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Abstract
A simple inequality involving the number of components in an
arbitrary graph becomes an equality precisely when the graph is
chordal. This leads to a mechanism by which any graph parameter,
if always at least as large as the number of components, corresponds
to a subfamily of chordal graphs. As an example, the domination
number corresponds to the well-studied family of Py, C,-free graphs.

Given any complete subgraph @ of G, define the common neighborhood
of Q, denoted N(Q), to be the subgraph induced by all vertices v € V(G)
that are adjacent with every vertex in Q. Notice that N(Q) N @ = 0.
Define the common neighborhood of the null subgraph (the subgraph with
no vertices) to be the entire graph G. For any vertex v of a graph G, set
N(v) = N({v}) and N[v] = N(v)U{v}, and let comp G count the number
of connected components in G.

A graph is chordal when no cycle of length greater than three is an
induced subgraph. Reference [3] contains a thorough survey of the theory
and applications of chordal graphs (called “triangulated graphs there”),
including most of the characterizations in the literature at that time; [7] is
a more recent survey, from a different point of view. The following theorem
presents a new characterization of chordal graphs that grew out of work
in [8], attempting to identify interesting families of graphs that contain all
chordal graphs.

Theorem 1 For every graph G,

Z[l —comp N(Q)] < comp G and Z[l —comp N(R)] <1, (1)
Q R
where the first sum is taken over all nonemply complete subgraphs Q of G

and the second sum is taken over all complete or null subgraphs R of G.
Moreover, equality holds in either inequality if and only if G is chordal.
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Proof. We argue by induction on the order of G, noting that the result
is immediate (and equality holds) when G = K}; indeed, whenever G is
edgeless. So suppose v € V(G) is not isolated. For each subgraph H
of G, let Ng(Q) denote the common neighborhood of @ in H and—in
this proof only—let ¢Ny @ abbreviate comp Ny(Q) and cNgv abbreviate
comp Ng(v). Then

Z[l—comp N@Q)] = Z [1—eNgQ] = Z [1-cNe@Q] + Z [1-cNeQ).
Q QcéG QCNIv] QCG-v

QEZN(v)
Each complete subgraph @ of N[v} with {v} # Q € N(v) has Ng(Q) C
Ng(v) and corresponds to Q' = QNN (v) € N(v) where cNgQ = cNy(»)@'.
Since each complete subgraph @ of G — v with @ € N(v) has ¢cNg@Q =
cNg-uQ, quc[l — ¢NgQ)] equals

[1—cNgv] + 3 (1= cNyw@Q) + Y [1-cNaQ] + D [1 - cNa-uQ).
QCN() QCN(v) QCG-v
QEN(v)

Since the last summation can be split into 3 ocg_,{1 — ¢Ng-vQ] minus
Y ocnw)[l = cNG-v@Q], we have that Yqcell = eNaQ] equals

1—cNgv + z [l —cNnw@ - cNg@Q + cNg-,Q] + Z [1-cNg-.Q).
QCN(v) QCG-v

But, for each complete subgraph Q of N(v),
eNgQ 2 cNg_yQ — cNynw)@ + 1, (2)

where —cNy(y)@+1 compensates for components of Ng-,(Q) that combine
when v is included, and the inequality becomes strict when components of
Nn(v)(Q) are joined by a path within Ng-4(Q). Thus each term of the
preceding sum over @ C N(v) is nonpositive, and so

S [l-cNeQl < 1—cNv+ Y [1-cNg-uQ).

QcEG QCG-v

Using the inductive hypothesis on the subgraph G —v, ZQCG[I —eNgQ] <
1 — cNgv + comp (G — v), and that is less than or equal to comp G by the
analogue of (2) where @ is the null subgraph.

For the “moreover” part, first supose G is chordal. Then we can choose
v to be a simplicial vertex, and @ C N(v) implies that cNgQ = cNg-oQ —
¢Nn(v)@ + 1. Thus, using a perfect elimination ordering and induction,

Z [1-cNeQ]=1-cNgv+ Z [1-¢Ng-,Q] = comp G.
QGG QCG-v
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If G is not chordal, then, somewhere along the line, eNgQ > ¢cNg-,Q —
¢Nyw)Q +1, and s0 35l — eNQg] < comp G. a

Corollary 2 Suppose f is any graph parameter such that, for every graph
H, comp H < f(H). Then

S~ FAN@)SAG) and D [1-f(NRNI<L,  (3)
Q R

where the first sum is taken over all nonemply complete subgraphs Q of
G and the second sum is taken over all complete or null subgraphs R of
G. Moreover, those graphs for which equality holds in either inequalily are
necessarily chordal.

