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Abstract. In this paper, we will be concerned with graphs G sat-
isfying (i) G is isometrically embeddable in a hypercube: and (ii)
|C(e.b)] = |C(b,a)| for every edge [a,b] of G. where C(a,b) is the
set of vertices nearer to a than to b. Some properties of such graphs
are shown, in particular, it is shown that all such graphs G are 3-
connected if G has at least two edges and G is not a cycle.

1 Introduction

Throughout this paper. graphs are finite. undirected and have neither loops
nor multiple edges. For a graph G, V(G) and E(G) denote the vertex set
and edge set of G. As usual we use d(u,v), d(u) and N{u) to denote the
distance of vertices u,v € V(G), the degree of a vertex u and the sct of
neighbors of v in G, respectively. For a subset W C V(G), we denote by
< W > the subgraph of G induced by W. The subgraph < V(G) - 11" >
is simply denoted by G — .

Let G be a connected graph. A subset W of V(G) is conver in G
if for all u.,v € W all shortest (u,v)-paths are contained in < TI" >.
For each edge [a.b], we define C(a,d) = {2 € V(G) : d(a,z) < d(b.x)}
and S(a.b) (= S(b,a)) = {x € V(G) : d(a.x) = d(b.z)}. The triple
{C(a.b),C(b.a),S(a,b)} is called the (a.b) -partition of G. Note that if G
is bipartite. then we have always S(a,b) = 0.

A nontrivial connected graph G is even if for any vertex v of G there
exists a unique vertex T such that d(v,7) = diam(G). the diameter of G.
An even graph G is called harmonic if [7,7] € E(G) whenever [«, v] € E(G).
and is called symmetric if d(u,v) + d(x.T) = diam(G) for all u,v € V(G).
see [4]. (Symmetric-even graphs are equivalent to ‘antipodal graphs’, see
[1).)

Lemma 1.1. If ¢ graph G is symmetric-even, G satisfies
(B1) |C(a.b)| =|C(b,a)| for all [a,b] € E(G).

Proof.  Let [a,b] € E(G) and let z € C(a,b). f = € C(a,b). then
diam(G) = d(z,a) + d(a.Z) < d(z,b) +d(b,Z) = diam(G). a contradiction.
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If T € S{a.b), then d{a.Z) = d(b,Z). Since diam(G) = d(a,z)+ d{«.Z) =
d{b. z) + d(b.T). we have d(a, z) = d(b,z). i.e., = € S(a.D). a contradiction.
Hence, |C'(«.b)] = |C (. )] holds. |

Harmonic-even graphs do not always satisfy (B1), see [4, Fig.2 Hy).
However, by [3. Prop.4.1;Thm.4.2], if a harmonic-even graph is isometri-
cally embeddable in a hypercube, then it is symmetric. Hence. all such
harmonic-even graphs also satisfy (B1). (Note. In [3], harmonic-evenness
and isometric-embeddability in hypercube have been used as properties of
‘tope graphs’ of oriented matroids.)

As a characterization of graphs isometrically embeddable in a hyper-
cube, the following theorem is well-known:

Theorem 1.2. (Djokovi¢ [2]). A connected graph G is isometrically em-
beddable in a hypercube if and only if

(B2) G is bipartite. and
(B3) C{a.b) is convez for all [u.b] € E(G)

In this paper, we will be concerned with connected graphs satisfying
the conditions (B1) ~ (B3). As seen in Fig.1l, the conditions (B1). (B2)
and (B3) are independent of each other. The vertices depicted by e helong
to C(a.b) for the edge [a, b] of each figure.

R 1]

(i) (B1)(B2) (BS) (i) (B1) (B2] (B3) (iii) (B4] (B2) (B3)

Fig. 1.

Our main theorem says:

Theorem 1.3. If a connected graph G with |E(G)| > 2 satisfies (B1) ~
(B3) and G is not a cycle, then G is 3-connected.

