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ABSTRACT. A directed graph G is primitive if there exists a
positive integer k such that for every pair u, v of vertices of G
there is a walk from u to v of length k. The least such k is
called the exponent of G. The exponent set E, is the set of all
integers k such that there is a primitive graph G on n vertices
whose exponent is k.

Let G be a primitive directed graph on n vertices. A well-
known upper bound for the exponent of G is (n — 1)2 + 1, due
to H. Wielandt in 1950. If G is symmetric, then an upper
bound on its exponent is 2n — 2. In this paper we apply a
recent diameter result to show the exponent of a symmetric
primitive graph G is at most 2d where d is the diameter of G.
We also characterize primitive symmetric graphs with exponent
2d and, as well, those on n vertices with exponent at least n.
Finally, we show how these characterizations can be used to
obtain a complete description of the exponent set of this class
of primitive graphs.

1 Preliminaries
1.1 Definitions and Notation
We generally follow the notation given in R.A. Brualdi and H.J. Ryser [1].

A directed graph, G = (V, E), is a set V of vertices and a set E of ordered
pairs (u, v) of vertices of G called arcs. If (u,v) is an arc of G we say there
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is an arc from u to v. All of our directed graphs are finite and we allow
loops but no multiple arcs.

A walk, W, from u to v (or an u — v walk) is a sequence of not
necessarily distinct vertices V(W) = (u,a,,62,...,v) and a set of arcs
E(W) = (u,a1),(a1,02)...,(@i-1,8),...,(aj,v). Since we do not allow
multiple arcs, specifying the vertex sequence of a walk uniquely describes
that walk. A closed walk is a walk where u = v. A path is a walk where all
the vertices in the walk are distinct. A cycle is a closed walk where all the

vertices except the first and last are distinct. We use the notation u LA
to mean there is a walk from u to v of length k. The walk W = A+ B is
obtained by identifying the final vertex of A with the initial vertex of B.

The length of a walk W, denoted |W]|, is the number of arcs in W. The
distance from u to v, denoted d(u,v), is the length of a minimum u — »
path. We define d(u,u) = 0. If there is no u — v path, then d(x,v) is not
defined.

If » and v are vertices on a walk W, then W (u, v) denotes the portion of
W from u to v. Here, when we speak of vertices u, v on a walk W, we regard
u and v as members of the sequence V(W), even though, for convenience, we
have dropped the subscripts. If G is symmetric and W (u,v) is a portion of
a walk W in G, then we define W/(v,u) to be the v — u walk whose vertex
sequence consists of the vertices of W{(u, v) listed in reverse order. If » and
v are the initial and terminal vertices of W, then we write W’ = W'(v, u).

A graph, G, is said to be strongly connected (or strong) if there exists a
path from u to v for all u,v € V(G). The diameter of a strongly connected
graph G is max{d(u,v): u,v € VV(G)}. If G is not strongl]y connected,
then the diameter is not defined. Clearly, the diameter of a graph is at
most n — 1. The girth of G is the length of a shortest cycle in G. If G has
no cycles the girth is not defined. We define G* to be the directed graph
with the same vertex set as G and arcs (u,v) if and only if u L

A directed graph G is primitive if there is a positive integer k such that
u 5 v for each pair u, v of vertices of G. The least such k is called the
exponent of G, denoted exp(G).

We define exp(G;u) to be the least integer k such that u X, v for each
vertex v in G. Also, the notation exp(G;u,v) means the least integer k
such that u 3 v for all m > k. Clearly, exp(G;x) = max,{exp(G;u,v)}
and exp(G) = maxy{exp(G;u)}.

1.2 Background

Let A be the adjacency matrix of G. If G is primitive, then we say A is
primitive. The following is well-known (for example. see R.A. Brualdi &
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H.J. Ryser [1]).

Theorem 1.1. The (i,5) entry of A is positive if and only if u X ovin
G = G(A).

Thus, G has exponent k if and only if k is the least integer such that A*
has all positive entries. If A is symmetric, then we say G is symmetric.

We note that the adjacency matrix of a symmetric directed graph G is
the same as the adjacency matrix of the undirected graph G’ obtained from
G by replacing each (u,v), (v,w) arc pair with an undirected edge (u,v).
Hence, we refer to symmetric directed graphs simply as symmetric graphs,
and when we draw symmetric graphs we will draw them as undirected
graphs.

The following upper bound on the exponent is due to H. Wielandt [13]
in 1950.

