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abstract

An outer independent double Roman dominating function (OIDRDF) of a graph G is a function
f : V (G) → {0, 1, 2, 3} satisfying the following conditions: (i) every vertex v with f(v) = 0 is adjacent
to a vertex assigned 3 or at least two vertices assigned 2; (ii) every vertex v with f(v) = 1 has a
neighbor assigned 2 or 3; (iii) no two vertices assigned 0 are adjacent. The weight of an OIDRDF is
the sum of its function values over all vertices, and the outer independent double Roman domination
number γoidR(G) is the minimum weight of an OIDRDF on G. Ahangar et al. [Appl. Math. Comput.
364 (2020) 124617] established that for every tree T of order n ≥ 4, γoidR(T ) ≤ 5

4
n and posed the

question of whether this bound holds for all connected graphs. In this paper, we show that for a
unicyclic graph G of order n, γoidR(G) ≤ 5n+2

4
, and for a bicyclic graph, γoidR(G) ≤ 5n+4

4
. We further

characterize the graphs attaining these bounds, providing a negative answer to the question posed
by Ahangar et al.
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1. Introduction

Throughout this paper, G is a simple graph with vertex set V (G) and edge set E(G) (brie�y V,E).
The order |V | of G is denoted by n = n(G). For every vertex v ∈ V (G), the open neighborhood of v
is the set NG(v) = N(v) = {u ∈ V (G) | uv ∈ E(G)} and the degree of v ∈ V is deg(v) = |N(v)|. A
leaf of G is a vertex with degree one while a support vertex is a vertex adjacent to a leaf. A support
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vertex is strong if it has at least two leaf neighbors. We denote by L(v) the set of all leaves adjacent
to a vertex v and by L(G) the set of leaves of G.

A path and a cycle of order n are denoted by Pn and Cn, respectively. The corona cor(H) of a
graph H is the graph obtained from H by adding for each vertex v ∈ V (H) a new vertex v′ and
the edge vv′. A graph G is called a cactus graph if each edge of G belongs to at most one cycle. A
connected cactus graph is a tree if it has no cycle, a unicyclic if it has exactly one cycle and it is
bicyclic if it has two cycles.
A double Roman dominating function, abbreviated DRDF, on a graph G is a function f : V →

{0, 1, 2, 3} having the property that if f(v) = 0, then vertex v has at least two neighbors assigned 2
or one neighbor assigned 3 under f , and if f(v) = 1, then vertex v has at least one neighbor assigned
2 or 3. Double Roman domination was introduced in 2016 by Beeler et al. [2], and has been widely
studied ever since. For further details on this concept, we refer the reader to book chapter of Chellali
et al. [3] and the survey paper of Poklukar and �erovnik [5]. The complexity of double Roman
domination has been studied in [6].
In this paper, we are interested in a variation of double Roman domination introduced in 2020

by Ahangar et al. [1]. An outer independent double Roman dominating function f , abbreviated
OIDRDF, on a graph G is a DRDF such that no two vertices assigned 0 under f are adjacent. The
weight of an OIDRDF is the sum of its function values over all vertices, and the outer independent
double Roman domination number γoidR(G), abreviated OIDR-domination number, is the minimum
weight of an OIDRDF on G. The concept of outer independent double Roman domination was
subsequently studied in [4, 7, 10, 8, 9]. As an example, the graph depicted in Figure 1 has an
OIDR-domination number equal to 5, where the center vertex is assigned 3. But since the set of
the remaining vertices in not independent, then one vertex of degree 2 of each triangle is assigned
1, and the three remaining vertices are assigned 0 (see Figure 1). Moreover, it is worth noting that
the decision problem associated with γoidR(G) has been shown to be NP-complete in [1] for bipartite
and chordal graphs, while in [4] for planar graphs of degree at most four. Therefore the interest
in establishing bounds on this parameter that are easily veri�ed, that is, expressed in terms of the
order, maximum degree, minimum degree, etc.
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Fig. 1. A graph G with γoidR(G) = 5

In [1], Ahangar et al. have given an upper bound for the OIDR-domination number of any tree T
of order at least three in terms of the order and number of support vertices.

Theorem 1.1 ([1]). For each tree T of order n ≥ 3,
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γoidR(T ) ≤ n+
s(T )

2
,

where s(T ) is the number of support vertices of T .

Since for any tree T of order n ≥ 3, s(T ) ≤ n
2
, the following upper bound has been derived.

Corollary 1.2 ([1]). For each tree T of order n ≥ 3, γoidR(T ) ≤ 5n
4
.

Furthermore, the authors [1] raised the question of whether the upper bound in Corollary 1.2 re-
mains valid for every connected graph of order at least four. It is worth noting that a characterization
of all trees T attaining the bound in Corollary 1.2 was given in [7] as follows: let T be the family of
trees T obtained from disjoint copies of a path P4 by adding edges between support vertices of paths
so that the resulting graph is a tree.

Theorem 1.3 ([7]). Let T be a tree on n ≥ 4 vertices. Then γoidR(T ) =
5n
4

if and only if T ∈ T .

In this paper, we are interested in establishing an upper bound of the OIDR-number for unicyclic
and bicyclic graphs. More precisely, we show that if G is a connected unicyclic graph of order n,

then γoidR(G) ≤ 5n+2
4

, while if G is a connected bicyclic graph, then γoidR(G) ≤ 5n+4
4

. Moreover, we
characterize all connected unicyclic and bicyclic attaining the aforementioned bounds, respectively,
which therefore provides a negative answer to the previous question asked in [1].
We close this section by a useful result established in [1] that gives the exact value of the OIDR-

domination number for paths and cycles.

Proposition 1.4 ([1]). For n ≥ 3,

(i) γoidR(Pn) =

{
n if n=3,
n+ 1 otherwise.

(ii) γoidR(Cn) =

{
n if n is even,

n+ 1 otherwise.

2. Unicyclic graphs

In this section, we present an upper bound on the OIDR-domination number of connected unicyclic
graphs, and we characterize the extremal unicyclic graphs attaining this bound. We begin by con-
sidering a speci�c unicyclic graph, namely the corona of a cycle Ct, where the exact value of the
OIDR-domination number will be provided.

Proposition 2.1. For t ≥ 3,

γoidR(cor(Ct))=


5t
2

if t is even,

5t+1
2

otherwise.

Proof. Let V (Ct) = {x1, x2, . . . , xt} and L(cor(Ct)) = {y1, y2, . . . , yt}, where for each i, yi is the leaf
neighbor of xi. Note that cor(Ct) has order 2t. First, assume that t is even and consider the function
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f de�ned by f(x2i−1) = 3, f(y2i) = 2 for i = 1, . . . , t
2
, and f(u) = 0 for any other vertex u. Obviously,

f is an OIDRDF on cor(Ct) of weight 5t
2
. Assume now that t is odd, and consider the function g

de�ned by g(x2i−1) = g(xt) = 3, g(y2i) = 2 for i = 1, . . . , t−1
2
, and g(u) = 0 for any other vertex u.

Obviously, g is an OIDRDF on cor(Ct) of weight 5t+1
2

. This proves the upper bound.
To prove the inverse inequality, we use an induction on t. Let f be a γoidR(cor(Ct)) such that

f(V (Ct)) is as large as possible. First observe that if f(xi) = 1 for some i, then by de�nition of an
OIDRD-function, f(yi) = 2, and thus the function g de�ned on cor(Ct) by g(xi) = 3, g(yi) = 0 and
g(u) = f(u) otherwise, is a γoidR(cor(Ct)) with more weight on V (Ct), which contradicts the choice
of f . Likewise, if f(xi) = 2 for some i, then the minimality of f implies that f(yi) = 1, and as before
reassigning xi and yi the values 3 an 0 provides a γoidR(cor(Ct)) that contradicts the choice of f.
Therefore f(xi) ∈ {0, 3} for each i. As a result, since f is an OIDRD-function, if f(xi) = 0, then
we must have f(xi−1) = f(xi+1) = 3. Now, without loss of generality, assume that f(x1) = 3, and
thus f(y1) = 0. If t = 3, then 3 ∈ {f(x2), f(x3)}, say f(x2) = 3 and thus f(y3) = 2 and f(x) = 0 for
x ∈ {y1, y2, x3}. Hence γoidR(cor(Ct)) = 8 = 5t+1

2
, establishing that base step. Let t ≥ 4 and assume

that for any t′ with 3 ≤ t′ < t, we have

γoidR(cor(Ct′)) ≥


5t′

2
if t′ is even,

5t′+1
2

otherwise.