By this theorem. we know that every harmonic-even graph isometrically
embeddable in a hypercube is 3-connected unless G is a cycle or I;. Note
that this fact also follows from the following result by Gébel and Veldman:

every symmetric-even graph is 3-connected unless G is a cycle or hj. see
[4, Thm.17).
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The graph in Fig.2 shows that connected graphs with (B1) ~ (B3) are
not necessarily even. The labels of vertices are from those of the hypercube
on the 5-element set {1.2,....5}. For example. the label 145 denotes the
subset {1,4,5}.

2 Proof of the main theorem

Throughout this section, let G be a connected graph with » vertices. First
we will investigate some properties of connected graphs with (B1) and (B2),
and then we will prove the main theorem.

Lemma 2.1. If G satisfies (Bl) and |E(G)| > 2. then G is 2-connected.

Proof. Suppose there is a vertex @ such that the subgraph G - « is
disconnected. Let G| denote a (connected) component of G — « and let
G5 denote the graph formed by the remaining components. If b € V(G )N
N(a), then V(Gz) U« C C(a.b). and hence |V(G2)|+1 < n/2. If ¢ €
V(G2) N N(a), then V(G;1) Ua € C(a,c), and hence |V(G1)|+1 < n/2.
l.\’ow we have n + 1 = |V(G1)| + |V(G2)| + 2 < n. which is a contradiction.

Lemma 2.2. [a.b],[u.v] € E(G), v € C(a,b) and v € C(b,a) imply
d(a,u) = d(b,v).
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Proof.  Since d(b.v) < d(a,v) < d(a,u) + d(u.v). we have d(b,¢) <

d(a.u). On the other hand. since d(a.u) < d(b.u) < d(b,v) + d(v.u), we
have d(a,u) < d(b,v). Hence, the equation d{a,«) = d(b, v) holds. | |

We write Gy 22 Gy if graphs G, and G are isomorphic, and denote
by 6(G) the minimum degree of a graph G. For & > 3, (i denotes
the cycle of length k. For every edge [a,b] in G, we define w(a.b) =
{[u,v] : v € C(a,b) and v € C(b.a)} and U(a.b) = {z € C(a.b) :

2 is an endpoint of some edge in w(a.b)}.

Lemma 2.3. Let G satisfy (B1) and (B2), and let G % C,, and |E(G)| > 2.

Then we have

(i) 6(G) 2 3; and
(ii) for every edge [a,b] in G, the set w(a,b) contains a matching with
cardinality > 3.

Proof. (i) By Lemma 2.1, 6(G) > 2. Suppose there is a vertex b € 1'(G)
with degree 2, i.e., d(b) = 2. It suffices to show the equation d{(a) = 2 for
any neighbor a of b, because then by the connectiveness of G. we have
d(zx) = 2 for all x € V(G).

Now by Lemma 2.1, the graph obtained from G by deleting the edge
[a,b] is connected, and hence there is an edge [u,v] in G such that a #
u € C(a.b) and b # v € C(b,a). In fact, such an edge [u.v] is uniquely
determined, which is showed as follows. First, consider the set C(c,b).
where ¢ is the other neighbor of b. Clearly, C(b,a) — b C C{c,b), and by
Lemma 2.2, U(a,b) — a C C(e,b). Since [C(c.b)] = n/2 by (B1) and (B2).
we know the fact U(a,b) = {a.u}. Next, consider the set C(u,v). By
Lemma 2.2, C(e,b) C C(u,v), and so we know there is no vertex in the
set (N(u) — v) N C(b.a). Hence we have U(b.a) = {b.v}, which mecans
w(a,b) = {[a.b], [u, v]}.

Put & = d(a.u). Then by Lemma 2.2, d(b,v) = k. Choose a vertex
f € N(a)—0b. Forallz € N(v)—u,d(b,2) = k-1 (if d(b,x) = k+ 1. then
a,u € C(v,x), i.e.,, C(a,b) C C'(v, ), a contradiction). Hence d(a,2) = &
and d(f,x) = k+ 1, and so we have C(b,a¢) — v C C(a,f) 3 a. This
implies C(a, f) = (C(b.a) — v) U {a}, and hence we have N(a) = {b. f}.
ie, d(a)=2.