Theorem 1.2. The exponent of a (0,1) primitive matrix of order n is at
most (n—1)2+ 1. Moreover, the unique (up to simultaneous permutations
of the rows and columns) matrix, Wy, for which exp(W,,) = (n —1)®+1 is
given by

0 1 0 0 O]
0 0 1 0 0
Wi = [1], W2=[} (1)],andw,.= 0 0 0 " 0 forn> 3.
10 0 1
10 - 0 of

Since the bound (n — 1) + 1 is attained only for the Wielandt matrix,
many attempts have been made to improve this bound, by introducing
various parameters and by considering certain classes of graphs. In this
paper, we consider the concept of diameter in conjunction with the class of
symmetric graphs. We show that if G is a symmetric primitive graph on
n vertices and with diameter d, then exp(G) < 2d. We also characterize
the graphs with exponent 2d and, as well, those with exponent at least
n. Finally, we show how these results can be used to proved a complete
description of the exponent set for this class of primitive graphs.

The notion of diameter has led to a recent refinement of the Wielandt
bound by S. Neufeld (7] and independently by J. Shen [11]. R.E. Hartwig
and M. Neumann [3] mention that this diameter bound was conjectured by
R.E. Hartwig in an unpublished working paper.

Theorem 1.3. If G is a primitive directed graph with diameter d then

exp(G) < d? +1.
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In proving Theorem 1.3, S. Neufeld [7] and J. Shen [10] also obtained the
following useful result.

Theorem 1.4. If G is a primitive directed graph with diameter d, then
the diameter of G* is at most d for all positive integers k.

To improve the Wielandt bound, the concept of girth was employed by
A.L. Dulmagee & N.S. Mendelsohn [2] in a 1964 paper.

Theorem 1.5. If G is a primitive directed graph on n vertices and with
girth s, then exp(G) < n+ s(n —2).

J. Shen [12] has recently applied Theorems 1.3 and 1.4 to obtain a re-
finement of Theorem 1..5.

Theorem 1.8. If G is a primitive directed graph on n vertices and with
girth s and diameter d, then

exp(G) <d+1+s(d-1)<n+s(n-2).

2 Symmetric Primitive Graphs

We first mention an upper bound on the exponent for symmetric primitive
graphs due to J.C. Holladay & R.S. Varga [5).

Theorem 2.1. If a primitive graph G on n vertices is symmetric, then
exp(G) < 2n —-2.

B.R. Heap & M.S. Lynn [4] improved Thereom 2.1 as follows:
Theorem 2.2. Suppose G is a primitive symmetric graph on n vertices.
Let d’ be the diameter of G2. Then, either

exp(G) =2d' <2n—2 or exp(G) =2d'—1<2n-3.

By Theorem 1.4, we know that d' < d. We use this fact in proving the
next theorem, which is a refinement of Theorem 2.1.

Theorem 2.3. Suppose G is a primitive symmetric graph with diameter
d. Then
exp(G) < 2d.

Proof: The graph G2 has a loop at every vertex and by Theorem 1.4, G2
has diameter at most d. Therefore, exp(G?) < d and hence exp(G) < 2d. O

If a symmetric primitive graph G contains at least one loop some im-
provements can be made on the upper bound given in Theorem 2.1. The
following result is due to M. Lewin [6].
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Theorem 2.4. If a primitive symmetric graph G on n vertices has k > 0
loops, then exp(G) < max(n — 1,2(n — k)).

Note that if G is a symmetric graph and W is a u — v walk in G, then
there is a v — u walk W’ in G whose vertex sequence consists of the vertices
of W listed in reverse order. In the following theorem we use this fact and
Thereom 1.4 to obtain a refinement of Theorem 2.4.

Theorem 2.5. Suppose G is a symmetric primitive graph on n vertices
with k > 0 loops and diameter d. Then,

exp(G) < max{d, min(2d,2(n — k))}.

Proof: We note exp(G) > d and by Theorem 2.3, exp(G) < 2d. Let
u,v € V(G). Let P be a shortest u — v path. If P intersects a vertex

with a loop, then u % v for every k > |P|. Suppose P does not intersect
a vertex with a loop. Let @ be a shortest path from P to a vertex with
a loop. Let Q' be the path Q with the vertices in reverse order. Then
|@] < n — k — |P|. Therefore, there is a u — v walk which intersects
a vertex with a loop and which is of length at most |P| + |Q| + |Q’] <
|Pl4+2(n—k—|P|) =2(n—k) —|P| < 2(n — k) and hence there is a u — v
walk of length exactly 2(n — k). Therefore, since u and v are arbitrary,
exp(G) < max{d, min(2d,2(n — k))}. m]

2.1 A Characterization of Symmetric Primitive Graphs with Ex-
ponent 2d

J. Shao [9] showed that exp(G) = 2n — 2 if and only if (up to isomorphism)
G = (V,E) where V = {1,2,...,n} and E = {(4,i+1):1 <i < n-—
1} U {(n,n)}. In this section we generalize J. Shao’s result by providing
necessary and sufficient conditions for exp(G) = 2d. When d = n — 1, this
gives the extremal graph found by J. Shao.

