. Thus, v sends at most 7 x % to false vertices and real 4-vertices which are adjacent
to v by R5 and R6. v sends at most 5= x 2 = 32 by R3. Therefore, ch/(v) > 9—6—-7x £ — 2 = .
If v is incident with at most six 3-faces in G*, then, v sends at most 6 x % to false vertices and real
4-vertices which are adjacent to v by R5 and R6, v sends at most % X 2+ % X 3= g to real small
vertices which are adjacent to it by R3. Thus, ch/(v) > 9 —6 — 6 x % — % = %.

Let A(G) > 11, then, d > 10. By Lemma 2.3, v is incident with at most | 2d] 3-faces in G*. v sends
at most L%dj X % to false vertices and real 4-vertices which are adjacent to v by R5 and R6, v sends out
at most & x2+8 %3 = 8 by R3. Thus /' (v) > A(G)—1—6—|1(A(G)—1)]| x 126 > PAG99 >
since A(G) > 11.

Case 8. d = A(G). By Lemma 2.3, v is incident with at most |2d] 3-faces in G*. And by Lemma
2.1, we have d(u) > 3 if uv € E(G). So v can be a 3-master vertex of at most one vertex, a 4-master
vertex of at most two vertices and a 5-master vertex of at most three vertices by Lemma 2.6.

If d = 10, then v is incident with at most eight 3-faces. When v is incident with exactly eight
3-faces, there are two groups four consecutive 3-faces that are incident with v in G*, so, v is adjacent

to at most two real small vertices by Lemma 2.8. Thus, v sends at most % X 2 = % to real

small vertices that are adjacent to it by R2 and R3, v sends at most 8 X % to false vertices and
real 4-vertices that are adjacent to v by R5 and R6, and % to the common pot by R4. Therefore,
ch'(v) >10—6—8x £ — 2 — 1 =2 > 0. When v is incident with at most seven 3-faces, v sends
at most 7 X % to false vertices and real 4-vertices that are adjacent to v by R5 and R6, v sends at

most 2% X 5+ 5 = % to real small vertices that are adjacent to it by R2 and R3, v sends % to the
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common pot by R4. Therefore, ch/(v) > 10 -6 —7x 22 -8 — 2 =28 >0,
If d > 11, v sends at most L%d] X % to false vertices and real 4-vertices that are adjacent to v by
R5 and R6, v sends at most % X 5+ % = % to real small vertices adjacent to it by R2, R3 and %
1782A(GQ)—17825
to the common pot by R4. Thus ch/(v) > A(G) — 6 — [FA(G)] x 2 -8 — 4 > % > 0,
since A(G) > 11.

Therefore, we complete the proof of the Theorem.
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