Bipartite Graphs with Balanced (a, b)-Partitions #### Keiichi Handa Systems & Software Engineering Laboratory, Toshiba Corporation, 70. Yanagi-cho, Saiwai-ku, Kawasaki 210, Japan **Abstract.** In this paper, we will be concerned with graphs G satisfying (i) G is isometrically embeddable in a hypercube; and (ii) |C(a,b)| = |C(b,a)| for every edge [a,b] of G, where C(a,b) is the set of vertices nearer to a than to b. Some properties of such graphs are shown, in particular, it is shown that all such graphs G are 3-connected if G has at least two edges and G is not a cycle. #### 1 Introduction Throughout this paper, graphs are finite, undirected and have neither loops nor multiple edges. For a graph G, V(G) and E(G) denote the vertex set and edge set of G. As usual we use d(u,v), d(u) and N(u) to denote the distance of vertices $u,v \in V(G)$, the degree of a vertex u and the set of neighbors of u in G, respectively. For a subset $W \subseteq V(G)$, we denote by < W > the subgraph of G induced by W. The subgraph < V(G) - W > is simply denoted by G - W. Let G be a connected graph. A subset W of V(G) is convex in G if for all $u, v \in W$ all shortest (u, v)-paths are contained in $\langle W \rangle$. For each edge [a, b], we define $C(a, b) = \{x \in V(G) : d(a, x) < d(b, x)\}$ and $S(a, b) (= S(b, a)) = \{x \in V(G) : d(a, x) = d(b, x)\}$. The triple $\{C(a, b), C(b, a), S(a, b)\}$ is called the (a, b)-partition of G. Note that if G is bipartite, then we have always $S(a, b) = \emptyset$. A nontrivial connected graph G is even if for any vertex v of G there exists a unique vertex \overline{v} such that $d(v,\overline{v})=diam(G)$, the diameter of G. An even graph G is called harmonic if $[\overline{u},\overline{v}]\in E(G)$ whenever $[u,v]\in E(G)$, and is called symmetric if $d(u,v)+d(u,\overline{v})=diam(G)$ for all $u,v\in V(G)$, see [4]. (Symmetric-even graphs are equivalent to 'antipodal graphs', see [1].) **Lemma 1.1.** If a graph G is symmetric-even, G satisfies (B1) |C(a,b)| = |C(b,a)| for all $[a,b] \in E(G)$. **Proof.** Let $[a,b] \in E(G)$ and let $z \in C(a,b)$. If $\overline{z} \in C(a,b)$, then $diam(G) = d(z,a) + d(a,\overline{z}) < d(z,b) + d(b,\overline{z}) = diam(G)$, a contradiction. If $\overline{z} \in S(a,b)$, then $d(a,\overline{z}) = d(b,\overline{z})$. Since $diam(G) = d(a,z) + d(a,\overline{z}) = d(b,z) + d(b,\overline{z})$, we have d(a,z) = d(b,z), i.e., $z \in S(a,b)$, a contradiction. Hence, |C(a,b)| = |C(b,a)| holds. Harmonic-even graphs do not always satisfy (B1), see [4, Fig.2 H_3]. However, by [3, Prop.4.1;Thm.4.2], if a harmonic-even graph is isometrically embeddable in a hypercube, then it is symmetric. Hence, all such harmonic-even graphs also satisfy (B1). (*Note.* In [3], harmonic-evenness and isometric-embeddability in hypercube have been used as properties of 'tope graphs' of oriented matroids.) As a characterization of graphs isometrically embeddable in a hypercube, the following theorem is well-known: **Theorem 1.2.** (Djoković [2]). A connected graph G is isometrically embeddable in a hypercube if and only if - (B2) G is bipartite, and - (B3) C(a,b) is convex for all $[a,b] \in E(G)$. In this paper, we will be concerned with connected graphs satisfying the conditions (B1) \sim (B3). As seen in Fig.1, the conditions (B1), (B2) and (B3) are independent of each other. The vertices depicted by \bullet belong to C(a,b) for the edge [a,b] of each figure. Fig. 1. Our main theorem says: **Theorem 1.3.