We begin with several lemmas.

Lemma 2.6. let G be a symmetric primitive graph and let u,v, € V(G).
If there are uw — v walks P and Q of opposite parity, then exp(G;u,v) <

max{|P|,|Q[} - 1.

Proof: With no loss of generality suppose |P| < |Q|. Since every vertex of
G is on a 2-cycle and P and Q have opposite parity, there is a u — v walk
of length |P| + 2k = |Q| —1 for some non-negative integer k. Moreover, for
each m > |Q| -1, there is a u > v walk where m = |P|+2j or m = |Q|+2!
for non-negative integers j and l. Thus, exp(G;v,v) < max{|P|,|Q|} 1.0

In Lemma 2.7 we find, given a positive integer . > 2 and a vertex u €
V(G), an upper bound on the length of a shortest closed walk containing
u which is not divisible by m.

133



Lemma 2.7. Let G be a primitive directed graph with diameter d. Let
u € G and let m > 2 be a positive integer. Then u is contained in a closed
walk W where |W| < 2d+ 1 and |W| is not divisible by m.

Proof: Let W be a shortest walk among all the closed walks in G which
contain u and have lengths not divisible by m. Suppose, contrary to the
statement of the Lemma, |W| > 2d + 1. Let W = W(u,v) + W(v,u)
and choose v € W so that |W(u,v)| and |W(v,u)| both exceed d. Let Py
and P, be shortest paths from u to v and from v to u respectively. Then
W(u,v) + P2, Pt + W(v,u), and Py + P; are all closed walks and are all
shorter than W. Thus,

|W(u,v)| + P2l = |P1| + [W(v,u)| = |Pi| + |P2| =0 (mod m).

But this implies |W (u,v)| + |W(v,u)| = 0 (mod m), a contradiction. O

In Lemma 2.8 we find, given a vertex u € V(G), an integer m > 2, and a
closed walk W in G whose length is not divisible by m, that not all paths
from u to W are congruent modulo m.

Lemma 2.8. Let G be a primitive directed graph and let m be a positive
integer. Let W, with |W| > 2, be a closed walk in G whose lengh is not
divisible by m. Let u € V(G). Then there is an arc (r,s) € W such
that shortest paths R from r to u and S from s to u have the property
|IR| # |S] + 1 (mod m). As well, there is an arc (a,b) € W such that
shortest paths P and Q from u to a and b respectively have the property
I[Pl +1#|Q| (mod m).

Proof: This is a proof by contradiction. We note W exists since G is
primitive. Suppose, contrary to the statement of the lemma, the arc (r, s)
does not exist. Let the vertex sequence of W be: ao,ay,...,aw| with
ap = q)w|. Let P; be a shortest path from a; to u. (There may of course be
more than one shortest path from a; to u, but they all have length equal
to d(a;,u).) Then |P;|+ 1= |Pi_;| (mod m). Summing we obtain

W] [1ed|

SIRI+W|=) " |Pioi| (modm)

which implies |W| = 0 (mod m), a contradiction. Similarly the arc (a,b)
also exists. o

We are now ready to characterize those primitive symmetric graphs with
exponent 2d.

Theorem 2.9. The exponent of a primitive graph G with diameter d is 2d
if and only if there is a vertex u € V(G) such that among all closed walks
of odd length containing u a shortest one has length 2d + 1.
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Proof: Let u € V(G) and among all closed walks of odd length containing
u let W, be a shortest one. Let M = max{|W,|: u € V(G)}. We note by
Lemma 2.7 that M < 2d+ 1.

Suppose there is a vertex u € V(G) such that [W,| = 2d+ 1. Since there
is no closed walk containing u of length 2d — 1, exp(G;u) > 2d. Thus, by
Theorem 2.3. exp{G) = 2d.

