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Abstract

In this paper magic labelings of graphs are considered. These are
labelings of the edges with integers such that the sum of the labels of
incident edges is the same for all vertices. We particularly study positive
magic labelings, where all labels are positive and different. A decomposi-
tion in terms of basis-graphs is described for such labelings. Basis-graphs
are studied independently. A characterization of an algorithmic nature
is given, leading to an integer linear programming problem. Some rela-
tions with other graph theoretical subjects, like vertex cycle covers, are
discussed.
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1 Introduction

We consider graphs G = (V, E); V = V(G) is the vertex set and E = E(G) is
the edge set of G. We follow the terminology of Jeurissen (2]. A labeling of G
is a mapping from E to Z such that for each v € V the sum of the labels of the
edges incident with v is independent of v. This sum is called the indez of the
labeling. Every graph has the trivial zero-labeling. A labeling is called pseudo-
magic if all labels are different; if moreover no label is negative, the labeling is
called magic. Finally, a magic labeling is called positive magic if all labels are
positive. A graph is called pseudo-magic if it has a pseudo-magic labeling; and
similarly we define magic and positive magic graphs.

The problem to characterize the class of positive magic graphs may be due
to the existence of magic squares. The 3 X 3-magic square is given in Figure
1.1.a. In Figure 1.1.b the graph K33 has been drawn, one class representing
the rows and one class representing the columns. The edges are labeled by the
numbers in the magic square. In the square all row sums and column sums are
15. This translates into the index being 15 for all six vertices in the labeled
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K33. We do not give attention to the fact that also the sum of the numbers on
the diagonals in the square is 15.
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A characterization of magic graphs and positive magic graphs was given by
Jeurissen [2].

The characterization has a structural flavour and the condition is not easy
to check. The accent is on the existence of a labeling. However, once the ex-
istence of labelings is guaranteed, the next question is to construct a labeling
and preferably one for which the index of the labeling is minimum. Given a
graph G that satisfies the condition in the theorem, we have no clue to this
construction. We therefore would like to have a characterization of a different,
more algorithmic, nature, that enables us to calculate labelings. We will de-
scribe an algorithm for finding out whether a graph is pseudo-magic, magic or
positive magic. Next to this we will discuss some features of magic labelings, the
decomposition of labelings in terms of basis-graphs, describe a class of positive
magic graphs, and point out a relation with vertex cycle covers.

2 Some features of labelings, basis-graphs and
decompositions
Given a graph and a labeling, there are simple ways to change the labeling into

a different one. The reader may easily check the following three lemmas, due to
Stewart (see Jeurissen [3]).

Lemma 2.1. If a graph admits a labeling ¢ and contains a perfect matching
M, then another labeling £* is obtained by

(2=
*
—_
8]
~
I

£(e) fore g M,
*(e) = €e)+a foree M,

where a is an arbitrary integer. The index is changed by a.

Lemma 2.2. If a graph admits a labeling £ and contains a cycle C of even
length, then another labeling £* is obtained by alternatingly changing the labels
of the edges of C by a and —a, where a is an arbitrary integer. The index is
not changed.



Lemma 2.3. If a graph admits a labeling ¢ and contains a k-factor F, then
another labeling £* is obtained by

(e) = {e) for e ¢ E(F}).
" (e) te) +a foree E(F),

where a is an arbitrary integer. The index is changed by & - a.

Let us consider a positive magic labeling ¢ of some graph G. A natural ques-
tion is to ask for a decomposition of the labeling into labelings of subgraphs of
G analogous to the decomposition of a vector in a vectorspace into basisvectors.

Let us assume that G is connected and that the index is s. Suppose G has
an even cycle C with minimum label a on edge e. Applying Lemma 2.2 such
that £(e) is changed by —a, we obtain a labeling ¢* for G in which ¢*(e) = 0.
The index of ¢* is still s.

We now delete the edge e of G that has label 0 in £*. The resulting graph
G’ is a positively labeled graph with at least one even cycle less than G has.
Repeating this procedure leads to a graph G* that has a positive labeling with
index s and that does not contain even cycles. Note that after the first step
more edges that one may obtain label 0, and that by deletion of edges the graph
may have become disconnected.