First, let t ≥ 4 is even. If f(xi) = f(xi+1) = 3 for some i, say i = 1, then the restriction of f to
cor ((Ct − {x2}) + x1x3) is an OIDRD-function on cor((Ct − {x2}) + x1x3). Applying the induction
hypothesis on cor(Ct − {x2}) + x1x3 leads to ω(f) ≥ 5(t−1)+1

2
+ 3 = 5t+2

2
. Now let t ≥ 5 is odd.

Then we must have f(xi) = f(xi+1) = 3 for some i, say i = 1. In this case, the restriction of f
to cor ((Ct − {x2}) + x1x3) is an OIDRD-function on cor((Ct − {x2}) + x1x3) and by the induction
hypothesis on the resulting corona, we get ω(f) ≥ 5(t−1)

2
+ 3 = 5t+1

2
. In either case,

γoidR(cor(Ct)) =


5t
2

if t is even,

5t+1
2

otherwise.

and the proof is complete.

In the following, the graphs U1 and U2 depicted in Figure 2 will be considered in the proof of the
main result of this section.

Fig. 2. Unicyclic graphs U1 and U2.

Let U be the family of unlabeled unicyclic graphs G that can be obtained from a sequence
G1, . . . , Gj (j ≥ 1) of unicyclic graphs such that G1 = cor(Ct) for some odd t and, if j ≥ 2,
then Gi+1 can be obtained recursively from Gi by the operation O below.
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Operation O: Assume that u is a support vertex of Gi. Then Gi+1 is obtained from Gi by adding
a path P4 : w1w2w3w4 and the edge uw2 (see Figure 3).

w3 w4

w1

w2u

Fig. 3. The Operation O

Fig. 4. A graph obtained from Cor(C3) by applying Operation O twice

Figure 4 shows a graph obtained from Corona C3 by applying Operation O twice. The following
lemma will useful in what follows, but since its proof is quite simple, we will omit it.

Lemma 2.2. If G ∈ U , then γoidR(G) = 5n+2
4

. Moreover,

(i) for any leaf u of G with support vertex v, there exists a γoidR(G)-function that assigns 2 to u

and v is doubly Roman dominated by vertices of G− u.

(ii) for any support vertex v of G, there exists a γoidR(G)-function that assigns at least 2 to v.

Theorem 2.3. If G is a connected unicyclic graph of order n, then

γoidR(G) ≤ 5n+ 2

4

with equality if and only if G ∈ U .

Proof. We use an induction on the order n. It can be seen that for n ∈ {3, 4, 5, 6, 7}, γoidR(G) ≤ 5n+2
4

,

with equality if and only if G = cor(C3), establishing the base case. Let n ≥ 8 and assume that the
result holds for all unicyclic graphs of order less than n. Let G be a unicyclic graph of order n. If
G is a cycle, then by Proposition 1.4, γoidR(G) ∈ {n, n+ 1}, and thus γoidR(G) ≤ 5n+1

4
< 5n+2

4
, since

n ≥ 8. Hence we can assume that G ̸= Cn, and so we must have at least one leaf. Let C denote
the unique cycle of G, and let a0 be a vertex of C such that deg(a0) is as maximum as possible.
Moreover, let a0 . . . ak, with k ≥ 1, be a path from a0 to a farthest leaf ak of G, where every ai is
outside C for i ∈ {1, . . . , k}. Suppose that |V (C)|= m, and let V (C) = {a0, c1, c2, . . . , cm−1}, where
m ≥ 3, a0 is adjacent to c1 and cm−1, and ci is adjacent to ci+1 for i ∈ {1, . . . ,m− 2}. Before going
further, we need to prove the following claim.
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Claim 1. If x ∈ C is a strong support vertex of degree at least four such that all its neighbors but
two are leaves, or x ∈ V (G) − C is a strong support vertex such that all its neighbors but one are
leaves, then γoidR(G) < 5n+2

4
.

Proof of Claim 1. Assume �rst that x ∈ C is a strong support vertex of degree at least four such
that all its neighbors but two are leaves and let x1 and x2 be the neighbors of x on C. Consider
the graph G′ obtained from G by removing the edges xx1, xx2. Clearly, G′ has two components,
each of which is a tree. Let T be the component of G′ that contains x1 and note that |V (T )|≥ 2. If
|V (T )|≥ 3, then every γoidR(T )-function can be extended to an OIDRDF of G by assigning 3 to x

and 0 to each leaf neighbor of x. It follows from Theorem 1.1 that

γoidR(G) ≤ γoidR(T ) + 3 ≤ 5(n− 3)

4
+ 3 <

5n+ 2

4
.

Now, if |V (T )|= 2, then the function f de�ned on V (T ) by f(x) = 3, f(x1) = 1 and f(w) = 0 for
w ∈ V (G)− {x, x1}, is an OIDRDF of G of weight 4, and clearly, γoidR(G) < 5n+2

4
.

Assume now that x ∈ V (G)−C is a strong support vertex such that all its neighbors but one are
leaves. Consider the graph G′ obtained from G by removing x and all its leaf neighbors. Clearly,
G′ is unicyclic graph of order at least three, and since every γoidR(G

′)-function can be extended to
an OIDRDF of G by assigning 3 to x and 0 to each leaf neighbor of x, we obtain by applying the
induction hypothesis on G′,

γoidR(G) ≤ γoidR(G
′) + 3 ≤ 5(n− 3) + 2

4
+ 3 <

5n+ 2

4
,

as desired.

For the remainder, consider the following two cases.
Case 1. k ≥ 3.

We �rst note that by Claim 1, ak−1 has degree two. We distinguish two other situations.
Subcase 1.1. deg(ak−2) ≥ 3. Suppose that ak−2 has q1 neighbors as support vertices of degree two

and q2 neighbors as leaves. Clearly q1 ≥ 1 (because of ak−1) and q1 + q2 ≥ 2 (because of the degree
of ak−2). Let G′ be the component of G− ak−2 that contains ak−3 and let f ′ be a γoidR(G

′)-function.
Note that G′ is unicyclic of order at least 3. If q2 ≥ 1, then f ′ can be extended to an OIDRDF of G
by assigning 3 to ak−2 and 0 to its neighbors with the exception of ak−3, 2 to any other remaining
vertex. By the induction hypothesis on G′ and since q1 ≥ 1 and q2 ≥ 1, we obtain that

γoidR(G) ≤ γoidR(G
′) + 2q1 + 3

≤ 5(n− 2q1 − q2 − 1) + 2

4
+ 2q1 + 3

≤ 5n− 2q1 − 5q2 + 7 + 2

4
≤ 5n+ 2

4
. (1)

Further if γoidR(G) = 5n+2
4

, then we have equality throughout the inequality chain (1). In particular
q1 = q2 = 1 and γoidR(G

′) = 5(n−4)+2
4

. It follows from the induction hypothesis that G′ ∈ U . If ak−3 is
a leaf in G′, then by Lemma 2.2, G′ has a γoidR(G

′) that assigns 2 to ak−3 and ak−4 is doubly Roman
dominated by the vertices in G′ − ak−3. Then reassigning ak−3 a 1 and assigning 3 to ak−2, 2 to ak
and 0 to ak−1 and the leaf neighbor of ak−2, provides an OIDRDF of G of weight γoidR(G′)+ 4 which
leads to a contradiction. Thus vk−3 is a support vertex of G′ and so G ∈ U .
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Now, if q2 = 0, then q1 ≥ 2 and f ′ can be extended to an OIDRDF of G by assigning 0 to all
neighbors of ak−2 except ak−3 and 2 to any other remaining vertex. By the induction hypothesis on
G′ and since q1 ≥ 2, we obtain that

γoidR(G) ≤ γoidR(G
′) + 2q1 + 2

≤ 5(n− 2q1 − 1) + 2

4
+ 2q1 + 2

≤ 5n− 2q1 + 3 + 2

4

≤ 5n+ 1

4
<

5n+ 2

4
.