** If a connected graph G with $|E(G)| \ge 2$ satisfies (B1) \sim (B3) and G is not a cycle, then G is 3-connected. By this theorem, we know that every harmonic-even graph isometrically embeddable in a hypercube is 3-connected unless G is a cycle or K_2 . Note that this fact also follows from the following result by Göbel and Veldman: every symmetric-even graph is 3-connected unless G is a cycle or K_2 , see [4, Thm.17]. The graph in Fig.2 shows that connected graphs with (B1) \sim (B3) are not necessarily even. The labels of vertices are from those of the hypercube on the 5-element set $\{1, 2, ..., 5\}$. For example, the label 145 denotes the subset $\{1, 4, 5\}$. ### 2 Proof of the main theorem Throughout this section, let G be a connected graph with n vertices. First we will investigate some properties of connected graphs with (B1) and (B2), and then we will prove the main theorem. **Lemma 2.1.** If G satisfies (B1) and $|E(G)| \ge 2$, then G is 2-connected. **Proof.** Suppose there is a vertex a such that the subgraph G-a is disconnected. Let G_1 denote a (connected) component of G-a and let G_2 denote the graph formed by the remaining components. If $b \in V(G_1) \cap N(a)$, then $V(G_2) \cup a \subseteq C(a,b)$, and hence $|V(G_2)| + 1 \le n/2$. If $c \in V(G_2) \cap N(a)$, then $V(G_1) \cup a \subseteq C(a,c)$, and hence $|V(G_1)| + 1 \le n/2$. Now we have $n+1 = |V(G_1)| + |V(G_2)| + 2 \le n$, which is a contradiction. **Lemma 2.2.** $[a,b], [u,v] \in E(G), u \in C(a,b) \text{ and } v \in C(b,a) \text{ imply } d(a,u) = d(b,v).$ **Proof.** Since $d(b,v) < d(a,v) \le d(a,u) + d(u,v)$, we have $d(b,v) \le d(a,u)$. On the other hand, since $d(a,u) < d(b,u) \le d(b,v) + d(v,u)$, we have $d(a,u) \le d(b,v)$. Hence, the equation d(a,u) = d(b,v) holds. We write $G_1 \cong G_2$ if graphs G_1 and G_2 are isomorphic, and denote by $\delta(G)$ the minimum degree of a graph G. For $k \geq 3$, C_k denotes the cycle of length k. For every edge [a,b] in G, we define $\omega(a,b) = \{[u,v] : u \in C(a,b) \text{ and } v \in C(b,a)\}$ and $U(a,b) = \{x \in C(a,b) : x \text{ is an endpoint of some edge in } \omega(a,b)\}.$ **Lemma 2.3.** Let G satisfy (B1) and (B2), and let $G \not\cong C_n$ and $|E(G)| \geq 2$. Then we have - (i) $\delta(G) \geq 3$; and - (ii) for every edge [a,b] in G, the set $\omega(a,b)$ contains a matching with cardinality ≥ 3 . **Proof.** (i) By Lemma 2.1, $\delta(G) \geq 2$. Suppose there is a vertex $b \in V(G)$ with degree 2, i.e., d(b) = 2. It suffices to show the equation d(a) = 2 for any neighbor a of b, because then by the connectiveness of G, we have d(x) = 2 for all $x \in V(G)$. Now by Lemma 2.1, the graph obtained from G by deleting the edge [a,b] is connected, and hence there is an edge [u,v] in G such that $a \neq u \in C(a,b)$ and $b \neq v \in C(b,a)$. In fact, such an edge [u,v] is uniquely determined, which is showed as follows. First, consider the set C(c,b), where c is the other neighbor of b. Clearly, $C(b,a) - b \subseteq C(c,b)$, and by Lemma 2.2, $U(a,b) - a \subseteq C(c,b)$. Since |C(c,b)| = n/2 by (B1) and (B2), we know the fact $U(a,b) = \{a,u\}$. Next, consider the set C(u,v). By Lemma 2.2, $C(a,b) \subseteq C(u,v)$, and so we know there is no vertex in the set $(N(u) - v) \cap C(b,a)$. Hence we have $U(b,a) = \{b,v\}$, which means $\omega(a,b) = \{[a,b],[u,v]\}$. Put k=d(a,u). Then by Lemma 2.2, d(b,v)=k. Choose a vertex $f\in N(a)-b$. For all $x\in N(v)-u$, d(b,x)=k-1 (if d(b,x)=k+1, then $a,u\in C(v,x)$, i.e., $C(a,b)\subset C'(v,x)$, a contradiction). Hence d(a,x)=k and d(f,x)=k+1, and so we have $C(b,a)-v\subseteq C'(a,f)\ni a$. This implies $C(a,f)=(C(b,a)-v)\cup\{a\}$, and hence we have $N(a)=\{b,f\}$. i.e., d(a)=2. (ii) By Lemma 2.1, $\omega(a,b)$ contains a matching $\{[a,b],[a',b']\}$ of cardinality 2, where $a' \in C(a,b)$ and $b' \in C(b,a)$. Put k = d(a,a') = d(b,b'). It suffices to show