Suppose now that G* has two or more odd cycles in one of its components.
Then such a component contains a subgraph S consisting of two odd cycles
connected by a path, possibly of length 0. Figure 2.1 shows an example.

Figure 2.1

We may look upon S as an even cycle that has been “squeezed” by identifying
certain pairs of edges. With the aid of these subgraphs, G* may be further
reduced.

Proposition 2.4. If a squeezed even cycle S has a positive labeling ¢, then it
has a non-negative labeling in which at least one edge has label 0.

Proof. We may assume that the two cycles in § are odd. Let m. and m, be the
minimum of the edge-labels on the cycles and the connecting path, respectively.
If m, > 2m,, we define x = —m,, and £ = —m,/2 otherwise. Let e be any edge
for which the minimum is attained.



S contains a closed walk of even length in which each cycle-edge is traversed
once, and each edge of the connecting path twice. Along this walk, add z and
—z alternatingly to each edge-label, starting with —z at e. By construction the
edge-label of e will become 0. All other edges have non-negative labels. u]

By repeatedly applying Proposition 2.4, we end up with a graph G** in
which each component contains at most one cycle, which moreover is odd. So a
positive magic labeling can be decomposed into labelings with index 0 of even
cycles and squeezed even cycles and positive labelings of unicyclic graphs and
trees.

One remark should still be made. When using squeezed even cycles fractions
may occur if an odd label in edge €’ of the path is used for choosing = = —%
on ¢'. The labels on the cycles become fractions. Whenever this occurs we can
multiply all labels of the graph, resulting after deleting the edges with label 0, by
2. This then gives a positive labeling with an index 2s, if s was the index before,
with integer labels. For the determination of the basis-graphs, the graphs into
which we decompose the given positive magic graph, this choice of the labeling
is irrelevant.

Our analysis leads to the study of positive labelings graphs with at most
one odd cycle. Doob [1] has given an analysis of magic graphs in terms of chain
groups. He already found the even cycles and squeezed even cycles as elements
of his zerospace of magic graphs with index 0. His Corollary 2.10 states that
magic labelings can be changed to magic labelings of a spanning tree with one
chord added forming, one, odd cycle. We focus on positive magic labelings.

3 Basis-graphs

A different approach leading to basis-graphs is to determine the general labeling,
in parameter form, and to choose values for the parameters such that a labeling
of the desired type arises. We present an example. Consider the graph G, in
Figure 3.1.

Figure 3.1



It can be easily verified that every labeling of G} can be written in the form
indicated in Figure 3.1. Of course, other parametrizations are possible.

Since the labels are different expressions in a and b, it is possible to assign
values to a and b such that the values of the labels are different too. Hence G,
is pseudo-magic. Moreover, the occurrence of the labels b and —b shows that
G is not magic.

This simple example also leads us to the concept of basis-graphs. Let G2 be
the subgraph of G; induced by the edges in which the parameter a occurs, and

similarly G3 for the parameter b; see Figure 3.2.
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Figure 3.2

The labels in Figure 3.2 correspond to the coefficients of the parameters in
Figure 3.1.

The graph G; is a spanning subgraph of G; and has index 2; G3 is a non-
spanning subgraph of G, and therefore has index 0. This inspired us to give
the following definitions.

A basis-graph of type I is a graph that has a labeling of positive index without
0-labels, which is unique up to a constant factor.

A basis-graph of type II is a graph that has a labeling of index 0 without
0-labels, which is unique up to a constant factor.

The problem is “What do basis-graphs look like?”

For basis-graphs of type I we have the following result.

Proposition 3.1. If G and H are basis-graphs of type I with disjoint vertex
sets, then G U H is a basis-graph of type I.

Proof. Assuming that G and H satisfy the above condition, it is easily seen that
G U H has a labeling of positive index without 0-labels. And if GU H had two
such labelings, we could make the indices equal by a suitable multiplication.
Since G and H are of type I, it follows that the two original labelings only
differed by a constant factor. (]

Since the converse of Proposition 3.1 is trivially true, we restrict our atten-
tion, for the time being, to connected graphs.



