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abstract

The degree of an edge uv of a graph G is dG(u)+dG(v)−2. The degree associated edge reconstruction

number of a graph G (or dern(G)) is the minimum number of degree associated edge-deleted sub-

graphs that uniquely determines G. Graphs whose vertices all have one of two possible degrees d and

d+1 are called (d, d+1)−bidegreed graphs. It was proved, in a sequence of two papers [1, 17], that

dern(mK1,3) = 4 for m > 1, dern(mK2,3) = dern(rP3) = 3 for m > 0, r > 1 and dern(G) = 1 or 2

for all other bidegreed graphs G except the (d, d + 1)-bidegreed graphs in which a vertex of degree

d+ 1 is adjacent to at least two vertices of degree d. In this paper, we prove that dern(G) = 1 or 2

for this exceptional bidegreed graphs G. Thus, dern(G) ≤ 4 for all bidegreed graphs G.
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1. Introduction

All graphs considered in this paper are �nite, simple and undirected. We shall mostly follow the

graph theoretic terminology of [8]. A vertex-deleted subgraph or card G − v of a graph (digraph)

G is the unlabeled graph (digraph) obtained from G by deleting the vertex v and all edges (arcs)

incident with v. The deck of a graph (digraph) G is its collection of cards. A graph (digraph) G

is reconstructible if it can be uniquely determined from its deck. The well-known Reconstruction

Conjecture (RC) due to Kelly [10] and Ulam [23] asserts that every graph with at least three vertices

is reconstructible. The conjecture has been proved for many special classes, and many properties of

G may be deduced from its deck. Nevertheless, the full conjecture remains open. Surveys of results
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on the RC and related problems include [5, 12]. Harary and Plantholt [9] de�ned the reconstruction

number of a graph G, denoted by rn(G), to be the minimum number of cards which can only belong

to the deck of G and not to the deck of any other graph H, H ≇ G. These cards thus uniquely

identify G. Reconstruction numbers are known for only few classes of graphs [2].

An extension of the RC to digraphs is the Digraph Reconstruction Conjecture (DRC), proposed

by Harary [7], which asserts that every digraph with at least seven vertices is reconstructible. The

DRC was disproved by Stockmeyer [22] by exhibiting several in�nite families of counter-examples

and this made people doubt the RC itself. To overcome this, Ramachandran [19] introduced degree

associated reconstruction for digraphs and proposed a new conjecture in 1981. It was proved [19] that

the digraphs in all these counterexamples to the DRC obey the new conjecture, thereby protecting

the RC from the threat posed by these digraph counterexamples.

The ordered triple (a, b, c) where a, b and c are respectively the number of unpaired outarcs,

unpaired inarcs and symmetric pair of arcs incident with v in a digraph D is called the degree triple

of v. The degree associated card or dacard of a graph (digraph) is a pair (d, C) consisting of a card C

and the degree (degree triple) d of the deleted vertex. The dadeck of a graph (digraph) is the multiset

of all its dacards. A graph (digraph) is said to be N-reconstructible if it can be uniquely determined

from its dadeck. The new digraph reconstruction conjecture [19] (NDRC) asserts that all digraphs are

N-reconstructible. Ramachandran [20, 21] then studied the degree associated reconstruction number

of graphs and digraphs in 2000. The degree (degree triple) associated reconstruction number of a

graph (digraph) D is the size of the smallest collection of dacards of D that uniquely determines D.

Articles [6], [15] and [4] are recent papers on the degree associated reconstruction number.

The edge card, edge deck, edge reconstructible graphs and edge reconstruction number are de�ned

similarly with edge deletions instead of vertex deletions. The edge reconstruction conjecture, pro-

posed by Harary [7], states that all graphs with at least 4 edges are edge reconstructible. Edge

reconstruction numbers are known for trees [13] and disconnected graphs [3, 14]. The degree of an

edge e, denoted by d(e), is the number of edges adjacent to e. That is, if e = uv is an edge, then

d(e) = d(u) + d(v) − 2. The ordered pair (d(e), G − e) is called a degree associated edge card or

da-ecard of the graph G, where d(e) (called the degree of e) is the number of edges adjacent to e in

G. The edeck (da-edeck) of a graph G is its collection of ecards (da-ecards). The degree associated

edge reconstruction number of a graph G, denoted by dern(G), is the minimum number of da-ecards

which can only belong to the da-edeck of G and not to the da-edeck of any other graph H, H ≇ G.

These da-ecards thus uniquely identify G. The dern(G) has been determined only for few classes of

graphs [11, 17, 16].

By an m-vertex, we mean a vertex with degree m. We call a set with size m by m-set. The

neighbourhood of a vertex v in a graphG is written byNG(v) (or simplyN(v)). Anm-vertex u is called

anm-neighbour of v if u is a neighbour of v; otherwise u is called anm-nonneighbour of v. Two vertices

u and v of a graph G are said to be bisimilar if there is an automorphism on G interchanging u and v.

A graph whose vertices have only one of two possible degrees is called a bidegreed (or biregular) graph.

The degree sequence of a bidegreed graphG, represented by [da, (d+i)b]means thatG contains exactly

a vertices of degree d, and b vertices of degree d+ i, where i > 0. A set of vertices {v1, v2, . . . , vk} of

a graph G is said to be a module of G if NG(vi)− {v1, v2, . . . , vk} = NG(vj)− {v1, v2, . . . , vk} for all

i, j ∈ {1, 2, . . . , k}.
Myrvold et al. [18] have proved that bidegreed graphs are edge reconstructible (thus degree

associated edge reconstructible). Monikandan and Sundar Raj [17] have shown that dern(G) = 1

for all regular graphs and few bidegreed graphs G (namely paths, wheels, bistars, and bidegreed
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graphs with exactly one vertex of di�erent degree which di�ers by at least three). On excluding

these families of bidegreed graphs, Anu and Monikandan [1] have shown that that dern(mK1,3) = 4

for m > 1, dern(mK2,3) = dern(rP3) = 3 for m > 0, r > 1 and dern(G) = 1 or 2 for all other

bidegreed graphs G except the (d, d+ 1)-bidegreed graphs with a (d+ 1)-vertex adjacent to at least

two d-vertices. In this paper, we prove that dern(G) = 1 or 2 for this exceptional bidegreed graphs

G. Thus, dern(G) ≤ 4 for all bidegreed graphs G.

2. Bidegreed graphs with degrees d and d+ 1

An extension of a da-ecard (d(e), F − e) of a graph F is a graph obtained from the da-ecard by

adding a new edge which joins two nonadjacent vertices whose degree sum is d(e) and it is denoted

by H(d(e), F − e) (or simply by H).

For a graph F, to prove dern(F ) = k, we proceed as follows.

(i) First, �nd the da-edeck of F .

(ii) Determine next all possible extensions of every da-ecard of F.

(iii) Finally, show that all extensions other than F have at most k − 1 da-ecards in common with

those of F, and that at least one extension has precisely k− 1 da-ecards in common with those of F.

For sake of clarity, we recall the following three results from [1].

Theorem 2.1. ( [1]; Theorem 3) Let G be a bidegreed graph with degree sequence [da, (d+1)b]. Then

dern(G) = 1 if a = 1 or b = 1.

Theorem 2.2. ( [1]; Theorem 6) Let G be a bidegreed graph with degree sequence

[da, (d+ 1)b], a, b ≥ 2. Then dern(G) = 1 if and only if

(i) two vertices of minimum degree in G are adjacent;

(ii) all the (d+ 1)-vertices in G are mutually adjacent; or

(iii) any two d-vertices in a da-ecard of associated degree 2d− 1 or 2d are bisimilar.

Theorem 2.3. ( [1]; Theorem 7) If G is a bidegreed graph in which all the (d + 1)-vertices are

mutually nonadjacent, then dern(G) = 1, 2 or 3.