Subcase 1.2. deg(ak−2) = 2.
Observe that if ak−3 has a neighbor t1 outside C such that there is a path ak−3t1t2t3 from ak−3 to

a leaf t3, then t3 plays the role of ak (since t3 is as far from a0 as the vertex ak). Which leads that
deg(t1) = deg(t2) = 2. Thus, any neighbor of ak−3 outside C is a leaf, a support vertex of degree
two (because of Claim 1), or a vertex of degree two which is adjacent to a support vertex of degree
two. Accordingly, suppose that ak−3 is adjacent to h1 leaves, h2 support vertices of degree two and
h3 vertices of degree two each of which is adjacent to a support vertex of degree two, that we recall
are all outside C. Clearly h3 ≥ 1, because of ak−2.
First, assume that k ≥ 4. Remove the edge ak−3ak−4 from G and consider the component G′

that contains ak−4. Note that G′ is unicyclic of order at least 3. Let f ′ be a γoidR(G
′)-function. If

h1 ≥ 1, then f ′ can be extended to an OIDRDF of G by assigning 3 to ak−3 and to each support
vertex at distance 2 from ak−3, 2 to any leaf at distance two from ak−3 and 0 to any other vertex in
V (G)− V (G′). By the induction hypothesis on G′ and since h1 ≥ 1 and h3 ≥ 1, we obtain that

γoidR(G) ≤ γoidR(G
′) + 2h2 + 3h3 + 3

≤ 5(n− h1 − 2h2 − 3h3 − 1) + 2

4
+ 2h2 + 3h3 + 3

≤ 5n− 5h1 − 2h2 − 3h3 + 7 + 2

4

≤ 5n+ 1

4
<

5n+ 2

4
.

If h1 = 0, then f ′ can be extended to an OIDRDF of G by assigning 3 to each support vertex at
distance 2 from ak−3, 2 to ak−3 and any leaf at distance two from it and 0 to any other vertex in
V (G)− V (G′). By the induction hypothesis on G′ and since h3 ≥ 1, we have

γoidR(G) ≤ γoidR(G
′) + 2h2 + 3h3 + 2

≤ 5(n− 2h2 − 3h3 − 1) + 2

4
+ 2h2 + 3h3 + 2

≤ 5n− 2h2 − 3h3 + 3 + 2

4

≤ 5n+ 2

4
. (2)

Further if γoidR(G) = 5n+2
4

, then we have equality throughout the inequality chain (2). In particular
h3 = 1, h2 = 0 and γoidR(G

′) = 5(n−4)+2
4

. By the the induction hypothesis, G′ ∈ U , where ak−4 can be
a leaf or a support vertex. But in any case, by items (i) and (ii) of Lemma 2.2, G′ has a γoidR(G

′)-
function f ′ that assigns at least 2 to ak−4. In this case, assigning 2 to ak, ak−2, and 0 to ak−1, ak−3,
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f ′ can be extended to an OIDRDF of G of weight γoidR(G
′) + 4 which leads to a contradiction.

Therefore, the equality does not holds, that is γoidR(G) < 5n+2
4

.

Finally, assume that k = 3. Remove vertex a0 from G, and consider T the component of G − a0
that contains c1. Note that T is a tree and has order at least 2. Let f ′ be a γoidR(T )-function, and
assume �rst that |V (T )|≥ 3. If h1 ≥ 1, then f ′ can be extended to an OIDRDF of G by assigning 3
to a0 and to each support vertex (not in T ) at distance 2 from a0, 2 to any leaf (not in T ) at distance
two from a0 and 0 to any other vertex in V (G) − V (T ). By Theorem 1.1, and since h1 ≥ 1 and
h3 ≥ 1, we obtain that

γoidR(G) ≤ γoidR(T ) + 2h2 + 3h3 + 3

≤ 5(n− h1 − 2h2 − 3h3 − 1)

4
+ 2h2 + 3h3 + 3

≤ 5n− 5h1 − 2h2 − 3h3 + 7

4

<
5n

4
.

If h1 = 0, then f ′ can be extended to an OIDRDF of G by assigning 3 to each support vertex (not
in T ) at distance two from a0, 2 to a0 and to any leaf (not in T ) at distance two from a0 and 0 to
any other vertex in V (G)− V (T ). By Theorem 1.1 and since h3 ≥ 1, we have

γoidR(G) ≤ γoidR(T ) + 2h2 + 3h3 + 2

≤ 5(n− 2h2 − 3h3 − 1)

4
+ 2h2 + 3h3 + 2

≤ 5n− 2h2 − 3h3 + 3

4

≤ 5n

4
<

5n+ 2

4
.

Now, let |V (T ′)|= 2. Then n = 3h3 + 2h2 + h1 + 3. De�ne the function f on V (G) that assigns
3 to a0 and each support vertex at distance 2 from it, 2 to any leaf at distance two from a0, 1 to
c1 and 0 to any other vertex. Obviously, f is an OIDRDF of G of weight 4 + 3h3 + 2h2, and so
γoidR(G) < 5n+2

4
.

Case 2. k ∈ {1, 2}.
Note that any neighbor of a0 outside C is either a leaf or a support vertex of degree two. Let h1

be the number of support vertices outside C that are adjacent to a0 and let h2 be the number of leaf
neighbors of a0. Consider the following two subcases.

Subcase 2.1. deg(a0) ≥ 4.
Claim 1 implies that k = 2, and thus h1 ≥ 1 and h1 + h2 ≥ 2. Let T be the component of G− a0

that contains c1 and f ′ be a γoidR(T )-function. Note that T is a tree of order at least two. First, let
|V (T )|≥ 3. If h2 ≥ 1, then f ′ can be extended to an OIDRDF for G by assigning 3 to a0, 0 to its
neighbors outside C, and 2 to any other remaining vertex. By Theorem 1.1, we have;

γoidR(G) ≤ γoidR(T ) + 2h1 + 3

≤ 5(n− 2h1 − h2 − 1)

4
+ 2h1 + 3

=
5n− 2h1 − 5h2 + 7

4
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≤ 5n

4
<

5n+ 2

4
.

Hence we can assume that h2 = 0, and thus h1 ≥ 2. In this case, we extend the function f ′ to an
OIDRDF on G by assigning 0 to the neighbors of a0 outside C, and 2 to any other remaining vertex
(including a0). It follows from Theorem 1.1 that;

γoidR(G) ≤ γoidR(T ) + 2h1 + 2 ≤ 5(n− 2h1 − 1)

4
+ 2h1 + 2 ≤ 5n− 1

4
<

5n+ 2

4
.

Assume now that |V (T )|= 2. Clearly, n = 2h1 + h2 + 3. De�ne an OIDRDF on V (G) of weight
4+2h2 as follows: assign 3 to a0, 0 to any neighbor of a0 except c1, 1 to c1 and 2 to any other vertex.
It follows that;

γoidR(G) = 4 + 2h1 <
5(2h1 + h2 + 3) + 2

4
=

5n+ 2

4
.

Subcase 2.2. deg(a0) = 3.
By the choice of a0, any vertex on C of degree three is either a support vertex or it is adjacent to

a support vertex of degree two. Let x be a vertex of C adjacent to a support vertex w /∈ C. Let v
denote the leaf neighbor of w. Remove vertices x,w, v from G and let T be the resulting tree. Since
n ≥ 8, |V (T )|≥ 3 and by Theorem 1.1, γoidR(T ) ≤ 5(n−3)

4
. In this case, any γoidR(T )-function can be

extended to an OIDRDF on G by assigning 2 to x, v and 0 to w, and therefore,

γoidR(G) ≤ γoidR(T ) + 4 ≤ 5(n− 3)

4
+ 4 ≤ 5n+ 1

4
<

5n+ 2

4
.