From the definition of a basis-graph of type I and Lemma 2.1 if follows
that such graphs contain no even cycle. Hence the blocks are P;’s and odd
cycles. It also follows from the definition that there is at most one cycle. So we
can distinguish two subtypes in the class of basis-graphs of type I: trees and
unicyclic graphs (in which the cycle is odd). We call these graphs basis-trees
and basis-rings respectively. First we consider the basis-trees.

Proposition 3.2. A tree has a non-trivial labeling if and only if it is balanced.

Proof. (only if) Let G be a bipartite graph with classes of n; and ny points.
Then in each labeling of G with index s, the sum of the edge-labels is nys in
one class and nss in the other class. Since the edges are the same, we have
nys = nys, ie. either ny = ny, or s = 0. Hence if the bipartite graph G (in
particular: a tree) has a non-trivial labeling, then it is balanced.

(if) Let T be a balanced tree. We construct a labeling of index 1 as follows.
Choose an arbitrary vertex r of T as its root. Each vertex has a level: the
distance to r. First label the edges incident with the vertices at the highest
level. At the next level, each vertex is incident with exactly 1 unlabeled edge.
Calculate the label of that edge, remembering that the index is 1, and so on. It
is not possible to get stuck because the only vertex where this might happen is
7, i.e. only one vertex. Now apply the fact that T is balanced. If the sum is 1

in all vertices with at most one exception, then it must be 1 in that vertex too!
a

However, not every balanced tree is a basis-tree. The simplest example is
Py: the central edge has label 0 in each labeling. The following simple result
handles the general case.

Proposition 3.3. A balanced tree T is a basis-tree if and only if for all e €
E(T) neither of the two components of T — e is a basis-tree.

Proof. Suppose T is a basis-tree. From the definition it follows that it has a
positive labeling. If for some edge e, some component U of T — e is a basis-tree,
then the labeling of U can be extended to T'. Since labelings in trees are unique
up to a constant factor, e will necessarily get label 0; a contradiction.
Conversely, if T is such that for all e € E(T) neither of the two components
of T ~ e is a basis-tree, then a non-trivial labeling of T can be constructed, and
no edge-label will be 0, or else we have a subtree that is a basis-tree. o

Propositions 3.2 and 3.3 imply that all basis-trees can be obtained by apply-
ing a sieve process for the balanced trees. We first have to generate the balanced
trees. This can be done as follows.

Let T be a balanced tree. Colo: the ver.ices with 2 colors. Choose a pair
of differently colored vertices (in every possible way) and attach an edge and a
vertex to each of these. The generation process starts with Ps.



The question whether all balanced trees on 2n vertices are generated in
this way can be answered affirmatively, with the following argument. If all
endvertices have the same color, then all n vertices of the other color have
degree > 2, which requires > 2n edges, a contradiction. Hence in each balanced
tree there exist endvertices of both colors.

In Figure 3.3 we have pictured the first few balanced trees. They are ordered
according to the number of vertices, otherwise more or less arbitrarily.

—e O6—0—0—o oo—0—0¢—0¢o—0o—¢
P P 3 |
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Figure 3.3
The balanced trees on 8 vertices or less

Having obtained the balanced trees, the sieve process proceeds as follows.

The first tree in the list, Py, is a basis-tree. We then strike out all trees
T that contain an edge e such that some component of T' — e is Py, ie. we
strike out Py, Ps, Ts.1, P, Ts.1,T8,3, 78,4, In.s. Ts 6 and T3 7. The first remaining
tree after P, is Tg 2, and hence it is a basis-tree. With Tgo we strike out T3 3
and Tgs. (It so happens that these have already been stroken out.) The next
remaining tree is T3.2: our third basis-tree.

In this short example nothing is stroken out by Ts». Finally we find the



basis-tree T3 g. In Figure 3.4 we present the basis-trees on 10 vertices.
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Figure 3.4
The basis-trees on 10 vertices

Beside this systematic approach of generating basis-trees, there are ad hoc
methods. First we introduce a useful parameter.

Definition 3.4. Let T be a rooted tree with root r. Starting at the edges
incident with end-vertices, we label the edges such that the sum of the labels of
the edges incident with every vertex with the exception of vertex r, is 1. (This
is possible, see the proof of Proposition 3.2.) Then the value v(T) of T is the
sum of the labels of the edges incident with r. The resulting function E(T) — Z
will be called the quasi-labeling of T.