Proof. The comp H < f(H) assumption implies the first inequality in
D - F(N(R)) < ) 1~ comp N(R)] < 1,
R R

with the second from Theorem 1. Equality in (3) implies, by the preceding
double inequality and Theorem 1, that G is chordal. m]

Every choice of allowable parameter f in Corollary 2 produces an in-
equality, but the family of graphs for which equality holds—and here is
where all the work is involved in proofs—is frequently uninteresting. For
instance, if f counts the number of blocks, then equality holds if and only if
every component of G is complete. If f counts the number of vertices (the
order), then equality holds if and only if G is edgeless. (Both are impor-
tant families of graphs, but ....) Other things can lead to a disappointing
family, as illustrated at the end of this paper, but Theorem 3 involves a
parameter that does lead to a satisfying family.

A set S C V(G) dominates G whenever every vertex in V(G)\S has an
adjacent vertex in S. The domination number of G, denoted 7(G), is the
cardinality of a smallest set that dominates G.

Theorem 3 For every graph G,

SH-yN@) <G and D [I-y(NR) <L, (4
Q R

where the first sum is laken over all nonempty complete subgraphs Q of G
and the second sum is taken over all complete or null subgraphs R of G.
Moreover, equality holds in either inequality if and only if G is a Ps-free
chordal graph.
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Proof. The inequalities (4) follow from Corollary 2.

For the “moreover” part, first suppose ) [l — y(N(R))] = 1. Corol-
lary 2 implies that G is chordal. We argue that G is Ps-free by induction on
|[V(G)|, with the result immediate when |V(G)| < 2. So suppose |V(G)| > 2
and u € V(G) is simplicial. Assume, without loss of generality, that G is
connected.

Suppose 3 g[l — ¥(N(R))] = 1 over G and consider what happens to
this sum when u is removed:

(¢) The term with R = N{u] equals 1—0 = 1 (since N(R) will be empty)
and any other term with u € R equals 1 — 1 = 0 (since N(R) will be
dominated by one vertex); all these terms disappear when the sum is
taken over G — u.

(b) The term with R = N(u) increases by one when the sum is taken
over G — u (since u was an isolated vertex in N(R) and so y(N(R))
decreases by one).

(¢) Any term with R a proper (possibly empty) subset of N(u) either
is unchanged when the sum is taken over G — u (as happens when
N(u) has a vertex in common with some minimum dominating set
of N(R) —u and so u is not needed in a minimum dominating set of
N(R) in G) or increases by one (because u was needed).

(d) Any term with R € N[v] is unchanged when the sum is taken over
G —u.

Any increases in case (c) would make }_ [l - ¥y(N(R))] > 2in G — 4,
contradicting inequality (4). So there are no increases in case (c) and
Y rll = ¥(N(R))] = 1in G — u. The inductive hypothesis implies that
G — u is Py-free. Since G — u is Py, Cy-free, it is easy to show a vertex has
maximum degree in G —u if and only if that vertex dominates G—u, and so
that the minimum dominating sets are precisely the dominating vertices.
Suppose uvwz is an induced path in G, arguing toward a contradiction.
Put R = N(u)NN(v) N N(w) N N(z). Since v € R C N(u), we have that
R is a proper subset of N(u). Hence, since there are no increases in case
(), there is a dominating vertex d of N(R) —u with d € N(u). Note that
d € N(u) implies d # u,w,z, and so d is adjacent to u, w, and z. Also,
d adjacent to z implies d # v, and so d is adjacent to v. But that makes
d € R, contradicting that d € N(R). Therefore G is Py-free.

Conversely, suppose G is a P4-free chordal graph. We argue by induction
on the order of G, with the result immediate when |V(G)| < 2. So suppose
[V(G)| > 2 and u € V(G) is a simplicial vertex. Assume, without loss of
generality, that G is connected, but not complete.

The inductive hypothesis implies that 3 g[1 — (N (R))] = 1 in the Py-
free chordal graph G — u. Consider what happens to this sum when u is
introduced to form G (paralleling the four previous cases):
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(a’) The term with R = N[u] equals one and any other term with u € R
equals zero; all these terms are introduced into the sum.

(') The term with R = N(u) decreases by one.

(¢) Any term with R a proper (possibly empty) subset of N(u) either is
unchanged or decreases by one, with a decrease if and only if N(u) is
disjoint from every minimum donimating set of N(R) — u.

(d') Any term with R € N{v] is unchanged.