Hence, G has no support vertex outside C. If each vertex of C is a support vertex, then by
Proposition 2.1 we have γoidR(G) ≤ 5n+2

4
, with equality if and only if G = cor(Ct) for some odd t,

and so G ∈ U . Hence we can assume that at least one vertex of C has degree two. In this case, let x
be a support vertex of C having a neighbor y ∈ C of degree two. Let y1 denote the second neighbor
of y on C. If deg(y1) = 3, then consider the tree T obtained from G by removing x, y, y1 and the two
leaf neighbors of x and y1. Since n ≥ 8, we have |V (T )|≥ 3 and by Theorem 1.1, γoidR(T ) ≤ 5(n−5)

4
.

In this case, we extend any γoidR(T )-function to an OIDRDF on G by assigning 3 to x, y1 and 0 to
any other vertex. It follows that;

γoidR(G) ≤ γoidR(T ) + 6 ≤ 5(n− 5)

4
+ 6 =

5n− 1

4
<

5n+ 2

4
.

Hence we can assume that deg(y1) = 2 and let y2 denote the second neighbor of y1 on C. If
deg(y2) = 3, then consider the tree T obtained from G by removing vertices x, y, y1, y2 and the two
leaf neighbors of x and y2. Since n ≥ 8, it follows that |V (T )|≥ 2. Now, if |V (T )|= 2, then G is one
of the two graphs U1 or U2 of Figure 2, but for both graphs we have γoidR(G) < 5n+2

4
. Hence, we

assume that |V (T )|≥ 3 and thus by Theorem 1.1, γoidR(T ) ≤ 5(n−6)
4

. As before, we can extend any
γoidR(T )-function to an OIDRDF on G by assigning 3 to x, y2, 1 to y and 0 to any other vertex. It
follows that;

γoidR(G) ≤ γoidR(T ) + 7 ≤ 5(n− 6)

4
+ 7 =

5n− 2

4
<

5n+ 2

4
.

Finally assume that deg(y2) = 2, and let T be the tree obtained from G by removing vertices
x, y, y1, y2 and leaf neighbor of x. Since n ≥ 8, we have |V (T )|≥ 3 and thus by Theorem 1.1,
γoidR(T ) ≤ 5(n−5)

4
. Clearly, any γoidR(T )-function can be extended to an OIDRDF on G by assigning

3 to x, 2 to y2, 1 to y1 and 0 to any other vertex. It is easy to see that γoidR(G) ≤ γoidR(T )+ 6 ≤ 5n
4
.

This completes the proof.
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3. Bicyclic graphs

In this section, we present an upper bound on the OIDR-domination number of connected bicyclic
graphs, and we characterize all extremal bicyclic graphs attaining this bound.
Let B be the family of bicyclic graphs G that can be obtained from two graphs G1, G2 ∈ U by

adding an edge between their support vertices so that the resulting graph is bicyclic (for eaxmple
see Figure 5).

Fig. 5. A bicyclic graph in B.

Lemma 3.1. If G ∈ B, then γoidR(G) = 5n+4
4

. Moreover,

(i) for any leaf u of G with support vertex v, there exists a γoidR(G)-function that assigns 2 to u

and v is doubly Roman dominated by vertices in G− u.

(ii) for any support vertex v of G, there exists a γoidR(G)-function that assigns at least 2 to v.

Theorem 3.2. If G is a connected bicyclic graph of order n, then

γoidR(G) ≤ 5n+ 4

4
,

with equality if and only if G ∈ B.

Proof. The proof is by induction on n. Clearly, n ≥ 5, and one can easily check that the statement
holds for all bicyclic graphs of order n ∈ {5, 6, 7}, establishing the base case. Let n ≥ 8, and assume
that the result holds for all bicyclic graphs of order less than n. Let G be a bicyclic graph of order
n. Let C and C ′ denote the cycles of G, where V (C) = {v1, . . . , vℓ} and V (C ′) = {w1, . . . , wm}.
Without loss of generality, assume that d(C,C ′) = d(v1, w1), and let P denote the shortest path
between v1 and w1. Before going further, we need to state some claims. The �rst one can be proven
similarly to Claim 2, and thus the proof is omitted.

Claim 2. If v ∈ V (P ) ∪ V (C) ∪ V (C ′) is a strong support vertex such that all of its neighbors
outside P ∪ C ∪ C ′ are leaves, or v ∈ V (G)− V (P ) ∪ V (C) ∪ V (C ′) is a strong support vertex such
that all of its neighbors but one are leaves, then γoidR(G) < 5n+4

4
.

Claim 3. If a0 ∈ V (P ) ∪ V (C) ∪ V (C ′) and there is a path of length k ≥ 3 from a0 to a farthest
leaf ak from a0 that intersects P ∪ C ∪ C ′ only in a0, then γoidR(G) ≤ 5n+4

4
, with equality only if

G ∈ B.
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Proof of Claim 3. Suppose that there is a path a0a1 · · · ak to a leaf ak such that k ≥ 3 and no
ai for any i ≥ 1, belongs to V (P ), V (C) or V (C ′). By Claim 2, deg(ak−1) = 2. First, assume that
deg(ak−2) ≥ 3. Suppose that ak−2 has q1 neighbors as support vertices of degree two and q2 neighbors
as leaves. Clearly q1 ≥ 1 (because of ak−1) and q1 + q2 ≥ 2 (because of deg(ak−2) ≥ 3). Remove
ak−2 from G and consider the component G′ that contains ak−3. Note that G′ is bicyclic. If q2 ≥ 1,
then any γoidR(G

′)-function can be extended to an OIDRDF of G by assigning 3 to ak−2 and 0 to its
neighbors but ak−3, 2 to any other vertex. By the induction hypothesis on G′ and since q1 ≥ 1 and
q2 ≥ 1, we obtain that;

γoidR(G) ≤ γoidR(G
′) + 2q1 + 3

≤ 5(n− 2q1 − q2 − 1) + 4

4
+ 2q1 + 3

≤ 5n− 2q1 − 5q2 + 7 + 4

4
≤ 5n+ 4

4
. (3)

Further if γoidR(G) = 5n+4
4

, we have equality throughout the inequality chain (3). In particular
q1 = q2 = 1 and γoidR(G

′) = 5(n−4)+4
4

. It follows from the induction hypothesis that G′ ∈ B. If ak−3 is
a leaf in G′, then by Lemma 3.1, G′ has a γoidR(G

′) that assigns 2 to ak−3 and ak−4 is doubly Roman
dominated by the vertices in G′ − ak−3. In this case, reassigning ak−3 the value 1 and assigning 3
to ak−2, 2 to ak and 0 to ak−1 and the leaf neighbor of ak−2, provides an OIDRDF of G of weight
γoidR(G

′) + 4 which leads to a contradiction. Thus ak−3 is a support vertex of G′ and thus G ∈ B.
Hence we can assume that q2 = 0. Then q1 ≥ 2 and any γoidR(G

′)-function can be extended to an
OIDRDF of G by assigning 0 to neighbors of ak−2 but ak−3, 2 to any other remaining vertex. By the
induction hypothesis on G′, and since q1 ≥ 2, we obtain that;

γoidR(G) ≤ γoidR(G
′) + 2q1 + 2

≤ 5(n− 2q1 − 1) + 4

4
+ 2q1 + 2

≤ 5n− 2q1 + 3 + 4

4
<

5n+ 4

4
.