Note: If the free tree corresponding to T is a basis-tree, then v(T) = 1; the
converse is not true.

One ad hoc method to produce basis-trees is as follows. Take a rooted tree T
and assume its quasi-labeling has no 0-labels. Then if v(T’) < 0, attach v(T) +1
new edges to the root with label 1, and if v(T") > 2, attach v(T) — 1 “forks” to
the root (i.e. take v(T) — 1 copies of K} 3 and identify an end-vertex of each
with the root), and assign labels 1 to the end-edges and labels —1 to the edges
of attachment. If v(T") = 1, then attach e.g. one edge and one fork.

A second ad hoc method also starts with a rooted tree T with root r, and
all edge-labels different from 0. Now let T’ with root 7’ be isomorphic to 7. If
v(r) # 1, then TUT' U {rr'} is a basis-tree.



We now investigate which unicyclic graphs occur as basis-rings.
Let Csny1 be an odd cycle on the vertices pg, p1,. .., p2n, in natural order,

and let T} be a rooted tree with root r; and value v; (i = 0,1,...,2n).

A unicyclic graph G is obtained by identifying p; and r; (i = 0,1,...,2n). Now
assign the label z; to the edge p;—1p; of Cany1, Where the indices are taken
modulo (2n + 1). Then an easy calculation shows that the quasi-labelings of the
T; together with zo, ..., T2, give a labeling of G (with index 1) if

2n
2.’1,‘1' =1- Z(—l)jviH.
i—0

In order that G be a basis-ring, all labels must be different from 0.

We now turn to the basis-graphs of type II. Examples of these graphs are
even cycles and the squeezed even cycles we met in Section 2. Note that the
analogue of Proposition 3.1 is false. In fact, all basis-graphs of type II are
connected, as is easily seen.

Proposition 3.5. The even cycles and the squeezed even cycles containing two
odd cycles are the only basisgraphs of type IL

Proof. Let G be a basisgraph of type II. Then all degrees in G are at least
2. Also, G contains at most one even cycle, squeezed or not. Let p be the
number of vertices of degree at least 3 in G. We successively consider the cases
r=0,1,2,3, and finally p > 4.

p=0. G is a cycle, and if it is an odd cycle, then each labeling of index 0 will
contain a 0-label. Hence G is an even cycle.

p =1. G is a union of cycles which have one vertex in common. If the number
of cycles is more than 2, then G must contain at least two (squeezed) even
cycles. Hence G is the union of two cycles which have one vertex in common.
If the cycle lengths are of different parity, each labeling of index 0 will contain
a O-label. It is not possible for both cycles to be even, hence G is a squeezed
even cycle (in which the path connecting the two odd cycles has length 0).

p =2. G is homeomorf to a pseudograph G* on two vertices with degrees at
least 3. It is easily seen that the number of loops in G* is at most 2. In each of
the subcases to be considered, one quickly obtains either a contradiction or the
conclusion that G is a squeezed even cycle.

p = 3. G is homeomorph to a pseudograph G* for which the underlying (simple)
graph is P; or C3. Again, the number of loops in G* can be at most 2. Whatever
the position of the loops and the multiple lines in G*, at least three cycles are
present in G, at most one of which can be even. But the number of odd cycles
cannot be larger than 1 either, and we have a contradiction.
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P 2 4. G is homeomorf to a pseudograph G* in which all degrees are at least 3.
If G* contains a cut-vertex, then a contradiction is obtained in the same way
as in the case p = 3. If G* contains no cut-vertex, then G* contains a subgraph
isomorphic to one of the three multigraphs shown in Figure 3.5.

RN

Figure 3.5

If in K4 all triangles are odd, i.e. correspond to odd cycles in G, then all
4-cycles correspond to even cycles, a contradiction. Hence there exist an even
triangle. Then all other triangles must be odd, which still leads to an even
quadrangle.

In the second graph of Figure 3.5, the two 2-cycles cannot both be even, nor
can both be odd. Hence one is odd, the other is even. In the odd one, we have an
even segment and an odd segment. The horizontal paths now either have equal
or different parity. In each case we have a second even cycle, a contradiction.