(ii) By Lemma 2.1, w(e. b) contains a matching {[, b}, [¢, ']} of cardi-
nality 2, where a’ € C(a.b) and V' € C(b,a). Put k = d(a.d') = d(b, V). It
suffices to show that |U(a.b)| > 3 and |U(b,a)| > 3. Suppose |U(«a.b)| = 2.
that is, U(a.b) = {a,¢'}. Then for all z € N(«’) N C(a,b), d(a.x) =k -1
(if d(a.2) = k + 1, then C(b.a)Ua C C(d’,x). a contradiction). Hence
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d(b.x) = k. Also, for all ¢ € N(b) — a. d(c.2) = k+1 (if d(c,r) =
k — 1, then d(c,a’) = k — 2, which contradicts d(b.a') = k + 1). Hence
C(a,b) —a’ C C(b,c) 3 b. Moreover by (i), there is g € N(b) — {a.c} such
that g € C'(b,c), which shows |C(b.c)| > n/2, a contradiction. Thus we
have |U(a,b)| > 3. By symmetry, we have also [U(b,a)| > 3. |

Lemma 2.4. Let G satisfy (B1) and (B2) and let |E(G)| > 2. Then for
all adjacent vertices a.b € V(G). the subgraph G — {a, b} is connected.

Proof.  Suppose G — {a,b} is disconnected. Then by Lemma 2.1, at
least one of the subgraphs < C(a,d) —a > and < C(b.a) = b > is dis-
connected. We may assume that < C(a,b) — a > is disconnected with-
out loss of generality. Now, since G — @ is connected. there must be an
edge between each component of < C(a,b) —a > and C(b,a). This im-
plies that < C'(b.a) — b > is also disconnected. Hence any component of
G — {a,b} can be denoted by < UV U..UV,UW, U, U...UTI, >.
where V; (1 < i < s) and W; (1 < j < t) are vertex scts of compo-
nents of < C(a,b) —a > and < C(b,a) — b >, respectively. Now for
r € N)NV, V(G) - {VU..UuV,UlW U..UW,} C C(a.r). Hence
Vi U..UV,UW; U..UW,| > n/2, that is, the number of vertices of any
component of G — {a.b} is > n/2. This is a contradiction. |

For vertices u,v of a graph G, we denote I{u,v) = {w € V(G) :
w lies on a shortest (u.v)-path in G} and call each set I(u,r) an interval
in G.

Lemma 2.5. Let G satisfy (B1) and (B2), and let G 2 C,, and |E(G)| >
2. Suppose that the subgraph G — {a,b} is disconnected, and choose such
vertices a and b so that the distance d(a,b) is minimum. Let ¢ € N{a) N
I{a.b). Then

(i) both subgraphs < C(a.c)—a > and < C(c,a)—b > are disconnected:
and

(ii) the number of components of G — {a.b} is ezactly 2. and they can
be written as follows:

Gi=<WVu.UuV,umu..wW,> (W 3¢).
Gz =< ‘/3+1 u..u ";J U ‘VH.] U ...T’Vq > (S <p t< ([).

where V1,...,V}, are the vertez sets of components of < C(a,c) —a >
and Wi,....W, those of < C(c,a) = b >. Moreover, for every x €
NO)NW; (t < j<q), V(G2) 2 C(x,b) holds.
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Proof. By Lemma 2.4, d(a.b) > 2. Put k = d(c.b) = d{a.b) - 1.

(i) By Lemma 2.3 (ii), at least one of < C(a,c)—a > and < C(c.a)-b >
is disconnected. We distinguish two cases and derive contradictions.

Case (1): < C(a,c)—a > is connected. Denote the vertex sets of com-
ponents of < C(c.a)—b > by Wy (3 ¢), W, ..., W,. Since G is 2-connected.
there is an edge between each W; and C(a,c). Here note that, for j > 2,
such an edge does not have a as an endpoint. Hence the components of
G - {a.b} are exactly < {C(a.c) —a}UW U...UW, > and < 1¥7 >. This
fact shows [a,c] is the only edge between C(a.c) and W;. Moreover. we
have |1¥;| > 2, because |N(¢) — a| > 2 by Lemma 2.3 (i). Thus G — {b.c}
is disconnected, which contradicts the minimality of d(a.b).