In the sequel, we will assume that deg(ak−2) = 2. Note that any neighbor of ak−3, except ak−4

when k ≥ 4 or its neighbors in V (P ) ∪ V (C) ∪ V (C ′) when k = 3, is either a leaf, a support vertex
of degree two (because of Claim 2), or a vertex of degree two which is adjacent to a support vertex
of degree two. Accordingly, assume that ak−3 is adjacent to h1 leaves, h2 support vertices of degree
two and h3 vertices of degree two each of which is adjacent to a support vertex of degree two (all
outside C). Because of ak−2, we have h3 ≥ 1.
Assume that k ≥ 4, and let G′ be the component of G containing ak−4 after the removal of the

edge ak−3ak−4. Observe that G′ remains bicyclic. Now, if h1 ≥ 1, then every γoidR(G
′)-function can

be extended to an OIDRDF of G by assigning 3 to ak−3 and to each support vertex (note in G′) at
distance 2 from ak−3, 2 to any leaf (note in G′) at distance two from ak−3 and 0 to any other vertex
in V (G)− V (G′). By the induction hypothesis on G′ and since h1 ≥ 1 and h3 ≥ 1, we obtain that

γoidR(G) ≤ γoidR(G
′) + 2h2 + 3h3 + 3

≤ 5(n− h1 − 2h2 − 3h3 − 1) + 4

4
+ 2h2 + 3h3 + 3

≤ 5n− 5h1 − 2h2 − 3h3 + 7 + 4

4
<

5n+ 4

4
.
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Hence let h1 = 0. Then any γoidR(G
′)-function can be extended to an OIDRDF of G by assigning

3 to each support vertex (note in G′) at distance 2 from ak−3, 2 to ak−3 and any leaf (note in G′) at
distance two from ak−3 and 0 to any other vertex in V (G)− V (G′). By the induction hypothesis on
G′ and since h3 ≥ 1, we obtain

γoidR(G) ≤ γoidR(G
′) + 2h2 + 3h3 + 2

≤ 5(n− 2h2 − 3h3 − 1) + 4

4
+ 2h2 + 3h3 + 2

≤ 5n− 2h2 − 3h3 + 3 + 4

4

≤ 5n+ 4

4
. (4)

Further if γoidR(G) = 5n+4
4

, then we have equality throughout the inequality chain (4). In partic-
ular, h2 = 0 and h3 = 1 and γoidR(G

′) = 5(n−4)+4
4

. By the the induction hypothesis, G′ ∈ B, where
ak−4 can be a leaf or a support vertex. But in any case, by items (i) and (ii) of Lemma 3.1, G′ has
a γoidR(G

′)-function f ′ that assigns at least 2 to ak−4. In this case, assigning 2 to ak, ak−2, and 0
to ak−1, ak−3, f ′ can be extended to an OIDRDF of G of weight γoidR(G′) + 4 < 5n+2

4
, leading to a

contradiction. Therefore, the equality does not holds, that is γoidR(G) < 5n+2
4

.

In the following, we can assume that k = 3. Denote by A the set of all neighbors of a0 outside
of C ∪ C ′ ∪ P, and recall that h3 ≥ 1. Let G′ be the union of the components of G − (A ∪ {a0})
containing neighbors of a0 on P ∪ Cm ∪ Cℓ.
Consider the following situations.
• a0 ∈ V (P )− {v1, w1}.
Since a0 ∈ V (P ), the graph G′ is the disjoint union of two unicyclic graphs and thus by Theorem

2.3, γoidR(G′) ≤ 5|V (G′)|+4
4

. Now, if h1 ≥ 1, then we extend any γoidR(G
′)-function to an OIDRDF for

G by assigning 3 to a0 and to each support vertex (not in G′) at distance 2 from a0, 2 to any leaf
(not in G′) at distance two from a0 and 0 to any other vertex in V (G) − V (G′). Since h1 ≥ 1 and
h3 ≥ 1, we obtain that

γoidR(G) ≤ γoidR(G
′) + 2h2 + 3h3 + 3

≤ 5(n− h1 − 2h2 − 3h3 − 1) + 4

4
+ 2h2 + 3h3 + 3

≤ 5n− 5h1 − 2h2 − 3h3 + 7 + 4

4

<
5n+ 4

4
.

Hence we may assume that h1 = 0. Then any γoidR(G
′)-function can be extended to a OIDRDF

of G by assigning 3 to each support vertex (not in G′) at distance 2 from ak−3, 2 to a0 and to any
leaf (not in G′) at distance two from it and 0 to any other vertex in V (G)−V (G′). As before, it can
be seen that

γoidR(G) ≤ γoidR(G
′) + 2h2 + 3h3 + 2

≤ 5(n− 2h2 − 3h3 − 1) + 4

4
+ 2h2 + 3h3 + 2

≤ 5n− 2h2 − 3h3 + 3 + 4

4
≤ 5n+ 4

4
. (5)
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Further if γoidR(G) = 5n+4
4

, then we have equality throughout inequality chain (5). In particular
h3 = 1, h2 = 0 and γoidR(G

′) = 5(n−4)+4
4

. It follows that G′ is the disjoint union of two unicyclic
graphs G′′, G′′′ ∈ U . By Lemma 2.2, G′ has a γoidR(G

′)-function such that assigns at least 2 to the
neighbors of a0 in G′, and such a γoidR(G′)-function can be extended to an OIDRDF of G by assigning
2 to a1, a3 and 0 to a0, a2 which leads to a contradiction. Hence we deduce that γoidR(G) < 5n+4

4

which is a contradiction. Therefore, the equality does not holds, that is γoidR(G) < 5n+4
4

.

• a0 ∈ V (C) ∪ V (C ′) \ {v1, w1}.
Since a0 ∈ V (C)∪V (C ′), the graph G′ is unicyclic and thus by Theorem 2.3, γoidR(G′) ≤ 5|V (G′)|+2

4
.

Now, if h1 ≥ 1, then we extend any γoidR(G
′)-function to an OIDRDF for G by assigning 3 to a0 and

to each support vertex (not in G′) at distance 2 from a0, 2 to any leaf (not in G′) at distance two
from a0 and 0 to any other vertex in V (G)− V (G′). Since h1 ≥ 1 and h3 ≥ 1, we obtain that

γoidR(G) ≤ γoidR(G
′) + 2h2 + 3h3 + 3

≤ 5(n− h1 − 2h2 − 3h3 − 1) + 2

4
+ 2h2 + 3h3 + 3

≤ 5n− 5h1 − 2h2 − 3h3 + 5 + 4

4

<
5n+ 4

4
.

Hence we may assume that h1 = 0. Then any γoidR(G
′)-function can be extended to a OIDRDF of

G by assigning 3 to each support vertex (not in G′) at distance 2 from ak−3, 2 to a0 and to any leaf
(not in G′) at distance two from it and 0 to any other vertex in V (G)− V (G′). As before, we have

γoidR(G) ≤ γoidR(G
′) + 2h2 + 3h3 + 2

≤ 5(n− 2h2 − 3h3 − 1) + 2

4
+ 2h2 + 3h3 + 2

≤ 5n− 2h2 − 3h3 + 3 + 2

4

≤ 5n+ 4

4
. (6)

Further if γoidR(G) = 5n+4
4

, then we have equality throughout the inequality chain (6). In partic-
ular, h2 = 0 and h3 = 1 and γoidR(G

′) = 5(n−4)+4
4

. By the induction hypothesis, G′ ∈ U , where a
neighbor of a0 in V (C) ∪ V (C ′) that belongs to G′ is either a leaf or a support vertex. But in either
case, by items (i) and (ii) of Lemma 2.2, such a neighbor in G′ is assigned at least 2 under some
γoidR(G

′)-function f ′ that can be extended to an OIDRDF of G of weight γoidR(G′) + 4 by assigning
1 to a0, 3 to a2 and 0 to both a3 and a1. Clearly, all this leads to a contradiction. Therefore, the
equality does not holds, that is γoidR(G) < 5n+4

4
.

• a0 ∈ {v1, w1}.
If a0 = v1 = w1 and G′ = K2 ∪ K2, then the function f de�ned on V (G) by assigning 3 to a0

and each support vertex at distance 2 from a0, 2 to any leaf at distance two from a0, 1 to v2, w2

and 0 to any other vertex in V (G) − V (G′), is an OIDRDF of G of weight 3h3 + 2h2 + 5, and
clearly γoidR(G) < 5n+4

4
. Hence, without loss of generality, we assume that a0 = v1. If G′ has no

K2-component, then using a similar argument as before, we can see that γoidR(G) < 5n+4
4

. Otherwise,
let G′′ be the component of G− a0 of order at least three and containing no vertex of A. If v1 = w1,

then the graph G′′ is a tree, otherwise G′′ is a unicyclic graph and thus by Theorems 1.1 and 2.3,
γoidR(G

′′) ≤ ⌊5|V (G′′)|+2
4

⌋. In this case, we extend any γoidR(G
′′)-function to an OIDRDF of G by
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assigning 3 to v1 and to each support vertex (not in G′′) at distance 2 from it, 2 to any leaf (not in
G′′) at distance two from v1, 1 to v2 and 0 to any other vertex in V (G)− V (G′′). Now, we have

γoidR(G) ≤ γoidR(G
′′) + 2h2 + 3h3 + 4

≤ 5(n− h1 − 2h2 − 3h3 − 3) + 2

4
+ 2h2 + 3h3 + 4

≤ 5n− 5h1 − 2h2 − 3h3 + 3

4

<
5n+ 4

4
.