Moreover, in Theorem 2.3, dern(G) is equal to 3 only if G ∼= mK2,3 or G ∼= rP3 for m > 0 and

r > 1.

Notation 2.4. For i = 1, 2, ..., by xi, we mean any d-vertex in G; by yi (or zi) super scripted with

0, 1, 2, or 3, we mean a (d + 1)-vertex adjacent to exactly no, one, two or at least three d-vertices

respectively.

Theorem 2.5. If every (d + 1)-vertex of a bidegreed graph G has exactly two d-neighbours, then

dern(G) = 1 or 2.

Proof. We assume that G does not satisfy the hypotheses of Theorems 2.1, 2.2 and 2.3 and hence

dern(G) ≥ 2. Let y21 be a (d + 1)-vertex and let x1, x2 and y22 be three neighbours of y21. Then y21
has exactly d− 1 neighbours of degree d+ 1. We proceed by two cases depending upon the number

of these neighbours that are shared by the vertex x1.

Case 1. Vertices y21 and x1 have exactly d− 1 common (d+ 1)-neighbours.
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Consider the two da-ecards (2d−1, G−f) and (2d,G− g), where f = y21x2 and g = y21y
2
2. By Case

1, vertex y22 is adjacent to x1 ( Figure 1).

Hence in the da-ecard (2d,G − g), the vertices y21, x1 is a pair of adjacent d-vertices with other

d-neighbours (namely y22 or x2) and no three d-vertices are mutually adjacent.

Fig. 1. Section of the da-ecard G− f

Now consider the extensions of the da-ecard (2d−1, G−f). Note that in the da-ecard (2d−1, G−f),

the only adjacent d-vertices are y21, x1 and the only (d− 1)-vertex is x2. So, to get an extension H of

the da-ecard (2d− 1, G− f), we have to join the (d− 1)-vertex x2 and any one of the d-vertices, say

v by an edge in (2d− 1, G− f). Since {y21, x1} is a module of G− f, it follows that H ∼= G when v

is y21 or x1. So, we can assume that v is xi for some i ̸= 1, 2 so that it will become a (d + 1)-vertex

in H. Now consider all possible da-ecards (2d,H − e) of H. If e is xiy
2
j for some j ̸= 1, 2, then, in

the da-ecard (2d,H − e), vertices y21 and x1 would be the only adjacent d-vertices such that none

of them adjacent with other d-vertices and so H − e ≇ G − g. Otherwise, e is xiy
2
2 (if any) or y22y

2
i

for i ̸= 1. Now in the da-ecard (2d,H − e), vertex y22 will become a d-vertex and the three d-vertices

y22, y
2
1 and x1 will become mutually adjacent, which implies H − e ≇ G − g. Hence every extension

H(2d,G − f) is either isomorphic to G or any (2d,H − e) da-ecard of H would contain either two

adjacent d-vertices having no other d-neighbours or three d-vertices are mutually adjacent and so

H − e is not isomorphic to G− g. Hence dern(G) ≤ 2.

Fig. 2.

Case 2. Vertices x1 and y21 have at most d− 2 common (d+ 1)-neighbours.

Let y22 be nonadjacent to x1.

Case 2.1. Vertices x2 and y22 are nonadjacent.

Let xr and xq be the two d-neighbours of y22. Now consider the two da-ecards (2d,G − f) and

(2d− 1, G− g), where f = y21y
2
2 and g = y21x1. In (2d− 1, G− g), vertices y21, x2 is a pair of adjacent

d-vertices and (d−1)-vertex nonadjacent to any d-vertices. In (2d,G−f), exactly six d-vertices form

a 2K1,2. So, to get an extension H of the da-ecard (2d,G − f), we have to join two d-vertices, say
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v1, v2 by an edge. If {v1, v2} = {y21, y22} (Figure 2(a)), then H ∼= G. Otherwise, since the vertices v1
and v2 will have degree d+1 in the extension H(2d,G− f), every da-ecard (2d− 1, H − e) of H has

either at least two pairs of adjacent d-vertices or the unique (d− 1)-vertex is adjacent to a d-vertex,

which implies H − e ≇ G− g. Thus no da-ecard of H would be isomorphic to (2d,G− g) and hence

dern(G) ≤ 2.

Case 2.2. Vertices x2 and y22 are adjacent.

Let xr and x2 be the two d-neighbours of y22. Consider the da-ecards (2d−1, G−g) and (2d,G−f),

where f = y21y
2
2 and g = y21x1. In (2d,G − f), exactly �ve d-vertices together form a path P5 (say

w1, w2, w3, w4, w5) such that each (d+1)-vertex has exactly two d-neighbours other than w2 and w4.

In (2d − 1, G − g), the only adjacent d-vertices are y21, x2 and the only (d − 1)-vertex is x1. So, to

get an extension H of the da-ecard (2d − 1, G − g), we have to join the (d − 1)-vertex x1 and any

one vertex, say v among the d-vertices in (2d − 1, G − g) by an edge. If v is y21 (Figure 2(b)), then

H ∼= G. Otherwise, v is xi for some i ̸= 1 so that it will become a (d + 1)-vertex in H. Now every

da-ecard (2d,H − e) of H has either at least one (d + 1)-vertex with exactly one d-neighbour or no

�ve d-vertices together form a path P5, which implies H − e ≇ G− f. Thus no da-ecard of H would

be isomorphic to (2d,G− f) and hence dern(G) ≤ 2.

The next result is proved in [1].

Theorem 2.6. ( [1]; Theorem 10) If every (d + 1)-vertex of a bidegreed graph G has at most one

d-neighbour, then dern(G) = 2.

In view of Theorems 2.5 and 2.6, we can assume hereafter that G contains both a (d + 1)-vertex

(say y2r) adjacent to exactly two d-vertices (say xr, xq) and a (d+ 1)-vertex adjacent to at most one

d-vertex.

Lemma 2.7. Let G be a bidegreed graph in which vertices of type y2r , y0r exist for some r and y1r
does not exist for any r. If y2r and a d-neighbour of it have at most d− 2 common (d+1)-neighbours,

and y2r is adjacent to some other y2q , then dern(G) = 1 or 2.

Proof. We assume that G does not satisfy the hypotheses of Theorems 2.1, 2.2 and 2.3 and hence

dern(G) ≥ 2. Let xr and xq be two d-neighbours of y2r . Let y
2
r and xr have at most d − 2 common

(d+ 1)-neighbours.

Case 1. The vertex y2q is nonadjacent to at least one of xr and xq.

Consider the two da-ecards (2d,G− y2ry
2
q ) and (2d,G− y0z0) (or (2d,G− y2ky

0) where y0 ∈ N(y2k)

for some k). In G−y0z0 (or G−y2ky
0), each d-vertex is nonadjacent to all other d-vertices ( or there

is a unique path of order three lying among d-vertices such that each d-vertex not in the path is

nonadjacent to the other d-vertices). In (2d,G−y2ry
2
q ), there is a unique path of order �ve lying among

d-vertices (If xr ∈ N(y2q ), then we obtain the path xqy
2
rxry

2
qxp, where xp ∈ N(y2q ). If xq ∈ N(y2q ), then

we obtain the path xry
2
rxqy

2
qxp, where xp ∈ N(y2q )) or there are only six d-vertices together forming

2K1,2 (when xr, xq /∈ N(y2q )). So, to get an extension H of the da-ecard (2d,G − y2ry
2
q ), we have to

join two d-vertices by an edge e. If e = y2ry
2
q , then H ∼= G. Otherwise, e is y2rxi or y

2
qxi or xixj. Now

in the da-ecard (2d,H − e) of the resulting extension H, either no three d-vertices together form a

P3 or three d-vertices together form a P3 but at least one d-vertex not in the P3 is adjacent to other

d-vertices. Therefore no da-ecard of H would be isomorphic to (2d,G − y0z0) (or (2d,G − y2ky
0))

and hence dern(G) ≤ 2.
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Case 2. The vertex y2q is adjacent to both xr and xq.