Suppose exp(G) = 2d and suppose M < 2d — 1. Let u,v be any vertices
of G. We wish to show there are v — v walks of different parity and each of
length at most 2d. Then, by Lemma 2.6, exp(G;u,v) < 2d and since u and
v are arbitrary vertices of G we would have exp(G) < 2d, a contradiction.

By Lemma 2.8 there is an arc (a,b) of W, such that if P and Q are
shortest a — v and b — v paths, then |P| # |Q| +1 (mod 2). Thus, the
walks W, (u, a) + P and Wy,(u,b) + Q have different parity.

If |Wy(u,b)| < d, then there are u — v walks of lengths |W,(x,b)| +
|@Q] < 2d and |W,(u,a)| + |P| < 2d — 1. If |W,(u,b)| > d+ 1, then, since
[Wu| £ M < 2d -1, we have |W)(u,a)] < d—1 and |W/(u,d)] < d—-2.
Now the u — v walks W, (u, a) + P and W/ (u, b) + Q have different parity
and |W;(u,a)| +|P| < 2d — 1 and |W;(u,b)| +|Q| < 2d - 2.

Therefore, we conclude if exp(G) = 2d, then there is a vertex v € V(G)
such that among all closed walks of odd length containing u a shortest one
has length 2d + 1. |

2.2 A Characterization of Primitive Symmetric Graphs on n
Vertices with Exponent at least n

In this section we characterize those primitive symmetric graphs on n ver-
tices which have exponent at least n. Recall that if W(u,v) is a portion
of a walk W in G, then W’(v,u) is the v+ — u walk whose vertex se-
quence consists of the vertices of W(x,v) listed in reverse order. Note
W (u,v)| = |W(v,u)].

Lemma 2.10. Let G be a primitive symmetric graph on n vertices and
let v € V(G). Among all the closed walks of odd length containing u,
let W be a shortest one. Then the number of distinct vertices in W is at
least (|W|+ 1)/2. Also, if the number of distinct vertices in W is exactly
(IW|+1)/2, then W contains a loop and is unique (up to isomorphism.).

Proof: We first show that no vertex of G can occur more than twice in W.
This implies that the number of distinct vertices in W is at least (|W|+1)/2
since W is of odd length.

Suppose a vertex u € V(G) occurs three times in W. Let vy, v9, and
v3 be the first, second, and third occurrences of v in W. Let W = W, +
W, + W3 + Wy where W1 = W(u,v1), Wo = W(vy,v2), W = W(vs,v3),
and Wy = W(vs,u). The closed walk W) + W, containing » must be
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of even length since it is shorter than W. This implies exactly one of
W, or W is of odd length; suppose |W;| is odd. But now the closed
walk W, + W, + W, containing u is of odd length and shorter than W
contradicting the minimality of W. Thus, no vertex of G can occur more
than twice in W.

Suppose the number of distinct vertices in W is exactly (|W|+ 1)/2.
Then, every vertex in W occurs exactly twice. Let v, and v, denote the
first and second occurrences of vertex v in W. We note W(v,, ) is of odd
length; otherwise W (u,v,) + W (vs, u) is of odd length and shorter than
W, a contradiction. Let (u,z) and (y, u) be arcs of W. We show first that
T=y.

Suppose to the contrary that z # y. We note both |W(x,,xs)| and
|W (a, 1)| are odd and hence |W'(ys,%.)| is odd. Also, W(zs,y») is of
even length or else the closed walk (u,za) + W(zs,ys) + (yb, u) is of odd
length and shorter than W, a contradiction. But now the closed walk
(6, 22) + W (s, o) + W (b, ¥a) + (s, 1) is of odd length and shorter than
W, a, contradiction. Therefore, we conclude z = y.

We now observe that vertex z is contained in a closed walk W; =
W(zq, zp) of odd length |W;| = |W| — 2, that the number of distinct ver-
tices in W) is exactly (|W;|+1)/2, and that W, C W. Thus, by repeating
this observation we obtain a sequence of walks Wi, Wy, ..., Wi where the
number of distinct vertices in W; is (|W;| + 1)/2 for each ¢, 1 <4 < k and
w :_) W1 2 Wz... 2 Wk and |W1| = |W| —2,|W2| = |W1| —2,...,|Wk| =
[We-1] -2=1.

Thus, we conclude there is a vertex of W which has a loop. As well, the
decomposition of W shows that it is unique (up to isomorphism). a

Lemma 2.10 tells us that if W contains no loops, then the number of
distinct vertices in W is at least (JW|+3)/2. If W contains no loops and the
number of vertices in W is exactly (|W|+3)/2, then by an argument similar
to that in Lemma 2.10 we again obtain a decomposition of W showing
uniqueness (up to isomorphism).