Therefore, in the next we can consider that k ≤ 2, that is every leaf in G (if any) is at distance at
most two from some vertex of V (P ) ∪ V (C) ∪ V (C ′). We proceed with the following claim.

Claim 4. If v ∈ V (P )∪V (C)∪V (C ′)−{v1, w1} and deg(v) ≥ 4, then γoidR(G) ≤ 5n+4
4

. Moreover,
if the equality holds, then G ∈ B.

Proof of Claim 4. Let v ∈ V (P ) ∪ V (C) ∪ V (C ′) − {v1, w1} such that deg(v) ≥ 4. By Claims 2
and 3, each neighbor of v outside V (P ) ∪ V (C) ∪ V (C ′) is a leaf or a support vertex of degree two.
Suppose that the neighbors of v outside V (P ) ∪ V (C) ∪ V (C ′) are h1 support vertices of degree two
and h2 leaves. Clearly, h1 + h2 ≥ 2. Remove v from G, and consider the following two situations.

• v ∈ V (C) ∪ V (C ′)− {v1, w1}.
Let G′ be the component of G − v containing v1. Then G′ is a unicyclic graph. Now, if h2 ≥ 1,

then any γoidR(G
′)-function can be extended to an OIDRDF of G by assigning 3 to v and 0 to its

neighbors outside C ∪ C ′, and 2 to any other vertex. By Theorem 2.3 and since h1 ≥ 1, we obtain
that

γoidR(G) ≤ γoidR(G
′) + 2h1 + 3

≤ 5(n− 2h1 − h2 − 1) + 2

4
+ 2h1 + 3

≤ 5n− 2h1 − 5h2 + 5 + 4

4

<
5n+ 4

4
.

If h2 = 0, then h1 ≥ 2 and any γoidR(G
′)-function can be extended to an OIDRDF of G by assigning

0 to neighbors of v outside C ∪ C ′, and 2 to any other vertex (including v). By Theorem 2.3 and
since h1 ≥ 2, we obtain that

γoidR(G) ≤ γoidR(G
′) + 2h1 + 2

≤ 5(n− 2h1 − 1) + 2

4
+ 2h1 + 2

≤ 5n− 2h1 + 1 + 4

3

<
5n+ 4

4
.
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• v ∈ V (P ).
Let G′ be the component of G − v containing v1 and G′′ be the component of G − v containing

w1. Then G′ and G′′ are unicyclic graphs. Now, if h2 ≥ 1, then any γoidR(G
′ ∪ G′′)-function can be

extended to an OIDRDF of G by assigning 3 to v and 0 to its neighbors outside C ∪ C ′, and 2 to
any other vertex. By Theorem 2.3 and since h1 ≥ 1, we obtain that

γoidR(G) ≤ γoidR(G
′) + γoidR(G

′′) + 2h1 + 3

≤ 5(n− 2h1 − h2 − 1) + 4

4
+ 2h1 + 3

≤ 5n− 2h1 − 5h2 + 7 + 4

4

≤ 5n+ 4

4
.

Further if γoidR(G) = 5n+4
4

, then we have equality throughout the previous inequality chain. In
particular h1 = h2 = 1, γoidR(G

′) = 5n(G′)+2
4

and γoidR(G
′′) = 5n(G′′)+2

4
. Theorem 2.3 implies that

G′, G′′ ∈ U . Let u be a vertex of G′ which is the neighbor of v on the path P. If u is a leaf, then by
Lemma 2.2, G′ has a γoidR(G

′)-function f ′ such that assigns weight 2 to u and the support vertex
of u in G′ is doubly Roman dominated by vertices in G′ − u. In this case, if f ′′ is a γoidR(G

′′)-
function, then reassigning u the value 1, and assigning 3 to v, 2 to the leaf at distance 2 from v not
in V (G′)∪V (G′′) and 0 to the neighbors of v not in V (G′)∪V (G′′), provides an OIDRDF of G with
weight γoidR(G′) + γoidR(G

′′) + 4, leading to a contradiction. Thus the neighbors of v in G′ and G′

are support vertices and one can see easily that G ∈ B.
If h2 = 0, then h1 ≥ 2 and any γoidR(G

′ ∪ G′′)-function can be extended to an OIDRDF of G by
assigning 0 to neighbors of v outside G′ ∪G′′, and 2 to any other vertex (including v). By Theorem
2.3 and since h1 ≥ 2, we obtain that

γoidR(G) ≤ γoidR(G
′) + γoidR(G

′′) + 2h1 + 2

≤ 5(n− 2h1 − 1) + 4

4
+ 2h1 + 2

≤ 5n− 2h1 + 3 + 4

3
<

5n+ 4

4
.

According to Claim 4, if v ∈ V (P )∪ V (C)∪ V (C ′)−{v1, w1}, then deg(v) ∈ {2, 3}. In particular,
if deg(v) = 3, then v is either a support vertex or adjacent to a support vertex (outside V (P ) ∪
V (C) ∪ V (C ′)) of degree two. Likewise, if v1 ̸= w1, then we may assume that 3 ≤ deg(v1) ≤ 4 and
3 ≤ deg(w1) ≤ 4, and if v1 = w1, then we may assume that 4 ≤ deg(v1) ≤ 5. In particular, if
deg(v1) = 5 with v1 = w1 or deg(v) = 4 with v ∈ {v1, w1} and v1 ̸= w1, then v is either a support
vertex or adjacent to a support vertex (outside V (P )∪ V (C)∪ V (C ′)) of degree two or v1 = w1. We
continue with following claims.

Claim 5. Let x ∈ V (P ) ∪ V (C) ∪ V (C ′) − {v1, w1} such that deg(x) = 3 and x is adjacent to a

support vertex outside of V (P ) ∪ V (C) ∪ V (C ′), then γoidR(G) < 5n+4
4

.

Proof of Claim 5. Let xx1x2 be a path from x to a leaf x2, with x1, x2 /∈ V (P ) ∪ V (C) ∪ V (C ′).
First assume that x ∈ V (C)∪V (C ′), and consider the graph G′ obtained from G by removing vertices
x, x1 and x2. Observe that G′ is a unicyclic graph, and thus by Theorem 2.3, γoidR(G′) ≤ 5(n−3)+2

4
.
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Moreover, since γoidR(G
′)-function can be extended to an OIDRDF of G by assigning 2 to x, x2 and

0 to x1, we obtain that

γoidR(G) ≤ γoidR(G
′) + 4

≤ 5(n− 3) + 2

4
+ 4

=
5n+ 3

4

<
5n+ 4

4
.

Now assume that x ∈ V (P ), and let G′ be obtained from G by removing vertices x, x1, x2. Clearly
G′ is a disjoint union of two unicyclic graphs G1 and G2. If G1, G2 /∈ U , then G′ has a γoidR(G

′)-
function f such that ω(f) ≤ 5n(G′)+2

4
, and thus f can be extended to an OIDRDF of G by assigning

2 to x, x2 and 0 to x1, yielding as above γoidR(G) < 5n+4
4

. If G1, G2 ∈ U , then G′ has a γoidR(G
′)-

function f such that f assigns at least two to the neighbors of x in G′, and thus f can be extended
to an OIDRDF of G by assigning 2 to x2, 1 to x1 and 0 to x, leading again γoidR(G) < 5n+4

4
. Hence,

we assume that G1 ∈ U and G2 /∈ U . Then clearly the graph G3 induced by V (G) − V (G1) is a
unicyclic graph not belonging to U . Let f1 be a γoidR(G1)-function such that assigns at least 2 to the
neighbor of x in G1 and let f3 be a γoidR(G3)-function. Obviously combining the function f1 and f3
provides an OIDRDF of G with weight 5n+3

4
< 5n+4

4
.