Finally consider the third graph in Figure 3.5. Suppose one of the 2-cycles
is odd. Then an even triangle can be formed. This means that there are at least
two even cycles, a contradiction. ]

4 An algorithmic approach to characterizing
positive magic graphs

In this section we will give an algorithmic characterization of positive magic
graphs by describing in its general form the algorithm used in the following
example.

We consider the class of wheels W, = K| 0oC,. The wheel Wos1 has Ky,
as a spanning tree. The spokes of the wheel are its branches and the rim edges
of the wheel its chords. Let vy be the central vertex, and v, ,U2,...,Un the other
vertices, in natural order. Let the edges v,v; have the variable z;, the edge
v;j-1v; the variable a; (i = 2,...,m), and v,v, the variable a;. Then, assuming
the index is s, the above assignment is a labeling if and only if the following
equations are satisfied.

T = s-—a; - ay,
I = S-—=a —az,
Tpn-1] = S—0Qp-1 —Qqn,
Tn = S—an —a,

Ty + T+ ...+, =S,

12



23 a;
From this one easily obtains s = % and hence linear expressions for z, ..., z,
in terms of a,,...,a,, with rational coefficients.

A few features should be stressed now. First, the way to use a spanning tree
to introduce labels z, that act as unknowns. Second, the fact that the chords
are given labels a, that act as independent variables. Third, the fact that we
can start constructing a solution for s and the z’s by choosing the a’s in the
appropriate way. Fourth, the possibility that non-integer coefficients occur in
the solution, whereas we are looking for solutions in Z, N or N*. Especially the
fourth point asks for consideration. In the present example, it suffices to choose

n

ajy,...,a, such that n — 1 divides 2} a;, or to multiply all labels by n — 1.

1
The labelings given for W5 and W in Figure 4.1 illustrate our results so far.
Note that in the labelings for W, all expressions have been divided by 2.

3 S0y _a,-a,c&a,wﬁa‘ a " _a'_%‘.ns'a‘.‘a{
aa,_a:,-a,;&a.‘, 2a) 20,
3ay 3a,
. S= a
W 0 s-2(a,+0,+0,00,) 2a, Wi S=a,18,+ 05444 Ac

Figure 4.1

As noted before, the fact that the expressions for the labels are different,
allows us to choose values for ay,...,a, such that the resulting values of the
expressions are different. Hence all wheels are pseudo -magic. Moreover, since
the sum of the coefficients of the a; in each z; is =25 -n—2 = 27 > 0, we have
the following result.

Proposition 4.1. All wheels are positive magic.

Remark. When = is even, an entirely different labeling for W, can be given:
the spoke vou; gets label a; and the edge v;v;41 gets label

-1

E Qi+2j,

13



where the indices are taken modulo n — 1. Note that all coefficients of the a;
occurring in the labels are equal to 1. o

By s(v) we denote the sum of the labels of edges incident with vertex v.

Proposition 4.2. A connected graph G with § > 2, |[V| = n, |E| = m has a
positive magic labeling if and only if the variables z; and s occurring in the
following algorithm A satisfy the resulting set of equations with different and
positive integers.

Algorithm A

1. Find a spanning tree T of G. Give the chords labels ay,...,am-n+1.

2. Choose a leaf vy of T, and orient T as an outtree with root vy.

3. Give the branch incident with v; the label s minus the sum of the labels
of the chords incident with v;.

4. Determine the successor v, of v;. Give all but one of the branches following
this successor labels x;, 22 etc. Give the last branch a label so that s(v) =
s.

5. Determine the successors of each of the out-neighbours of v5 in the oriented
tree. If a neighbour, say v3, is reached by an edge, in most cases carrying
a label z, label all but one of its incident branches with z’s again and label
the last edge so that s(v3) = s. (Note that possibly incident chords have
to be taken into account).

6. Continue this process of labeling by 2’s and adjusting one of the edges to
the successors until all branches have obtained a label.