that $|U(a,b)| \geq 3$ and $|U(b,a)| \geq 3$. Suppose |U(a,b)| = 2. that is, $U(a,b) = \{a,a'\}$. Then for all $x \in N(a') \cap C(a,b)$, d(a,x) = k-1 (if d(a,x) = k+1, then $C(b,a) \cup a \subseteq C(a',x)$. a contradiction). Hence d(b,x)=k. Also, for all $c \in N(b)-a$, d(c,x)=k+1 (if d(c,x)=k-1, then d(c,a')=k-2, which contradicts d(b,a')=k+1). Hence $C(a,b)-a'\subseteq C(b,c)\ni b$. Moreover by (i), there is $g\in N(b)-\{a,c\}$ such that $g\in C(b,c)$, which shows |C(b,c)|>n/2, a contradiction. Thus we have $|U(a,b)|\geq 3$. By symmetry, we have also $|U(b,a)|\geq 3$. **Lemma 2.4.** Let G satisfy (B1) and (B2) and let $|E(G)| \ge 2$. Then for all adjacent vertices $a, b \in V(G)$, the subgraph $G - \{a, b\}$ is connected. **Proof.** Suppose $G - \{a, b\}$ is disconnected. Then by Lemma 2.1, at least one of the subgraphs < C(a, b) - a > and < C(b, a) - b > is disconnected. We may assume that < C(a, b) - a > is disconnected without loss of generality. Now, since G - a is connected, there must be an edge between each component of < C(a, b) - a > and C(b, a). This implies that < C(b, a) - b > is also disconnected. Hence any component of $G - \{a, b\}$ can be denoted by $< V_1 \cup V_2 \cup ... \cup V_s \cup W_1 \cup W_2 \cup ... \cup W_t >$. where V_i $(1 \le i \le s)$ and W_j $(1 \le j \le t)$ are vertex sets of components of < C(a, b) - a > and < C(b, a) - b >, respectively. Now for $x \in N(a) \cap V_1$, $V(G) - \{V_1 \cup ... \cup V_s \cup W_1 \cup ... \cup W_t\} \subseteq C(a, x)$. Hence $|V_1 \cup ... \cup V_s \cup W_1 \cup ... \cup W_t| \ge n/2$, that is, the number of vertices of any component of $G - \{a, b\}$ is $\ge n/2$. This is a contradiction. For vertices u, v of a graph G, we denote $I(u, v) = \{w \in V(G) : w \text{ lies on a shortest } (u, v)\text{-path in } G\}$ and call each set I(u, v) an interval in G. **Lemma 2.5.** Let G satisfy (B1) and (B2), and let $G \not\cong C_n$ and $|E(G)| \geq 2$. Suppose that the subgraph $G - \{a, b\}$ is disconnected, and choose such vertices a and b so that the distance d(a, b) is minimum. Let $c \in N(a) \cap I(a, b)$. Then - (i) both subgraphs < C(a,c)-a > and < C(c,a)-b > are disconnected; and - (ii) the number of components of $G \{a, b\}$ is exactly 2. and they can be written as follows: $$\begin{array}{ll} G_1 \equiv < V_1 \cup ... \cup V_s \cup W_1 \cup ... W_t > & (W_1 \ni c). \\ G_2 \equiv < V_{s+1} \cup ... \cup V_p \cup W_{t+1} \cup ... W_q > & (s < p, \ t < q). \end{array}$$ where $V_1,...,V_p$ are the vertex sets of components of $C(a,c)-a > and W_1,...,W_q$ those of C(c,a)-b > M or every $x \in N(b) \cap W_j$ $(t < j \le q), V(G_2) \supseteq C(x,b)$ holds. **Proof.** By Lemma 2.4, $d(a,b) \ge 2$. Put k = d(c,b) = d(a,b) - 1. (i) By Lemma 2.3 (ii), at least one of < C(a,c)-a > and < C(c,a)-b > is disconnected. We distinguish two cases and derive contradictions. Case (1): $\langle C(a,c)-a \rangle$ is connected. Denote the vertex sets of components of $\langle C(c,a)-b \rangle$ by $W_1 \ (\ni c), W_2, ..., W_q$. Since G is 2-connected, there is an edge between each W_j and C(a,c). Here note that, for $j \geq 2$, such an edge does not have a as an endpoint. Hence the components of $G - \{a,b\}$ are exactly $\langle \{C(a,c)-a\} \cup W_2 \cup ... \cup W_q \rangle$ and $\langle W_1 \rangle$. This fact shows [a,c] is the only edge between C(a,c) and W_1 . Moreover, we have $|W_1| \geq 2$, because $|N(c)-a| \geq 2$ by Lemma 2.3 (i). Thus $G - \{b,c\}$ is disconnected, which contradicts the minimality of d(a,b). Case (2): < C(c,a) - b > is connected. Denote the vertex sets of components of < C(a,c) - a > by $V_1,V_2,...,V_p$. Since $G - \{a,b\}$ is disconnected, for some $i, N(b) \cap