Claim 6. If v1 = w1 and v1 is adjacent to a support vertex outside of V (P ) ∪ V (C) ∪ V (C ′), then
γoidR(G) < 5n+4

4
.

Proof of Claim 6. Suppose that v1x1x2 is a path from v1 to a leaf x2, with x1, x2 /∈ V (P )∪V (C)∪
V (C ′). Let G′ and G′′ be the components of G − {v1, x1, x2} containing v2 and w2 respectively. If
G′ ∼= G′′ ∼= K2, then assigning 3 to v1, 2 to x2, 1 to v2, w2 and 0 to v3, w3 provides an OIDRDF of G
and so γoidR(G) ≤ 7 < 5n+4

4
. Hence we may assume that n(G′′) ≥ 3. Clearly G′′ is a tree of order at

least 3. If G′ ∼= K2, then any γoidR(G
′′)-function can be extended to an OIDRDF of G by assigning

2 to v1, x2, 1 to v2, v3 and 0 to x1. Using Theorem 2.3 on G′′ we obtain

γoidR(G) ≤ γoidR(G
′′) + 6

≤ 5(n− 5)

4
+ 6

<
5n+ 4

4
.

Finally, assume that n(G′) ≥ 3. Clearly G′ and G′′ are trees, each of order at least 3. Let f1 be a
γoidR(G

′)-function and f2 be a γoidR(G
′′)-function. Considering the functions f1 and f2 and assigning

2 to v1, x2 and 0 to x1 provides an OIDRDF of G of weight at most 5n+1
4

< 5n+4
4

.

Claim 7. If v1 = w1 and v1 is a support vertex, then γoidR(G) < 5n+4
4

.

Proof of Claim 7. Let x be the leaf neighbor of v1, and let G′ and G′′ be the components of
G − {v1, x} containing v2 and w2 respectively. If G′ ∼= G′′ ∼= K2, then assigning 3 to v1, 1 to v2, w2

and 0 to v3, w3, x provides an OIDRDF of G and so γoidR(G) ≤ 5 < 5n+4
4

. Hence we may assume
that n(G′′) ≥ 3. Clearly G′′ is a tree of order at least 3. If G′ ∼= K2, then any γoidR(G

′′)-function can
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be extended to an OIDRDF of G by assigning 3 to v1, 1 to v2 and 0 to x, v3. Using Theorem 2.3 on
G′′ we obtain

γoidR(G) ≤ γoidR(G
′′) + 4

≤ 5(n− 4)

4
+ 4

<
5n+ 4

4
.

Finally, assume that n(G′) ≥ 3 and n(G′′) ≥ 3. Clearly G′ and G′′ are trees, each of order at least
3. Let f1 be a γoidR(G

′)-function and f2 be a γoidR(G
′′)-function. Considering the functions f1 and

f2 and assigning 3 to v1 and 0 to x provides an OIDRDF of G of weight at most 5n+2
4

< 5n+4
4

.

Claim 8. If v1 = w1 and deg(v1) = 4, then γoidR(G) < 5n+4
4

.

Proof of Claim 8. If G − v1 = K2 ∪K2, then the function f de�ned on V (G) by assigning 3 to
v1, 1 to v2, w2 and 0 to v3, w3, is an OIDRDF of G of weight 5, and clearly γoidR(G) ≤ 5 < 5n+4

4
. If

G′ = G− v1 has no K2-component, then G′ is a forest with two components each of which is a tree
of order at least 3. Clearly any γoidR(G

′)-function can be extended to an OIDRDF of G by assigning
2 to v1 and using Corollary 1.2, we can see that γoidR(G) < 5n+4

4
. Finally, assume, without loss of

generality, that G′′ is the component of G − v1 of order at least three containing w2. Then G′′ is a
tree and any γoidR(G

′′)-function can be extended to an OIDRDF of G by assigning a 2 to v1, v2 and
0 to v3. Using Corollary 1.2, we can see that γoidR(G) < 5n+4

4
.

Claim 9. Let x ∈ {v1, w1} such that deg(x) = 4 and x is adjacent to a support vertex outside of
V (P ) ∪ V (C) ∪ V (C ′). Then γoidR(G) < 5n+4

4
.

Proof of Claim 9. Clearly v1 ̸= w1. Suppose, without loss of generality, that x = v1 and let
xx1x2 be a path from x to a leaf x2, with x1, x2 /∈ V (P ) ∪ V (C) ∪ V (C ′). Let G′ and G′′ be the
components of G − {x, x1, x2} containing v2 and w2, respectively, and note that G′′ is a unicycle
graph. By Theorem 2.3, γoidR(G′′) ≤ 5|V (G′′)|+2

4
. Now, if G′ ∼= K2, then assigning 3 to x, 2 to x2, 1

to v2 and 0 to v3, w1 provides an OIDRDF of G and so γoidR(G) ≤ 6 < 5n+4
4

. Hence we may assume
that n(G′) ≥ 3, thus G′ is a tree. Let f1 be a γoidR(G

′)-function and f2 be a γoidR(G
′′)-function.

Considering the functions f1 and f2 and assigning 2 to x, x1 and 0 to x1 provides an OIDRDF of G
of weight at most 5n+3

4
< 5n+4

4
.

According to the previous claims, each vertex outside of V (P )∪V (C)∪V (C ′) is a leaf and v1 ̸= w1.

Claim 10. If x ∈ {v1, w1} and deg(x) = 3, then γoidR(G) < 5n+4
4

.

Proof of Claim 10. Suppose, without loss of generality, that x = v1. Clearly, v1 ̸= w1, and thus
let y be the third neighbor of v1. Note that y may be w1. Now, if each vertex of C other than v1
is of degree 2, then let G′ be the graph obtained from G by removing the edge v1y. Let G1 be the
component of G′ containing v1 and G2 the component of G′ containing w1. Then G1 is a cycle and
G2 is a unicyclic graph. Clearly G1 has a γoidR(G1)-function f1 that assigns at least 2 to v1. Now
combining f1 with any γoidR(G2) provides an OIDRDF of G and by Proposition 1.4 and Theorem
2.3, we have γoidR(G) < 5n+4

4
. Hence let i be the smallest integer that deg(vi) = 3 and so vi has a leaf

neighbor w. If i ≥ 3, then let G′ be the graph obtained from G by removing the vertices vi, vi−1, w.
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Note that G′ is unicyclic. Also, since any γoidR(G
′)-function can be extended to an OIDRDF of G by

assigning 3 to vi, 1 to vi−1, and 0 to w, Theorem 2.3 leads to γoidR(G) < 5n+4
4

. Hence we can assume
that i = 2. If ℓ = 3 and deg(vℓ) = 2, then let G′ be the graph obtained from G by removing the
vertices v1, v2, v3, w. Since any γoidR(G

′)-function can be extended to an OIDRDF of G by assigning
3 to v2, 1 to v1, and 0 to v3, w, Theorem 2.3 leads to γoidR(G) < 5n+4

4
. If ℓ = 3 and deg(vℓ) = 3, then

consider the component G2 containing w1 obtained by removing the edge v1y. If f2 is a γoidR(G2)-
function, then f2 can be extended to an OIDRDF on G by assigning 3 to v2, 2 to the leaf neighbor
of vℓ, 1 to v1 and 0 to vℓ and w. Applying Theorem 2.3 on G2, we obtain that γoidR(G) < 5n+4

4
.

Finally, assume that ℓ ≥ 4. Remove v2, w from G and let G′ be the resulting unicyclic graph. Clearly,
because of the degree of v1 in G′, G′ /∈ U , and thus it satis�es γoidR(G′) < 5|V (G′)|+2

4
. Now, since any

γoidR(G
′)-function can be extended to an OIDRDF of G by assigning 3 to v2 and 0 to w, we obtain

γoidR(G) < 5n+4
4

.

According to Claims 8 and 10 we may assume that v1 ̸= w1 and deg(v1) = deg(w1) = 4, that is v1
and w1 are support vertices.

Claim 11. If x ∈ V (P ) ∪ V (C) ∪ V (C ′) and deg(x) = 2, then γoidR(G) < 5n+4
4

.