Now if y0i is nonadjacent to any other y0j for all i and j, then we consider the two da-ecards

(2d− 1, G− y2rxr) and (2d,G− y2i y
0) for some i. In the da-ecard G− y2i y

0, exactly three d-vertices

together form a path P3 (say w1, w2, w3) but no other d-vertices are adjacent, there is no (d+1)-vertex

adjacent to exactly one d-vertex other than w2 and there are d vertices of degree d + 1 adjacent to

exactly three d-vertices other than w2. In the da-ecard (2d−1, G−y2rxr), the only adjacent d-vertices

are y2r , xq and the only (d−1)-vertex is xr. So, to get an extension H of the da-ecard (2d−1, G−y2rxr),

we have to join the (d − 1)-vertex xr and any one vertex, say v among the d-vertices by an edge in

(2d− 1, G− y2rxr). If v = y2r , then clearly, H ∼= G. Now, we can assume that v is xi for some i ̸= q so

that it will become a (d+1)-vertex in H. In the da-ecard (2d,H−e), exactly three d-vertices together

form a path P3 (say z1, z2, z3) and at least two d-vertices other than z1, z2 and z3 are adjacent . If

v is xq, then, in the da-ecard (2d,H − e), vertex xq will become a (d + 1)-vertex and at least d + 1

vertices of degree d+1 adjacent to exactly three d-vertices other than z2 or at least one (d+1)-vertex

adjacent to exactly one d-vertex other than z2. Therefore H − e ≇ G− y2i y
0. Thus no da-ecard of H

would be isomorphic to (2d,G− y2i y
0) and hence dern(G) ≤ 2.

Otherwise, that is y0 and z0 are adjacent. If N(xr) ̸= N(xq), then we consider the two da-ecards

(2d,G − y2ry
2
q ) and (2d,G − y0z0). In the da-ecard G − y0z0, there are 2d vertices of degree d + 1

adjacent to exactly one or three d-vertices and each d-vertex is nonadjacent to all other d-vertices.

In the da-ecard (2d,G − y2ry
2
q ), there is a unique cycle, denoted by Cd

4 , of order four lying among

d-vertices (namely, y2rxqy
2
qxr). So, to get an extension H of the da-ecard (2d,G− y2ry

2
q ), we have to

join two d-vertices, say v1, v2 by an edge e. If {v1, v2} = {y2r , y2q}, then clearly, H ∼= G. Otherwise,

v1, v2 are equal to some x′
is, where i ̸= r(or q), so that it will become a (d + 1)-vertex in H. Now

consider all possible da-ecards (2d,H−e) of H. In (2d,H−e), at least two d-vertices are adjacent. If

v1, v2 are equal to some x′
is, where i = r, q, then, since at least one (d+1)-neighbour of xr is adjacent

exactly one d-vertex, the da-ecard (2d,H − e) has at least 2d+1 vertices of degree d+1 adjacent to

exactly one or three d-vertices. Therefore no da-ecard of H would be isomorphic to (2d,G − y0z0)

and hence dern(G) ≤ 2.

Otherwise, that is N(xr) = N(xq), we consider the two da-ecards (2d− 1, G− y2rxr) and (2d,G−
y0z0). In the da-ecard G−y0z0, the set consisting of y2r and all d-neighbours of y2r is a module and any

two d-vertices are nonadjacent. In the da-ecard (2d − 1, G − y2rxr), the only adjacent d-vertices are

y2r , xq and the only (d− 1)-vertex is xr. So, to get an extension H of the da-ecard (2d− 1, G− y2rxr),

we have to join the (d − 1)-vertex xr and any one vertex, say v among the d-vertices by an edge in

(2d − 1, G − y2rxr). If v = y2r , then clearly, H ∼= G. Now, we can assume that v is xi for some i ̸= q

so that it will become a (d+ 1)-vertex in H. In the da-ecard (2d,H − e), at least two d-vertices are

adjacent. If v is xq, then, in the da-ecard (2d,H − e), vertex xq will become a (d+ 1)-vertex and it

is adjacent to two d-vertices with distinct neighbourhoods. Therefore H − e ≇ G − y0z0. Thus no

da-ecard of H would be isomorphic to (2d,G− y0z0) and hence dern(G) ≤ 2.

Lemma 2.8. Let G be a bidegreed graph in which vertices of type y2r , y1r and possibly y0r exist. If y2r
and a d-neighbour of it have at most d − 2 common (d + 1)-neighbours, and y2r is adjacent to some

other y2q , then dern(G) = 1 or 2.

Proof. We assume that G does not satisfy the hypotheses of Theorems 2.1, 2.2, 2.3 and Lemma 2.7

and hence dern(G) ≥ 2. Let xr and xq be two d-neighbours of y2r . Let y
2
r and xr have at most d− 2



dern of bigereed graphs 19

common (d + 1)-neighbours. Let y2r be adjacent to y2q . Suppose y2q is nonadjacent to at least one of

xq and xr. Consider the da-ecards (2d,G− y2ry
2
q ) and (2d− 1, G− xsy

1
s), where y1s is adjacent to xs.

Clearly, all the d-vertices in G − xsy
1
s are mutually nonadjacent. Every extension H(G − y2ry

2
q ) is

either isomorphic to G or every da-ecard (2d − 1, H − e) contains at least two adjacent d-vertices

and so no da-ecard of H is isomorphic to (2d− 1, G− xsy
1
s).

Suppose that y2q is adjacent to both xq and xr. We proceed by two cases.

Case 1. Vertex y2r is adjacent to some y1s .

Denote the unique d-vertex adjacent to y1s by xi. If xi = xr (or xq), then we choose the two

da-ecards Aj and B as below. Choose A1 = (2d − 1, G − y1sxi) and B = (2d,G − y2ry
2
q ) when

(N(y2r) − {xi} ∩ N(y1s) − {xi}) = ϕ; choose the da-ecards A2 = (2d − 1, G − y2qxq) and B when

N(y2r) ∩ {y1t } ⊆ N(y2q ) but y
1
t /∈ N(xi) for some t; choose the da-ecards A3 = (2d,G − y2ry

1
s) and B

when N(y2r)∩{y1t } ⊆ N(y1s) but y
1
t /∈ N(xi) for some t; or choose the da-ecards A4 = (2d−1, G−y1t xt)

and B when {y1t } ⊆ N(y2r) and {y1t } /∈ N(xr) ∪N(y1s) ∪N(y2q ).

The da-ecard B contains a unique cycle Cd
4 and all the d-vertices are nonadjacent to every d-vertex

not in Cd
4 . Hence every extension H(Ai) is either isomorphic to G or any da-ecard (2d,H(Ai) − e)

has one of the following properties.

(i) It has a unique cycle Cd
4 and at least one d-vertex has a d-neighbour which is not in Cd

4 ;

(ii) the number of copies of C4 + e containing exactly two d-vertices in H(Ai) − e is fewer than

that in B; or

(iii) it has exactly two adjacent d-vertices.

Hence no da-ecard of H(Ai) is isomorphic to B.

Suppose {y0j , y0k} ⊆ N(y2r). If y
0
j is adjacent to y0k, then choose the two da-ecards (2d,G−y2ry

0
j ) and

(2d− 1, G− y1sxi). Now every extension H(G− y2ry
0
j ) is either isomorphic to G or any (2d− 1, H − e)

da-ecard has one of the following properties.

(i) It has a (d+ 1)-vertex, say y adjacent to exactly two d-vertices and to a (d+ 1)-vertex having

a d-neighbour not in N(y); or

(ii) it has a (d+1)-vertex, say w adjacent to three vertices of degree at most d and to a (d+1)-vertex

having a d-neighbour not in N(w).

But the da-ecard (2d − 1, G − y1sxi) satis�es none of the above two properties and so it is not a

da-ecard of H.