Case (2): < C(c.a) — b > is connected. Denote the vertex scts of
components of < C(a,¢) —a > by W, V%,....V},. Since G — {a,b} is dis-
connected, for some i, N(b) N V; # @ and there is no edge between V] and
C(c.a) — b. Now, let 2 € N(b) N V;. Then C(c.a) C C(b.x), and hence
N(b)NC(a,c) = {z}. Since |N{(x)— b| > 2 and since [z,]] is the only edge
between V; and C(c,a), we know that G — {e,z} is disconnected, which
contradicts the minimality of d(a.b). (Note that d(a.z) = d(c.b).)

(ii) Let Vi,...,V, be the vertex sets of components of < C{a.c) —a >.
and let Wy (3 ¢),.... W, be those of < C{c,a) — b >. First. we show that
any component of G — {a,b} is a subgraph induced by at least one 1/
and at least one Wj. Now, suppose some < V; > forms a component in
G — {a,b}. Then, since G — a is connected, there must be an edge [r.0]
between V; and b. For this vertex x, we can easily show that G — {a. 2}
is disconnected, which contradicts the minimality of d(«,b). Next. suppose
some < I¥; > forms a component in G—{a,b}. Since G —b is connected. we
know j = 1. Let y be any neighbor of ¢ in < W; >. If d(y,b) = &+ 1. then
Cla,c) U {b} C C(c,y), a contradiction. Hence. we know d(y.b) = k — 1.
that is, y € I(c,b). This means G—{b, ¢} is disconnected, which contradicts
the minimality of d(a,b) again.

Now. we can denote the component of G — {a.b} containing ¢ by G, =
<ViU...UV,UW, U..W; >, and the second component by &G, =
< Ve U UVIUW 1 UL, > (s <1< p, t <m < q). To show the
equations [ = p and m = ¢, it is sufficient to show that V(G) 2 C'(«,b) for
every x € N(b) NWj (t < j < m). Because then we have [V(Gy)| > n/2.
Now choose any vertex € N(b)NW; (t < j < m). By d(b.a) = k + 1.
either d(x,a) = k or = k + 2. If d(x,a) = k. then every shortest (x.«)
-path arrives at the vertex a through an edge [u,v] between 1¥; and some
Vi (s < i <1), where v € Wj and v € V;. Hence we have d(v.a) >
d(v,a) = d(c,u) > d(c,b) = k, a contradiction. So d(z.a) = k + 2 holds.
and so « belongs to C(b,z). Hence we have V(G) — V(Gy) € C(b,x). that
is, V(G2) 2 C(2,0). This completes the proof.

118



Proof of Theorem 1.3.  Under the same assumptions as in Lemma 2.5.
we will derive a contradiction. We use the notations in Lemma 2.5. Put
k =d(c,b) and let y € N(a) N V). Then either d(y,b) = k or = k + 2 holds.
If d(y.b) = k, then every shortest (y.b) -path arrives at the vertex
through an edge [u,v] between V| and W U b for some I (1 < I < t),
where v € ¥} and v € Wy U b Now let [e, f] be any edge such that
e€Vi(s<i<p)and feW;(t <j<gq) Then by (B3), d(v,f) =
d(v,b)+d(b, f) < k+(d{c, f)—d(c,b)) = d(c, f) = d(a,e). Also by (B2) and
(B3), d(v. f) = d(u,e) = d{u.a) +d(a,e) > d(a,e). This is a contradiction.
Ou the other hand, if d(y,b) = k+2, then b € C(a,y). Hence. V(Gy)U
{a.b} C C(a,y) and we have |V(Gz)| < n/2, which contradicts the second
statement of Lemma 2.5 (ii). [ |

In Theorem 1.3, it may not need for G to satisfy (B3), which we will
leave as an open question:

Question. If G satisfies (B1) and (B2) and if G % C,, end |E(G)| > 2,
then G is 3-connected?
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