V_i \neq \emptyset$ and there is no edge between V_i and C(c,a) - b. Now, let $x \in N(b) \cap V_i$. Then $C(c,a) \subseteq C(b,x)$, and hence $N(b) \cap C(a,c) = \{x\}$. Since $|N(x) - b| \geq 2$ and since [x,b] is the only edge between V_i and C(c,a), we know that $G - \{a,x\}$ is disconnected, which contradicts the minimality of d(a,b). (Note that d(a,x) = d(c,b).) (ii) Let $V_1, ..., V_p$ be the vertex sets of components of $\langle C(a,c)-a \rangle$, and let $W_1 \ (\ni c), ..., W_q$ be those of $\langle C(c,a)-b \rangle$. First, we show that any component of $G-\{a,b\}$ is a subgraph induced by at least one V_i and at least one W_j . Now, suppose some $\langle V_i \rangle$ forms a component in $G-\{a,b\}$. Then, since G-a is connected, there must be an edge [x,b] between V_i and b. For this vertex x, we can easily show that $G-\{a,x\}$ is disconnected, which contradicts the minimality of d(a,b). Next, suppose some $\langle W_j \rangle$ forms a component in $G-\{a,b\}$. Since G-b is connected, we know j=1. Let j be any neighbor of j in j in j in j. If j is disconnected, which contradicts the minimality of j is disconnected, which contradicts Now, we can denote the component of $G-\{a,b\}$ containing c by $G_1\equiv \langle V_1\cup...\cup V_s\cup W_1\cup...W_t>$, and the second component by $G_2\equiv \langle V_{s+1}\cup...\cup V_l\cup W_{l+1}\cup...W_m> (s< l\leq p,\ t< m\leq q).$ To show the equations l=p and m=q, it is sufficient to show that $V(G_2)\supseteq C(x,b)$ for every $x\in N(b)\cap W_j$ $(t< j\leq m)$. Because then we have $|V(G_2)|\ge n/2$. Now choose any vertex $x\in N(b)\cap W_j$ $(t< j\leq m)$. By d(b,a)=k+1. either d(x,a)=k or =k+2. If d(x,a)=k, then every shortest (x,a)-path arrives at the vertex a through an edge [u,v] between W_j and some V_i $(s< i\leq l)$, where $u\in W_j$ and $v\in V_i$. Hence we have d(x,a)>d(v,a)=d(c,u)>d(c,b)=k, a contradiction. So d(x,a)=k+2 holds, and so a belongs to C(b,x). Hence we have $V(G)-V(G_2)\subseteq C(b,x)$, that is, $V(G_2)\supseteq C(x,b)$. This completes the proof. **Proof of Theorem 1.3.** Under the same assumptions as in Lemma 2.5, we will derive a contradiction. We use the notations in Lemma 2.5. Put k = d(c, b) and let $y \in N(a) \cap V_1$. Then either d(y, b) = k or = k + 2 holds. If d(y,b)=k, then every shortest (y,b)-path arrives at the vertex b through an edge [u,v] between V_1 and $W_l \cup b$ for some l $(1 \leq l \leq t)$, where $u \in V_1$ and $v \in W_l \cup b$. Now let [e,f] be any edge such that $e \in V_i$ $(s < i \leq p)$ and $f \in W_j$ $(t < j \leq q)$. Then by (B3), d(v,f) = d(v,b)+d(b,f) < k+(d(c,f)-d(c,b)) = d(c,f) = d(a,e). Also by (B2) and (B3), d(v,f) = d(u,e) = d(u,a) + d(a,e) > d(a,e). This is a contradiction. On the other hand, if d(y, b) = k + 2, then $b \in C(a, y)$. Hence, $V(G_2) \cup \{a, b\} \subseteq C(a, y)$ and we have $|V(G_2)| < n/2$, which contradicts the second statement of Lemma 2.5 (ii). In Theorem 1.3, it may not need for G to satisfy (B3), which we will leave as an open question: **Question.** If G satisfies (B1) and (B2) and if $G \not\cong C_n$ and $|E(G)| \geq 2$, then G is 3-connected? Acknowledgement: I would like to thank K. Fukuda for his valuable comments, and S. Honiden for his great encouragement. ## References - [1] A. Berman and A. Kotzig, Cross-cloning and antipodal graphs, *Discrete Math.*, 69 (1988), 107-114. - [2] D. Z. Djoković, Distance-preserving subgraphs of hypercubes, J. Combin. Theory, Ser. B, 14 (1973), 263-267. - [3] K. Fukuda and K. Handa. Antipodal graphs and oriented matroids. *Discrete Math.*, 111 (1993), 245-256. - [4] F. Göbel and H.J. Veldman, Even graphs, J. Graph Theory, 10 (1986), 225-239.