If y0j is not adjacent to y0k, then consider the two da-ecards (2d− 1, G− y1sxi) and (2d,G− y2ry
0
j ).

In G− y1sxi, there is a unique path, say P d
3 of order 3 whose vertices are d-vertices having a common

(d + 1)-neighbour. Now every extension H(G − y1sxi) is either isomorphic to G or any da-ecard

(2d,H − e) has one of the following properties:

(i) The number of copies of C4 + e containing exactly two d-vertices in H(G− y1sxi) is fewer than

that in G− y1sxi; or

(ii) there is no (d+ 1)-vertex as a common neighbour of the d-vertices in P d
3 .

Hence no da-ecard of H is isomorphic to (2d− 1, G− y1sxi).

Suppose that xi ̸= xr and xi ̸= xq. Consider the two da-ecards (2d−1, G−y1sxi) and (2d,G−y2ry
2
q ).

The da-ecard G− y2ry
2
q contains a unique cycle Cd

4 and each (d+ 1)-vertex is nonadjacent to all the

d-vertices not in Cd
4 . Hence every extension H(G− y1sxi) is either isomorphic to G or any (2d,H − e)

da-ecard has one of the following properties.

(i) It contains a unique cycle Cd
4 and at least one (d+ 1)-vertex has a d-neighbour not in Cd

4 ; or

(ii) the number of copies of C4 + e containing exactly two d-vertices in H(G − y1sxi) − e is fewer

than that in G− y2ry
2
q .
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Hence no da-ecard of H(G− y1sxi) is isomorphic to G− y2ry
2
q .

Case 2. Vertex y2r is nonadjacent to any y1i .

If some y2i is adjacent to xr but not adjacent to y
2
r , then we consider the two da-ecards (2d,G−y2ry

2
q )

and (2d−1, G−y2qxq). Clearly the da-ecard G−y2qxq has a K1,3+ e containing exactly two d-vertices

such that all the neighbours of a (d+ 1)-vertex in K1,3 + e are nonadjacent to every d-vertex not in

K1,3+e. Now every extension H(G−y2ry
2
q ) is either isomorphic to G or in any da-ecard (2d−1, H−e),

at least one neighbour of a (d + 1)-vertex in any K1,3 + e containing exactly two d-vertices, has a

d-neighbour not lying in it and hence no da-ecard of H is isomorphic to (2d − 1, G − y2qxq). So, we

can take that N(y2r) = {xr, xq, y
2
1, ..., y

2
r1
, y01, ..., y

0
s} and N(xr) = {y2r , y21, ..., y2r1 , z

1
1 , ..., z

1
s}.

If two adjacent z1i 's (say z11 , z
1
2) are adjacent to xr, then we consider the two da-ecards (2d−1, G−

xrz
1
1) and (2d− 1, G− y2rxq). In G− y2rxq, exactly two d-vertices are adjacent and every uncommon

(d+ 1)-neighbour of these two d-vertices is nonadjacent to the other d-vertex. Now every extension

H(G−xrz
1
1) is either isomorphic to G or in any da-ecard (2d− 1, H − e), two d-vertices are adjacent

and an uncommon (d + 1)-neighbour of these two d-vertices is adjacent to the other d-vertex and

hence no da-ecard of H is isomorphic to G− y2rxq. Otherwise, if some y0i (say y0s) is adjacent to both

y2r and y2q , then we consider the two da-ecards (2d,G − y2ry
2
q ) and (2d − 1, G − y2qxr). Now every

extension H(G − y2ry
2
q ) is either isomorphic to G or any (2d − 1, H − e) da-ecard has one of the

following properties:

(i) It contains an induced subgraph K1,3 + e with exactly two (nonadjacent) d-vertices having a

common (d+ 1)-neighbour lying outside K1,3 + e; or

(ii) it contains two adjacent d-vertices, one of which and the unique (d− 1)-vertex have a common

(d+ 1)-neighbour.

But the da-ecard (2d− 1, G− y2qxr) satis�es none of the above two properties and hence it is not

a da-ecard of H.

Otherwise, if z1j ∈ N(y0i ) or z1j ∈ N(z1i ) for some i ∈ {1, 2, · · · , s} and j, then consider the two

da-ecards (2d − 1, G − z1jxj) and (2d − 1, G − y2rxr). In G − y2rxr, every (d + 1)-neighbour of the

two adjacent d-vertices is not adjacent to any other d-vertex. Every extension H(G− z1jxj) is either

isomorphic to G or any (2d− 1, H − e) da-ecard of the extension would contain at least one (d+ 1)-

neighbour of the two adjacent d-vertices is adjacent to the other d-vertex and hence no da-ecard of

H is isomorphic to (2d− 1, G− y2rxr). Otherwise, by proceeding as above, we will get, at some stage,

a vertex y0p that is adjacent to y1q or y0q . If the �rst case happens ( Figure 3), then by proceeding as

above, we get dern(G) ≤ 2. If the later case happens, that is, if y0p is adjacent to some y0q but not

to any y1q , then consider the two da-ecards (2d − 1, G − z1rxr) and (2d − 1, G − y2rxr). In G − y2rxr,

exactly two d-vertices are adjacent. Clearly, every extension H(G− z1rxr) is either isomorphic to G

or in any da-ecard (2d−1, H− e), all the d-vertices are mutually nonadjacent and hence no da-ecard

of H is isomorphic to (2d− 1, G− y2rxr).

Lemma 2.9. Let G be a bidegreed graph in which vertices of type y2r , y1r and possibly y0r exist. If y2r
and a d-neighbour of it have at most d− 2 common (d+1)-neighbours, and y2r is not adjacent to any

other vertex of type y2i , then dern(G) = 1 or 2.

Proof. We assume that G does not satisfy the hypotheses of Theorems 2.1, 2.2 and 2.3 and hence

dern(G) ≥ 2. Let N(y2r) = {xr, xq, y
0
1, y

0
2, · · · , y0m1

, z11 , z
1
2 , · · · , z1n1

} and

N(xr) = {y11, y12, · · · , y1m2
, y21, y

2
2, · · · , y2n2

}. Suppose that m1 ̸= m2 or n1 ̸= n2.
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Fig. 3. Section of the graph G under Case 2

If n1 ̸= n2 (or n1 = n2 ̸= 0), then we consider the two da-ecards (2d − 1, G − y2rxq) and (2d −
1, G − z1n1

xn1). Now every extension H(G − y2rxq) is either isomorphic to G or any (2d − 1, H − e)

da-ecard has one of the following properties (α) and (β).

(α) Every (d+ 1)-vertex has at most two d-neighbours; or

(β) at most m vertices of degree d+ 1 have exactly two d-neighbours such that

(i) the neighbourhood of each (d+1)-vertex stated in (β) can be partitioned into an m1-set and an

n1-set such that every vertex in the m1-set has no other d-neighbours and every vertex in the n1-set

has exactly one other d-neighbour, and

(ii) the neighbourhood of one vertex in every pair of d-vertices stated in (β) can be partitioned

into an m2-set and an n2-set, where m1 ̸= m2 and n1 ̸= n2 such that every vertex in the m2-set has

no other d-neighbours and every vertex in the n2-set has exactly one other d-neighbour.

But the da-ecard (2d− 1, G− z1n1
xn1) satis�es none of the above properties and hence it would not

be a da-ecard of H. Otherwise, consider the two da-ecards (2d−1, G−y2rxq) and (2d−1, G−y1m2
xr).

Now every extension H(G− y2rxq) is either isomorphic to G or any (2d− 1, H − e) da-ecard has one

of the following properties (α) and (β).