Being P4, Cy-free implies that maximum degree vertices, dominating
vertices, and minimum dominating sets are all the same thing. Thus any
decreases in case (¢’) would mean that, for some proper subset R of N(u),
no dominating vertex of N(R) ~ u is in N(u). Yet any vertex d of maxi-
mum degree in G dominates G, and so dominates N(R) — u. Since we are
assuming G is not complete, d # u and so d € N(u), a contradiction. Thus
there are no decreases in case (¢), and therefore Y p[1 - yN(R))] = 1l in
G. ]

This family of Ps-free chordal graphs is also well-studied, having been
introduced as Py, Cy-free graphs and as the comparability graphs of trees
in [11, 12] and studied as “trivially-perfect graphs” in (2], “nested interval
graphs” in [10] (see also [9]), and “domination reducible graphs” in [6]. In
particular, it is easy to see that Py-free chordal graphs are precisely those
in which every vertex of maximum degree dominates its component, as was
used in the preceding proof.

There are many “nice” families of graphs in between Pj;-free chordal
graphs and chordal graphs—interval graphs for one. While there is no rea-
son to expect that every such family will correspond to a graph parameter,
those parameters in between the domination number and the number of
components are the ones to inspect.

Corollary 4 Suppose f is any graph parameter such that, for every graph
H, comp H < f(H) < v(H). Then the inequalities (3) hold, with equality
holding for, at least, all Py-free chordal graphs.

Proof. The comp H < f(H) < v(H) assumption implies the first in-
equailty in

- v(NR)IS D - AINR)I < 1L,

R R

with the second from Corollary 2. If G is Py-free and chordal, then )~ p[1—
¥(N(F))] = 1 by Theorem 3, so equality will hold in (3). m]

It is mentioned in [5] that lower bounds for 4(G) are relatively rare, and
several parameters that are mentioned there fail to satisfy the comp H <
SF(H) requirement when H = K. The natural candidate from the literature
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is the “irredundance number” from [1]. A subset S C V(G) is an irredun-
dant set in G if, for each v € S, N[v] adds a vertex to | J{N[z] : z € S}
that is contributed by no other vertex of S. The irredundance number of G,
denoted ir(G), is the cardinality of a smallest maximal irredundant set in
G, and [1] contains that, for every graph H, ir(H) < y(H). The following
is then disappointing.

Theorem 5 The inequalities (3) hold for f(H) = ix(H), with equality if
and only if G is a Py-free chordal graph.

Proof. Using Corollary 4, all that remains to show is that 3 5 [1—ir(N(R))]

= 1 implies G is Ps-free and chordal. The proof is the same as for the

corresponding part of the proof of Theorem 3 with two modifications:

(1) In case (c), there is an increase if and only if N(u) is disjoint from
every minimum maximal irredundant set of N(R) — u.

(2) Observe that, within G — u, the minimum maximal irredundant sets
are precisely the dominating vertices. a

There are generalized domination and irredundance parameters v,(G)
and ir, (G) in [4] that satisfy the hypothesis of Corollary 4, but the families
for which equality holds in (3) are not even closed under taking induced
subgraphs. It is intriguing to wonder whether there are parameters that
lead to other natural families of chordal graphs.

References

{1] E. J. Cockayne, S. T. Hedetniemi and D. J. Miller. Properties of hered-
itary hypergraphs and middle graphs. Canad. Math. Bull, 21:461-468,
1978.

[2] M. C. Golumbic. Trivially perfect graphs. Discrete Math., 24:105-107,
1978.

[3] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Aca-
demic Press, San Diego, 1980.

[4] J. H. Hattingh and M. A. Henning. Distance irredundance in graphs.
In Y. Alavi and A. Schwenk, editors, Graph Theory, Combinatorics
and Algorithms, volume 1, pages 529-541. Wiley, New York, 1995.

[5] S. T. Hedetniemi and R. Laskar. Recent results and open problems
in domination theory. In R. D. Ringeisen and F. S. Roberts, editors,
Applications of Discrete Mathematics, pages 205-218. SIAM, Philadel-
phia, 1988.

126



[6] T. A. McKee. Intersection graphs and cographs. Congr. Numer.,
78:223-230, 1990.

[7] T. A. McKee. How chordal graphs work. Bull. Inst. Combin. Appl.,
9:27-39, 1993.

[8] T. A. McKee. Clique nieghborhoods and nearly chordal graphs. Dis-
crete Math., to appear.

[9] T. A. McKee. F-free interval graphs. Submitted.

[10] D. J. Skrien. A relationship between triangulated graphs, compara-
bility graphs, proper interval graphs, proper circular-arc graphs, and
nested interval graphs. J. Graph Theory, 6:309-316, 1982.

[11] E. S. Wolk. The comparability graph of a tree. Proc. Amer. Math.
Soc., 13:789-795, 1962.

[12] E.S. Wolk. A note on “The comparability graph of a tree’. Proc. Amer.
Math. Soc., 16:17-20, 1965.

127