Proof of Claim 11. First assume, without loss of generality, that x ∈ V (C). If each deg(vi) = 2 for
each i ̸= 1, then by a similar argument as in the proof of Claim 10, we can see that γoidR(G) < 5n+4

4
.

Hence, let i be the smallest integer that deg(vi) = 3 and vi ̸= v1. Clearly, i ≥ 2, and again by a
similar argument to that used in the proof of Claim 10, we can see that γoidR(G) < 5n+4

4
.

In the following, we can assume that x ∈ V (P ). Choose x such that d(x, V (G) − V (P )) is
minimum. Without loss of generality, assume that d(x, v1) = d(x, V (G) − V (P )). Let P = z1 . . . zr
where z1v1, zrw1 ∈ E(G) and let x = zs. Observe that each zi with i < s is a support vertex of
degree three. Moreover, each vertex of C and C ′ is a support vertex of degree 3, except v1 and w1

that are of degree 4. Let z′i be the leaf neighbor of zi every i < s.

Assume �rst that s ≥ 4. Let G1 be the component of G−z2z3 containing z2 and G2 the component
of G−z2z3 containing w1. Then G2 ̸∈ U , since zs is a vertex of degree 2 in G2. Therefore, by Theorem
2.3, γoidR(G2) <

5|V (G1)|+2
4

. Furthermore, observe that G1 is a graph obtained from cor(C) by adding
the path P4 : z

′
1z1z2z

′
2 and the edge v1z1. As a result, G1 belongs to U if and only if C is an odd cycle.

If G1 ∈ U , then by Lemma 2.2, G1 has a γoidR(G1)-function f such that f(z2) ≥ 2, and combining
such a function f with any γoidR(G2)-function produces an OIDRDF of G leading to γoidR(G) < 5n+4

4
.

If G1 /∈ U , then ℓ is certainly even and cor(C) has a γoidR(cor(C))-function f that assigns a 3 to v1.

In this case, f can be �rst extended to an OIDRDF f1 on G1 of weight γoidR(cor(C)) + 5 = 5|V (G1)|
4

by assigning 3 to z2, 2 to z′1 and 0 to z1 and z′2. Then combining such a function f1 with any
γoidR(G2)-function produces an OIDRDF of G leading to γoidR(G) < 5n+4

4
.

Assume that s = 3. Let G1 be the component of G′ = G − {z1, z2, z′1, z′2, z3} containing v1 and
G2 be the component of G′ containing w1. Note that G′ = cor(C), and thus G′ has a γoidR(G

′)-
function f such that f(v1) ≥ 2. Let G2 denote the component containing w1. By Theorem 2.3,
γoidR(G2) ≤ 5|V (G2)|+2

4
. Now, considering f and any γoidR(G2)-function we can extend them to an

OIDRDF of G by assigning 2 to z′1, 3 to z2, 1 to z3 and 0 to z1, z
′
2 leading to

γoidR(G) ≤ γoidR(G
′) + γoidR(G2) + 6

≤ 5(n− 5) + 4

4
+ 6 <

5n+ 4

4
.

The remaining two situations are considered below.
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Case 1. s = 2.
By the choice of x we may assume that zr is a support vertex. Let G′ be the graph obtained from

G by removing the edges v1z1 and w1zr. Let G1 and G2 denote the components of G′ containing
v1 and w1, respectively, and let G3 be the remaining component. Note that G3 is tree that does
not belong to T , since z2 is neither a leaf nor a support vertex. Hence by Theorem 1.3, G3 has
a γoidR(G3)-function of weight less than 5|V (G3)|

4
. Moreover, since each of G1 and G2 is a corona of

some cycle, let fi be a γoidR(Gi)-function such that fi(vi) ≥ 2 for i = 1, 2. Combining the functions
f1, f2, f3 we obtain an OIDRDF of G with weight at most 5n+3

5
, as desired.

Case 2. s = 1.
Let G′ = G − {v1z1, w1zr}. Let the components of G′ containing v1, w1 and z1 be G1, G2 and

G3, and let fi be a γoidR(Gi)-function for i = 1, 2, 3. In particular, f1 and f2 are chosen such that
f1(v1) ≥ 2 and f2(w1) ≥ 2. Now, if r = 1, then combining the functions f1, f2 and assigning 0 to z1
we obtain an OIDRDF of G with weight at most 5n+3

5
. If r = 2 and deg(z2) = 2, then considering

the functions f1, f2 and assigning 1 to z1, z2 we obtain an OIDRDF of G with weight at most 5n+2
5

.
If r = 2 and deg(z2) = 3, then considering the functions f1, f2 and assigning 3 to z2 and 0 to z1 and
the leaf neighbor of z2, we obtain an OIDRDF of G with weight at most 5n+1

5
. Hence we can assume

that r ≥ 3. If deg(z2) = 3, then z2 becomes a strong support vertex in G3 and so G3 ̸∈ T . Hence
ω(f3) ≤ 5|V (G3)|−1

4
(see Theorem 1.3). Then considering the functions f1, f2 and f3 we obtain an

OIDRDF of G with weight at most 5n+3
5

. Thus, assume that deg(z2) = 2, and let G′
1 and G′

2 denote
the components of G−{z1, z2} containing v1 and w1, respectively. Clearly f1 can be extended to an
OIDRDF f ′ of G′

1 by assigning 2 to z2 and 0 to z1. In this case, considering f ′ together with any
γoidR(G

′
2)-function provides an OIDRDF of G and so γoidR(G) ≤ 5n+2

4
.

According to the above claims, we may assume that each vertex on V (C)∪V (C ′)∪V (P )−{v1, w1}
has degree 3 and is a support vertex. Also, each of v1 and w1 has degree 4 and is a support vertex
too. Let P = z1 . . . zr, with z1v1, zrw1 ∈ E(G). Since each zi is a support vertex of degree three, let
z′i be the leaf neighbor of zi. To achieve the proof, we �rst assume that r ≡ 1 (mod 2). If r = 1,
then let G1 and G2 denote the components of G − {z1, z′1} containing v1 and w1, respectively. In
addition, let fi be a γoidR(Gi)-function such that f1(v1) ≥ 2 and f2(w1) ≥ 2. Considering f1, f2 and
assigning 2 to z′1 and 0 to z1, we obtain an OIDRDF of G with weight at most 5n+2

4
. Hence we can

assume that r is odd and equals at least 3. Delete the edge v1z1 and let G1 be the component of
G − v1z1 containing v1 and G2 the other component containing z1. Then G2 is a unicyclic graph,
but because of r odd, G2 /∈ U . Moreover, G1 is a unicyclic graph having a γoidR(G1)-function f of
weight at most 5|V (G1)|+2

4
with f(v1) ≥ 2. Considering f and any γoidR(G2)-function together provide

an OIDRDF of G with weight at most 5n+3
4

. Henceforth assume that r ≡ 0 (mod 2). Let G1 and
G2 be the components containing vertices v1 and w1, respectively obtained as follows: by removing
the edge v1z1 when r ≥ 2 or by removing the edge v1w1 when r = 0. In either case, G1 is a corona
of the cycle C, and has a γoidR(G1)-function f1 such that f(v1) ≥ 2. Now, considering f1 with any
γoidR(G2)-function f2 together we obtain an OIDRDF of G leading to

γoidR(G) ≤ γoidR(G1) + γoidR(G2) ≤
5|V (G1)|+2

4
+

5|V (G2)|+2

4
=

5n+ 4

4
. (7)

Further, if γoidR(G) = 5n+4
4

, then we have equality throughout the inequality chain (7). In partic-
ular γoidR(G1) =

5n(G1)+2
4

and γoidR(G2) =
5n(G2)+2

4
. Theorem 2.3 implies that G1, G2 ∈ U and since

G is obtained from G1, G2 by adding an edge between their support vertices, we have G ∈ B. This
completes the proof.
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According to Theorems 1.1, 2.3 and 3.2, we conclude with the following conjecture.

Conjecture 3.3. If G is a connected cactus graph of order n and having k cycles, then γoidR(G) ≤
5n+2k

4
.
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