(α) At least one (d+ 1)-vertex is adjacent to a pair of vertices of degree d and d− 1 respectively,

such that m2 (̸= m1) neighbours of this (d+ 1)-vertex have no other d-neighbours; or

(β) at most m vertices of degree d+ 1 in the da-ecard are adjacent to two d-vertices such that

(i) the neighbourhood of each (d+1)-vertex stated in (β) can be partitioned into an m1-set and an

n1-set such that every vertex in the m1-set has no other d-neighbours and every vertex in the n1-set

has exactly one other d-neighbour, and

(ii) the neighbourhood of one vertex in each pair of d-vertices stated in (β) can be partitioned into

an m2-set and an n2-set, where m1 ̸= m2 and n1 ̸= n2 such that every vertex in the m2-set has no

other d-neighbours and every vertex in the n2-set has exactly one other d-neighbour.

But the da-ecard (2d− 1, G− y1m2
xr) satis�es none of the above properties and hence it would not

be a da-ecard of H.

Assume now that m1 = m2 and n1 = n2 = 0. We shall proceed by four cases as below.

Case 1. The set {y01, y02, . . . , y0m1
} is independent, but {y11, y12, . . . , y1m2

} is not.

Consider the two da-ecards (2d − 1, G − y2rxq) and (2d − 1, G − y1m2
xr). Now every extension

H(G − y2rxq) is either isomorphic to G or any (2d − 1, H − e) da-ecard has one of the following

properties.

(α) At least one (d+1)-vertex is adjacent to a pair of vertices of degree d, d− 1 such that the set

of all neighbours of this (d+ 1)-vertex is not an independent set; or

(β) at most m vertices of degree d + 1 are adjacent to two d-vertices such that the set of all

neighbours of one of them is an independent set where as the set of all neighbours of at least one of
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them is not an independent set.

But the da-ecard (2d− 1, G− y1m2
xr) satis�es none of the above two properties and hence it would

not be a da-ecard of H.

Case 2. The set {y11, y12, . . . , y1m2
} is an independent set, but {y01, y02, . . . , y0m1

} is not.

In this case, consider the two da-ecards (2d − 1, G − y2rxq) and (2d − 1, G − y1m2
xr). Now every

extension H(G − y2rxq) is either isomorphic to G or any (2d − 1, H − e) da-ecard has one of the

following properties.

(α) At least one (d+1)-vertex is adjacent to a pair of vertices of degree d, d− 1 such that the set

of all neighbours of these (d+ 1)-vertices is an independent set; or

(β) at most m vertices of degree d + 1 are adjacent to two d-vertices such that the set of all

neighbours of one of them is not an independent set where as the set of all neighbours of at least one

of them is an independent set.

But the da-ecard (2d− 1, G− y1m2
xr) satis�es none of the above two properties and hence it would

not be a da-ecard of H.

Case 3. Both the sets {y01, y02, . . . , y0m1
} and {y11, y12, . . . , y1m2

} are independent.

If {y1a} ⊆ N(y0i ) for some i and a (respectively {y1b} ⊆ N(y1j ) for some j and b, y0i is adjacent to

y1j , for some i and j), then consider the two da-ecards (2d− 1, G− y1axa) (respectively (2d− 1, G−
y1bxb), (2d−1, G−xry

1
j )) and (2d−1, G−y2rxq). Now every extension H(G−G−y1axa) (respectively

H(G− y1bxb), H(G− xry
1
j ) is either isomorphic to G or any da-ecard (2d− 1, H − e) has one of the

following properties:

(α) At least one (d+ 1)-neighbour of two adjacent d-vertices has another d-neighbour;

(β) there is a (d+ 1)-vertex w adjacent to two d-vertices such that at least one neighbour of w is

adjacent to a d-vertex; or

(γ) there is a (d+1)-vertex adjacent to two d-vertices, say w1, w2 such that at least one neighbour

of w1 or w2 has exactly one another d-neighbour.

Hence H − e is not isomorphic to (2d− 1, G− y2rxq). If at least one neighbour of y
0
i is adjacent to

y1a for some a; then we consider the two da-ecards (2d−1, G−xay
1
a) (note that 'a' may be equal to r)

and (2d− 1, G− y2rxq). Now every extension H(G− xay
1
a) is either isomorphic to G or any da-ecard

(2d− 1, H − e) has one of the following properties:

(α) At least one (d + 1)-neighbour of one of the adjacent d-vertices is adjacent to a neighbour of

a d-vertex; or

(β) there is a (d+1)-vertex (say w) adjacent to two d-vertices such that at least one neighbour of

w is adjacent to a neighbour of a d-vertex.

Fig. 4. Section of the graph G under Case 3

Hence H − e is not isomorphic to G − y2rxq. Otherwise, by proceeding as just above, at some

stage, we must get a vertex y0p that is adjacent to y1q or y0q . If the former holds (Figure 4), then, by
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proceeding as above, we get dern(G) ≤ 2. If the later holds, that is, if y0p is adjacent to some y0q
but not to any y1q , then we consider the two da-ecards (2d − 1, G − y1jxr) and (2d − 1, G − y2rxq),

where 1 ≤ j ≤ m2. In G− y2rxq, there are only two d-vertices are adjacent. Clearly, every extension

H(G − y1jxr) is either isomorphic to G or in any da-ecard (2d − 1, H − e), all the d-vertices are

mutually nonadjacent and hence no da-ecard of H is isomorphic to (2d− 1, G− y2rxq).

Case 4. Neither {y01, y02, . . . , y0m1
} nor {y11, y12, . . . , y1m2

} is an independent set.

Suppose that {y1a} ⊆ N(y1j ) for some j and a (or N(y1j ) = {y0r1 , y
0
r2
, . . . , y0rd−1

} is an independent

set or �N(y1j ) = {y0r1 , y
0
r2
, . . . , y0rd−1

} is not an independent set and y1j is adjacent to y01�). The two

da-ecards we considered here are (2d− 1, G− xry
1
j ) and (2d− 1, G− y2rxq). Clearly, every extension

H(G − xry
1
j ) is either isomorphic to G or any da-ecard (2d − 1, H − e) has one of the following

properties.

(α) Only two d-vertices are adjacent and a neigbour of exactly one of them is adjacent to a d-vertex;

(β) the set of all neighbours of each d-vertex is independent; or

(γ) at least one (d + 1)-vertex (say w) has two d-neighbours and each neighbour of w has a

d-neighbour.

Hence H − e is not isomorphic to (2d − 1, G − y2rxq). For other remaining cases, proceeding as

in the above two paragraphs, we get dern(G) ≤ 2. This completes Case 4 and our assumption that

m1 = m2 and n1 = n2 = 0.

Finally, we assume that m1 = m2 and n1 = n2 ̸= 0. If {z1j } ⊆ N(z1i ), 1 ≤ i, j ≤ n1, then consider

the two da-ecards (2d,G− z1i z
1
j ) and (2d− 1, G− y2rxq). Now every extension H(G− z1i z

1
j ) is either

isomorphic to G or any (2d− 1, H − e) da-ecard has one of the following properties:

(α) There is a (d + 1)-vertex adjacent to two d-vertices such that the set of all neighbours of at

least one of them is not an independent set; or

(β) at least two d-vertices are adjacent.

But the da-ecard (2d− 1, G− y2rxq) satis�es none of the above two properties and hence it would

not be a da-ecard of H. Otherwise, let us assume that {z1j } ̸⊆ N(z1i ), 1 ≤ i, j ≤ n1 for all i, j.

Suppose {y2k} ⊆ N(z1i ) for some k (y2k ̸= y2r). Then we consider the two da-ecards (2d,G− y2rz
1
i ) and

(2d−1, G−y2n2
xn2). Now every extension H(G−y2rz

1
i ) is either isomorphic to G or any (2d−1, H−e)

da-ecard has one of the following properties.

(α) At least one (d+ 1)-vertex is adjacent to three vertices of degree at most d; or

(β) there is a unique d-vertex adjacent to two distinct d-vertices.

But the da-ecard (2d−1, G−y2n2
xn2) satis�es none of the above two properties and hence it would

not be a da-ecard of H. Suppose {y2k, y1k} ̸⊆ N(z1i ) for all k and for some i. Then consider the two

da-ecards (2d − 1, G − z1i xi) and (2d − 1, G − y2rxq). Now every extension H(G − z1i xi) is either

isomorphic to G or any (2d− 1, H − e) da-ecard has one of the following properties.