7. Derive equations by demanding s(v) = s for all leaves of T but v,.

Proof. If G has a positive magic labeling, this determines the a’s, the 2’s and
s in such a way that the equations are satisfied. If the equations have a solution
for the a’s, the z's and s in N*, G has a positive magic labeling of index S as
s(v) = s for all v € V(G), either by the labeling procedure for all inner vertices
of T and v, or by the equations demanded in 7. u]

Proposition 4.2 leaves open the question about the form of the equations.
Can the equations be solved for the 2’s and s in term of linear expressions of
the a’s with integer coefficients? This question is less important than we think
at first sight. The elimination process leads to linear expressions with rational
coefficients in general, and by suitable multiplication of all a’s all z’s and s are
multiplied with the same factor and are then linear expressions in the a’s with
integer coefficients.

14



A more serious problem is caused by the occurrence of negative coefficients.
If all coefficients of a’s are integer and all labels are different expressions in the
a’s, we have seen that we can construct a pseudo-magic labeling. The problem
is, as for the W5 in the example, whether we can express the labels as different
linear expressions in the a’s with non-negative coefficients, so that we are sure
to get a positive magic labeling.

Let us reconsider the equations for W5 in Figure 4.1.a. The eight labels are

31 = 3a1
€2 = 30.2
€3 = 3a3
£4 = 3a4
ls = —a;—az+2a3+2ay

b6 = 2a1—ax—ag+2a4
¢z = 2a;+2a3—a3—ay4
lg = —a)+ 20z + 2a3 — ay,

while s = 2a; + 2as + 2a3 + 2a4.
We have to choose positive a’s in such a way that 5, £g, £7 and {g are
positive. So next to a; > 0, for ¢ = 1,2, 3,4, we should have

—ay—as+2a3+2a4 > 0
2a; —ay—ag+2a4 > O
2a; +2a3—az—ag > 0

—-a; +2a; +2a3—agy > 0.

A purely algorithmic approach can be based on the fact that, in this case, the
sum of the coefficients of the a’s is positive, namely 2 in all four inequalities.
To prove the existence of a positive magic labeling we put.

a;=M+4;, i=1,...,8,

where M is some large positive integer, chosen so large in fact that we can adjust
the A; so that the a; become different. We obtain

2M + (A - A+ 203 +24,) >
2M + ( 241 - As + Az +2A,) >
2M  + ( 201 + 285 + Az + Ay) >
2M + (-4, - 202 + 243 + A4) >

OO C O

1

next to 3M + (34;) >0, i = 1,2,3,4, as conditions to be fulfilled. The expres-
sions between parentheses can be made to have different values and we have
reached our goal, a positive magic labeling for Ws.

15



The technique to put a; = M + A;, with large M, does not work in case
we have sums of coefficients that are negative or zero. In these cases there
is the problem to modify the technique, if we do not want to refer to integer
programming techniques. Suppose in some case the index condition is met and
the conditions on the labels are

ap > 0 (1), ay+2a+az—ay > 0 (6),
as > 0 (2), 201 +az+az—az; > 0 (7),
az > 0 (3), 201 +2a2+2a3—-a3—a5 > 0 (8),
ag > 0 (4), —ay—azt+ag+as > 0 (9)
az; > 0 (5),

The last inequality has zero as sum of the coefficients. The variable a3 does not
occur with a negative coefficient. So whatever the values of the other variables,
a3 can be chosen so large that all inequalities in which it occurs, are satisfied.
In the remaining inequalities, the variable a4 does not occur with negative co-
efficients. The remaining a; can be given suitable values and after that we give
suitable values to a4 and a3, respectively.

This method does not work if at any stage in the procedure there is no a;
that has non-negative coefficients only. If this occurs we can still use integer
programming.

An interesting problem is to determine a labeling with minimum value of the
index, once the existence of, say, a positive magic labeling is established. Jeuris-
sen [3] mentions a smallest positive magic index for the Petersen graph of 26,
and a smallest magic index for the Petersen graph of 23 and for the K5 a smallest
magic index of 20. The general setting that we have developed by Proposition
4.2 has translated this problem into minimizing s under m conditions ¢; > 0
respectively £; > 0,¢=1,...,m, for s and the labels ¢; as expressions in terms
of the m—n+1 a’s. This is an integer linear programming problem, the solution
of which gives both the existence and the minimum index, in case a labeling
exists.