(α) All the neighbours of the unique (d− 1)-vertex is nonadjacent to a d-vertex; or

(β) there are only two adjacent d-vertices and all the neighbours of at least one of them are

nonadjacent to all other d-vertices.

But the da-ecard (2d− 1, G− y2rxq) satis�es none of the above two properties and hence it would

not be a da-ecard of H.

Now, let us take that {y1k} ⊆ N(z1i ) for some k. Suppose {y1k} ̸⊆ N(y2j ) for all k and 1 ≤ j ≤ n1.

Consider the two da-ecards (2d− 1, G− y2rxq) and (2d− 1, G− z1i xi). Every extension H(G− y2rxq)

is either isomorphic to G or any (2d− 1, H − e) da-ecard has one of the following properties.

(α) There is a (d + 1)-vertex (say w) adjacent to two d-vertices and a (d + 1)-neighbour of w is

nonadjacent to both a d-vertex and a neighbour of a d-vertex; or
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(β) there is a (d + 1)-vertex adjacent to three d-vertices such that all the neighbours of at least

one of these d-vertices are nonadjacent to all other d-vertices.

But the da-ecard (2d− 1, G− z1i xi) satis�es none of the above two properties and hence it would

not be a da-ecard of H. So, we consider the case that {y1k} ⊆ N(y2j ) for some k.

If {y2k} ⊆ N(xi) for some k and xi ∈ N(z1i ), then we consider the two da-ecards (2d− 1, G− y2kxk)

and (2d− 1, G− y1kxs), where k ̸= i. Every extension H(G− y2kxk) is either isomorphic to G or any

(2d− 1, H − e) da-ecard has one of the following properties.

(α) There are only two adjacent d-vertices; or

(β) at least one (d+ 1)-vertex (say w) has two d-neighbours such that a (d+ 1)-neighbour of w is

adjacent to a (d+ 1)-vertex having two d-neighbours.

But the da-ecard (2d− 1, G− y1kxs) satis�es none of the above two properties and hence it would

not be a da-ecard of H. Otherwise, consider the two da-ecards (2d,G− y2rz
1
i ) and (2d− 1, G− z1i xi).

Now every extension H(G− y2rz
1
i ) is either isomorphic to G or any (2d− 1, H − e) da-ecard has one

of the following properties.

(α) At least two d-vertices are adjacent ; or

(β) at least one (d+ 1)-vertex, say w, has two d-neighbours such that a (d+ 1)-neighbour of w is

adjacent to a d-vertex in N(b2k) for some k.

But the da-ecard (2d− 1, G− z1i xi) satis�es none of the above two properties and hence it would

not be a da-ecard of H.

Fig. 5. Section of the da-ecard (2d− 1, G− y2rxq)

Suppose that y1k ∈ N(xi) for some i, k, where 1 ≤ i ≤ n1. If {z1i , y2k} ⊆ N(xi) for some i, k where

1 ≤ i ≤ n1, then we consider the da-ecards (2d− 1, G− xiy
2
k) and (2d− 1, G− y2rxq). The da-ecard

G− y2rxq contains only one pair of adjacent d-vertices such that

(α) the neighbour of each of them can be partitioned into an m-set and an n-set; and

(β) every vertex in the m-set is adjacent to none of the other d-vertices and every vertex in the

n-set has exactly one other d-neighbour (Figure 6).

Hence every extension H(G− xiy
2
k) is either isomorphic to G or any (2d,H − e) da-ecard contains

only one pair of adjacent d-vertices such that

(α) the neighbours of each of them can be partitioned into an m1-set and an n1-set, where m1 > m

and n1 < n; or

(β) every vertex in the m1-set has no other d-neighbours and every vertex in the n1-set has exactly

one other d-neighbour.

Hence no da-ecard of H would be isomorphic to (2d − 1, G − y2rxq). Otherwise, we consider the

two da-ecards (2d,G− y2rz
1
i ) and (2d − 1, G− y2rxq). The da-ecard G − y2rxq contains only one pair
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of adjacent d-vertices such that

(α) the neighbour of exactly two (or one) of them can be partitioned into an m-set and an n-set;

(β) every vertex in the m-set has no other d-neighbours and every vertex in the n-set has exactly

one other d-neighbour (say w); and

(γ) no neighbour of w has exactly one other d-neighbour.

Hence every extension H(G − xiy
2
k) is either isomorphic to G or any (2d − 1, H − e) da-ecard

contains only one pair of adjacent d-vertices such that

(α) the neighbour of exactly one (or none) of them can be partitioned into an m-set and an n-set;

(β) every vertex in the m-set has no other d-neighbours and every vertex in the n-set has exactly

one other d-neighbour (say w1); or

(γ) at least one neighbour of the vertex w1 has exactly one other d-neighbour.

Hence no da-ecard of H would be isomorphic to (2d− 1, G− y2rxq). Thus, in all the cases, we have

shown that dern(G) ≤ 2.

Theorem 2.10. If every (d + 1)-vertex of a bidegreed graph G has at most two d-neighbours, then

dern(G) = 1 or 2.

Proof. We assume that G does not satisfy the hypotheses of Theorems 2.1, 2.2 and 2.3 and

hence dern(G) ≥ 2. If the vertices y2r and xr have at most d − 2 common (d + 1)-neighbours, then

dern(G) ≤ 2 by Lemmas 2.7, 2.8 and 2.9 proved. So, we can assume that {y2r , xr} is a module of G.

Consider the two da-ecards (2d − 1, G − y2rxq) and (2d − 1, G − xrw) (or (2d − 1, G − xpy
1
p) or

(2d,G−y0py
0
q ), when N(y2r)\{xr, xq, w} = N(xq)\{y2r , w} = N(w)\{y2r , xq, xr} ∀ w hold), where w is

a (d+1)-vertex adjacent to xr (Figure 6). In (2d− 1, G− xrw), there are no two adjacent d-vertices

which form a module.

Fig. 6. Section of the da-ecard of G− y2rxq

Now consider the extensions of the da-ecard (2d − 1, G − y2rxq). Note that in the da-ecard (2d −
1, G − y2rxq), the only adjacent d-vertices are y2r , xr and the only (d − 1)-vertex is xq. So, to get an

extensionH of the da-ecard (2d−1, G−y2rxq), we have to join the (d−1)-vertex xq and any one vertex,

say v among the d-vertices in (2d− 1, G− y2rxq) by an edge. Since {y2r , xr} is a module of G− y2rxq,

it follows that H ∼= G when v is y2r or xr. Thus we can assume that v is xi for some i ̸= r, q so that it

will become a (d+1)-vertex in H. Now consider all possible da-ecards (2d−1, H−e) (or (2d,H−e′))

of H. If e is xiy
2
j or xiy

1
j , (or e

′ is ysjy
t
k, where s, t = {0, 1, 2}) then, in the da-ecard (2d− 1, H − e)(or

(2d,H− e′)), {y2r , xr} which form a module and so H− e ≇ G−g (or H− e′ ≇ G−g′). Therefore no

da-ecard of H would be isomorphic to (2d− 1, G− g) (or (2d,G− g′)) and hence dern(G) ≤ 2.
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Theorem 2.11. If only one (d + 1)-vertex of a bidegreed graph G has at least three d-neighbours,

then dern(G) = 1 or 2.

Proof. We assume that G does not satisfy the hypotheses of Theorems 2.1, 2.2 and 2.3 and hence

dern(G) ≥ 2. Let y31 be adjacent to at least three d-vertices; let x1, x2, . . . , xs be s d-neighbours of

y31, where s ≥ 3.

Case 1. Each (d+ 1)-neighbour, say z other than y31 of x1 has no other d-neighbours.

Consider the da-ecards (2d − 1, G − f) and (2d − 1, G − g), where f = x1y
3
1 and g = x1z. In

(2d − 1, G − g), each d-vertex is not adjacent to the (d − 1)-vertex and all other d-vertices. In

(2d− 1, G− f), the only (d− 1)-vertex is x1 and the above s (≥ 3) d-vertices together form K1,s−1.

So, to get an extension H of the da-ecard (2d − 1, G − f), we have to join the (d − 1)-vertex x1

and any one vertex, say v among the d-vertices in (2d − 1, G − f) by an edge. If v = y31, then

clearly, H ∼= G. Otherwise, v = xj for some j ̸= 1 so that it will become a (d+ 1)-vertex in H. Now

consider all possible da-ecards (2d−1, H− e) of H. If e is xiy
3
1 for some i ̸= 1, j then, in the da-ecard

(2d− 1, H − e), at least one d-vertex has a (d− 1)-neighbour and thus H − e ≇ G− g. Otherwise, e

is xiyj (if any). Now in the da-ecard (2d − 1, H − e), k (< s) d-vertices together form K1,k−1 or at

least one d-vertex has (d− 1)-neighbour. Therefore H − e ≇ G− g. Thus no da-ecard of H would be

isomorphic to (2d− 1, G− g) and hence dern(G) ≤ 2.

Case 2. There is a (d+ 1)-neighbour, say z of x1 other than y31, having a d-neighbour other than

x1.

Case 2.1. s ≥ 4.

For this case, we use the da-ecards (2d−1, G−f) and (2d−1, G−g), where f = x1y
3
1 and g = x1z.

In (2d− 1, G− g), each d-vertex is nonadjacent to the (d− 1)-vertex and to only one pair of adjacent

d-vertices. In (2d− 1, G− f), the only (d− 1)-vertex is x1 and give the s+2 (s ≥ 4) d-vertices which

together form K1,s−1 ∪K2. So, to get an extension H of the da-ecard (2d− 1, G− f), we have to join

the (d− 1)-vertex x1 and any one vertex, say v among the d-vertices in (2d− 1, G− f) by an edge. If

v = y31, then clearly, H ∼= G. Otherwise, v is equal to xi for some i ̸= 1 so that it will become a (d+1)-

vertex in H. Now consider all possible da-ecards (2d−1, H−e) of H. If e is xiy
3
1 for some i ̸= 1, then,

in the da-ecard (2d− 1, H − e), at least one d-vertex has a (d− 1)-neighbour and so H − e ≇ G− g.

Otherwise, e is xiyj (if any). Now in the da-ecard (2d− 1, H − e), k + 2 (< s+ 2 (s ≥ 4)) d-vertices

together form K1,k−1 ∪K2 or at least one d-vertex has a (d − 1)-neighbour. Hence H − e ≇ G − g.

Thus no da-ecard of H would be isomorphic to (2d− 1, G− g) and hence dern(G) ≤ 2.

Case 2.2. s = 3.

Case 2.2.1. Vertex y31 is adjacent to a neighbour of xi for some i, 1 ≤ i ≤ 3.

Now if |N(x1) ∩ N(x2)|= d, then we consider the two da-ecards (2d − 1, G − f) and (2d,G − g),

where f = y31x3 and g = y31z. In G − g, exactly one d-vertex (say w1) has three d-neighbours of

which exactly two neighbours (say a1 and a2) have a common d-neighbour (other than w1) and

|N(w1)∩N(a1)∩N(a2)|= m (say). Hence every extension H(G− f) is either isomorphic to G or in

any (2d,H − e) da-ecard,

(i) each d-vertex has at most two d-neighbours; or

(ii) a d-vertex (say w) has three d-neighbours of which exactly two neighbours (say b1 and b2) have

a common d-neighbour such that |N(w) ∩N(b1) ∩N(b2)|≥ m+ 1.

Hence no da-ecard of H is isomorphic to G−g. Otherwise, that is, |N(x1)∩N(x2)|≤ d−1. Now if a

(d+1)-vertex z is nonadjacent to xi (i = 2, 3) and it is adjacent to y31, then choose the two da-ecards

(2d,G−f) and (2d−1, G−g), where f = y31z and g = x1z. Clearly every extension H(G−f) is either
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isomorphic to G or in any da-ecard (2d− 1, H − e), the neighbour of the unique (d− 1)-vertex has

three d-neighbours of which at least two are adjacent to a d-vertex. Hence H − e is not isomorphic

to G− g and thus dern(G) ≤ 2. Otherwise, choose the two da-ecards (2d− 1, G− f) and (2d,G− g)

where f = y31x3 and g = y31z. In G−g, exactly one d-vertex (say w1) is adjacent to three d-neighbours

of which exactly two (say a1 and a2) have a common d-neighbour, |N(a1) ∩ N(a2)|= m1 (say) and

|N(w1) ∩ N(a1) ∩ N(a2)|= m2 (say), where m1 > m2. Clearly, every extension H(G − f) is either

isomorphic to G or in any da-ecard (2d,H − e), each d-vertex has at most two d-neighbours or the

unique d-vertex (say w) has three d-neighbours of which exactly two (say b1 and b2) have a common

d-neighbour such that |N(w)∩N(b1)∩N(b2)|≥ m2+1 or |N(b1)∩N(b2)|≤ m1−1. Hence no da-ecard

of H is isomorphic to G− g and thus dern(G) ≤ 2.

Case 2.2.2. Vertex y31 is not adjacent to any neighbour of xi for 1 ≤ i ≤ 3.

Let the neighbours of y31 be w1, w2, ..., wd−2. Then choose two da-ecards as below.

Choose A1 = (2d,G − f) and B1 = (2d − 1, G − g), where f = y31w1 and g = x1z, when w1

has two d-neighbours; choose A2 = (2d − 1, G − f) and B2 = (2d − 1, G − g) when w1 has exactly

one d-neighbour (say a1), where f = x1y
3
1 and g = w1a1; choose A2 and B3 = (2d,G − g) when

w1 is adjacent to a vertex w2, where g = w1w2; choose A2 and B4 = (2d,G − g) when no two wi's

are adjacent and a neighbour (say w) of w1 has no d-neighbours, where g = ww1; choose A2 and

B5 = (2d− 1, G− g) when no two wi's are adjacent and a neighbour (say w) of w1 has exactly one

d-neighbour (say a2), where g = wa2 ; or choose �nally A2 and B6 = (2d,G − g), where g = y31w1,

when no two wi's are adjacent and a neighbour of w1 is adjacent to two d-vertices.

Among the d-vertices in B1, exactly one pair of vertices is adjacent. Hence every extension H(A1)

is either isomorphic to G or in any da-ecard (2d− 1, H(A1)− e), at least two pairs of d-vertices are

adjacent or at least one d-vertex has at least two d-neighbours. In Bi (i ≥ 2), all the d-vertices are

mutually nonadjacent. Hence every extension H(A2) is either isomorphic to G or in any da-ecard

(k,H(A2) − e), where k = 2d or 2d − 1, at least two d-vertices are adjacent and hence no da-ecard

of H(Ai) (i = 1, 2) is isomorphic to Bi. Thus, in all the cases, we have shown that G has at most

one da-ecard in common with H, where H ≇ G and hence dern(G) ≤ 2.

Theorem 2.12. If at least two (d+1)-vertices of a bidegreed graph G has at least three d-neighbours,

then dern(G) = 1 or 2.

Proof. We assume that G does not satisfy the hypotheses of Theorems 2.1, 2.2 and 2.3 and hence

dern(G) ≥ 2 and at least two (d + 1)-vertices in G are adjacent. Since G contains at least two y3i s,

we proceed by two cases depending on their adjacencies.

Case 1. At least two ym1
i 's are adjacent, where m1 (≥ 3) is minimum.