5 Vertex cycle covers

In the preceding section we have met the problem to prove that the labels of the
edges can be made positive by proper choice of the a’s. Another way to achieve
positive labels would be to raise labels in such a way that terms with negative
coefficients disappear, while the numbers s(v) are kept equal. Along this line of
thought we hit upon a connection with vertex cycle covers.

A A-vertex cycle cover of a graph G, A € N*, is a family of cycles in G such
that every vertex of G belong to exactly A cycles.

Lemma 5.1. If a graph G has a p-vertex cycle cover, then it has a labeling
with index 2p.

16



Proof. Consider a cycle C of the cover. Give weight 1 to every edge of C. Do
the same for all other cycles in the cover. The label of an arbitrary edge e will
be the sum of its weights. Since each vertex is incident with p cycles, we obtain
s(v) = 2p, hence the result. O

Lemma 5.1 gives the opportuni 7 to raie all the labels of edges belonging

to one of the cycles in the cover by an integer of arbitrary magnitude, e.g. by a
m-n+1l
multiple of ) a;. This enables us to derive linear expressions for z’s and s
i=1
with positive coefficients.
An example of a 4-vertex cycle cover is shown in Figure 5.1. It so happens

that all cycles have length 4 but this is not essential.

— 9

Figure 5.1
Vertex cycle covers seem not to have been studied in the literature. Well-
known are edge cycle covers.
A X-edge cycle cover is a family of cycles such that every edge is contained
in exactly A cycles. It has been conjectured that all bridgeless graphs have a
double edge cycle cover.

The vertex version of the cycle cover problem is interesting in itself.

Let a graph G have n vertices. Does it admit a A-vertex cycle cover, A € N+?
If the graph is A-regular and the 2-edge cycle cover conjecture is true, there are
(3) cycles containing an arbitrary vertex and the graph has a (;)-vertex cycle
cover. A cycle with one subdivided chord has a 2-edge cycle cover, consisting of
three cycles. The two vertices of degree 3 are covered by three and the remaining
vertices of degree 2 are covered by 1..0 cycles. There is no A-vertex cycle cover
for A > 0.
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The wheel W5 is not regular either, but it has as we have seen, a 4-vertex
cycle cover. We propose the following problem.

Problem: Characterize the class of graphs that admit a A-vertex cycle cover
for some A € N*.

An approach to this problem is the following.

If a graph G has a A-vertex cycle cover, then let C' be the family of cycles.
Each vertex determines a set of A elements from C, that we shall call an inter-
section. Let the cycles be denoted by cy,...,cc, then the cover determines n
intersections of A elements c. If |c;| denotes the length of ¢; we must have

c
Z lesl =n - A,
=1
as ¢; occurs in |c;| intersections. If e.g. n = 5 and A = 3, then the total length
of the cycles should be 15. Let the vertices be labeled 1,2,3,4 and 5. Then
there are only Cj3’s, Cy’s and Cj's that can be used as cycles in a cover. Two
intersection schemes are

By = (a,c2,c3) B, = (ci.c2,cq)
B2 = (Cl,Cz, 63) Bz = (C].Cg,&;)
B3 = (Clv C2, 03) and Bg = (Cl , C3, (,'5)
B4 = (Cl »C2, C3) B.] = (C2, c3, (,‘5)
Bs = (Ch 62763) (a) By = (C'z,Cq, Cr,) (l))

where ¢, ¢ and c3 are contain all five vertices each in case (a) and C,...,Cs
each contain three vertices in case (b). Graphs that admit these covers can
be constructed from those intersection schemes. Cs or K5 in case (a) and the
graph Kj; in case (b) are examples. The study of A-vertex cycle covers can be
carried out by surveying all possible intersection schemes. Only those graphs
with cycles according to the intersection scheme can have a vertex cycle cover.

By = (ec,c2,¢3)
By = (c1,c2,¢3)
By = (c1,c,¢4)
By = (c1,c3,¢4)
Bs = (c2,c3,¢4)

gives e.g. a 3-vertex cycle cover solution for a graph like in Figure 5.2,
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Figure 5.2

which is the wheel W, for which graph we already found a 4-vertex cycle cover
before.
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