Let A be the collection of all y3i 's in G. Then |A|≥ 2. Let B be the set of all vertices in A that are

adjacent to the minimum number of (or m1) d-vertices. Let C be the set of all vertices in B that are

adjacent to a vertex in B. Then the set C is non-empty by Case 1. Choose a vertex, say ym1
p in C

that is adjacent to the minimum number (say m2) of (d+ 1)-vertices in B.

Consider the two da-ecards (2d− 1, G− xpy
m1
p ) and (2d,G− ym1

p ym1
q ), where {xp, y

m1
q } ∈ N(ym1

p ).

In G− ym1
p ym1

q , one of the two nonadjacent d-vertices is adjacent to m1 (respectively m2− 1) vertices

of degree d (respectively d + 1) and each of these (d + 1)-vertices has at least m1 + 1 d-neighbours.

In (2d − 1, G − xpy
m1
p ), the only (d − 1)-vertex is xp and the m1 (≥ 3) d-vertices together form

K1,m1−1 such that ym1
p has m2 (d + 1)-neighbours in B. So, to get an extension H of the da-ecard
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(2d − 1, G − xpy
m1
p ), we have to join the (d − 1)-vertex xp and any one vertex, say v among the

d-vertices in (2d− 1, G− xpy
m1
p ) by an edge. If v = ym1

p , then clearly, H ∼= G. Otherwise, v is equal

to xi for some i ̸= p so that it will become a (d+1)-vertex in H. Now consider all possible da-ecards

(2d,H − e) of H. If e is wiwj, where wi or wj ∈ N(ym1
p ) then, in the da-ecard (2d,H − e), one of

the two nonadjacent d-vertices is adjacent to at least m1 (respectively at most m2 − 1) vertices of

degree d (respectively d + 1) and each of these (d + 1)-vertex has at least m1 + 1 d-neighbours and

thus H − e ≇ G − ym1
p ym1

q . Otherwise, e is wiwj, where wi, wj /∈ N(ym1
p ). Now, in the da-ecard

(2d−1, H− e), one of the two nonadjacent d-vertices is adjacent to m1−1 (respectively m2) vertices

of degree d (respectively d + 1) and each of these (d + 1)-vertices has at least m1 + 1 d-neighbours

and thus H − e ≇ G− ym1
p ym1

q . Thus no da-ecard of H would be isomorphic to (2d,G− ym1
p ym1

q ) and

hence dern(G) ≤ 2.

Case 2. Any two ym1
i 's are nonadjacent, where m1 (≥ 3) is minimum.

Let n0, n1, n2, · · · , ns be the number of (d+ 1)-vertices adjacent to exactly 0, 1, 2, · · · , s vertices of

degree d, respectively. Let yip and w be adjacent, respectively, to exactly i and j vertices of degree d.

Case 2.1. |i− j|≥ 2, 0 ≤ j < i ≤ s, i ≥ 3.

Case 2.1.1. j ≥ 1.

Consider the two da-ecards (2d − 1, G − xpy
i
p) and (2d − 1, G − xrw), where xp ∈ N(yip) and

xr ∈ N(w). In G − xrw, there is a unique d-vertex having exactly j − 1 d-neighbours and each

d-vertex is not adjacent to the (d − 1)-vertex. In (2d − 1, G − xpy
i
p), the only (d − 1)-vertex is xp

and the above i (≥ 3) d-vertices together form K1,i−1. So, to get an extension H of the da-ecard

(2d−1, G−xpy
i
p), we have to join the (d−1)-vertex xp and any one vertex, say v among the d-vertices

in (2d− 1, G−xpy
i
p) by an edge. If v = yip, then clearly, H ∼= G. Otherwise, v is equal to xk for some

k ̸= p so that it will become a (d+1)-vertex in H. Now consider all possible da-ecards (2d−1, H−e)

of H. If e is xkz, then the da-ecard (2d − 1, H − e) has a unique d-vertex adjacent to at least j

d-vertices or at least one d-vertex is adjacent to the (d− 1)-vertex. Hence H − e ≇ G− xrw and no

da-ecard of H would be isomorphic to (2d− 1, G− xrw).

Case 2.1.2. j = 0.

If at least two y0k's are adjacent, then choose the two da-ecards (2d−1, G−xpy
i
p) and (2d,G−y0py

0
q ),

where xp ∈ N(yip) and y0q ∈ N(y0p). In G − y0py
0
q , all the d-vertices are mutually nonadjacent. In

(2d− 1, G−xpy
i
p), i (≥ 3) d-vertices together form K1,i−1. So, to get an extension H of the da-ecard

(2d−1, G−xpy
i
p), we have to join the (d−1)-vertex xp and any one vertex, say v among the d-vertices

in (2d− 1, G−xpy
i
p) by an edge. If v = yip, then clearly, H ∼= G. Otherwise, v is equal to xk for some

k ̸= p so that it will become a (d+1)-vertex in H. Now consider all possible da-ecards (2d,H − e) of

H. If e is wiwj, then, in the da-ecard (2d,H − e), i (≥ 2) d-vertices together form K1,i−1 and thus

H − e ≇ G− y0py
0
q . Thus no da-ecard of H would be isomorphic to (2d,G− y0py

0
q ). Otherwise, choose

the two da-ecards (2d − 1, G − xpy
i
p) and (2d,G − y0py

i
p), where {xp, y

0
p} ⊆ N(yip). In G − y0py

i
p, the

unique d-vertex has i d-neighbours. In (2d−1, G−xpy
i
p), i (≥ 3) d-vertices together form K1,i−1. So,

to get an extension H of the da-ecard (2d− 1, G− xpy
i
p), we have to join the (d− 1)-vertex xp and

any one vertex, say v among the d-vertices in (2d− 1, G− xpy
i
p) by an edge. If v = yip, then clearly,

H ∼= G. Otherwise, v is equal to xk for some k ̸= p so that it will become a (d+1)-vertex in H. Now

consider all possible da-ecards (2d,H − e) of H. If e is wiwj, then, in the da-ecard (2d,H − e), the

unique d-vertex has at most i− 1 d-neighbours or at least two d-vertices adjacent to other d-vertices

and thus H − e ≇ G− y0py
i
p. Thus no da-ecard of H would be isomorphic to (2d,G− y0py

i
p) and hence

dern(G) ≤ 2.

Case 2.2. |i− j|≤ 1.
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The proof follows by Case 1 when i = j. For i ̸= j, consider the da-ecards (2d− 1, G− xpy
i
p) and

(2d,G−yipy
i−1
p ), where {xp, y

i−1
p } ⊆ N(yip). In G−yipy

i−1
p , exactly two nonadjacent d-vertices such that

one of them adjacent to i d-vertices and the other adjacent to i− 1 d-vertices. In (2d− 1, G− xpy
i
p),

the only (d − 1)-vertex is xp and the above i (≥ 3) d-vertices together form K1,i−1. So, to get an

extension H of the da-ecard (2d − 1, G − xpy
i
p), we have to join the (d − 1)-vertex xp and any one

vertex, say v among the d-vertices in (2d− 1, G− xpy
i
p) by an edge. If v = yip, then clearly, H ∼= G.

Otherwise, v is equal to xk for some k ̸= p so that it will become a (d+1)-vertex in H. Now consider

all possible da-ecards (2d,H − e) of H. If e is wiwj, then, in the da-ecard (2d,H − e), at least three

nonadjacent d-vertices adjacent to other d-vertices and thus H − e ≇ G− yipy
i−1
p . Thus no da-ecard

of H would be isomorphic to (2d,G− yipy
i−1
p ) and hence dern(G) ≤ 2.

Myrvold et al. [18] proved that bidegreed graphs are edge reconstructible. But the edge recon-

struction number of bidegreed graphs, except for a few classes, is not known. This paper together

with [1] have completely determined the degree associated edge reconstruction number of all bide-

greed graphs and it is at most four. The degree associated edge reconstruction parameter might be

a strong tool for providing evidence to support or reject the Edge Reconstruction Conjecture that

remains open.
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