Theorem 2.11. Let G be a primitive symmetric graph on n vertices. Let
u € V(G) and among all closed walks of odd length containing u, let W,
be a shortest one. Let M = max{|W,|: v € V(G)}.

(a) Suppose G admits loops. If M > n, then exp(G) = M —1 and if
M < n, then exp(G) <n—1.

(b) Suppose G admits no loops. If M > n — 2, then exp(G) = M — 1
and if M <n—2, then exp(G) <n-—3.

Proof: Let u,v € V(G). By Lemma 2.6, to prove exp(G;u,v) < 7 it
suffices to show there are two u — v walks of opposite parity and each of
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length at most . We first assume G admits loops.

Case 1: Suppose the closed walks W, and W, intersect. Let = be a
vertex contained in both W,, and W,,. Assume with no loss of generality
|Wu(u,z)| < |Wy(z,u)| and |Wy(z,v)| < |Wy(v,z)|. We note the u — v
walk U = W, (u, z) + W, (z,v) is of length less than max{|W,,|, |W,|}. Now
either |W,(u,z)| < |Wy(z,v)| in which case the u — v walk Wy(u,z) +
W!(z,v), which has parity opposite U, is of length less than |W,]|, or
|We(z,v)| < |Wu(n,z)| in which case the u — v walk W, (u,z) + W, (z,v),
which also has parity opposite U, is of length at most |W,,|. Thus, exp(G;u, v)
< max{|W,|, W} - 1.

Case 2: Suppose the closed walks W, and W, do not intersect. We
wish to show exp(G;u,v) < max{n,M} — 1. Let P be a shortest u — v
path. Let z be the final vertex of P which is also a vertex of W, and let
y be the first vertex of P after  which is also a vertex of W,. With
no loss of generality suppose |Wy(u,z)| < |Wy(z,u)| and |Wy(y,v)| <
[Wo(v,y)|. We note |P(u,z)] < |Wu(u,z)| since P is a shortest path.
In fact |P(u, z)| = |Wy(u, z)| for if |P(u,z)| < |Wy(u,z)|, then one of the
closed walks Wy, (u, z) + P’(z, u) or Wy(u,z) + P’'(z, u) containing u would
be shorter than W, and of odd length since W, (u,z) and W;(u,z) have
different parity. Similarly, |P(y,v)| = |Wy(y,v)|- Thus, the » — v walk
Wa(u, ) + P(z,3) + W, (5,v) has length [P| < — 1.

We may suppose

max{n, M} < |W;(u,z)| + |P(z, )| + |Wa (v, v)| 1)

or else this u — v walk, which has parity opposite P, is of length at most
max{u, M} in which cases we are done. Similarly, we may suppose

max{n, M} < |Wu(u,z)| + |P(z,9)| + W, (y, )| ()

Adding equations (1) and (2) yields 2max{n, M} < |Wy| + 2|P(z,y)| +
|We| which implies |P(z,y)| > max{n, M} — (|Wy| + |W,|)/2. Now, by
Lemma 2.10, the number of distinct vertices in W,,, W,,, and P total at
least (|Wy| +1)/2 + (IWo| +1)/2+ |P(z,y)| — 1 > |W,|/2+ [W,|/2+n —
(JWx] + |[Wy|)/2 = n which contradicts the assumed number of vertices in
G. Thus, exp(G;u,v) < max{n, M} —1.

Since u and v are arbitrary vertices of G, we have from Case 1 and Case
2 that exp(G) < max{n, M} —1. Thus, if M < n, then exp(G) < n—1 and
if M > n, then exp(G) < M — 1. We observe vertex u is contained in no
closed walk of length |W,| —2 which implies exp(G) = max,{exp(G;u)} >
max,{|Wy| — 1} = M — 1. Thus, we conclude if M > n, then exp(G) =
M — 1. This proves part (a).

We now assume G admits no loops. By the argument in Case 1 we
again have the result exp(G;u,v) < max{|W,|,|Wy|} -1 < M -1. To
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apply the argument in Case 2, we first observe that if G contains no loops,
then the diameter of G is at most n — 2 and so |P| < n — 2. Also, by
Lemma 2.10, for each u € V(G) the walk Wy, contains at least (|Wy|+3)/2
distinct vertices. Then, by an argument similar to that in Case 2, we have
exp(G) < max{n — 2, M} — 1. Thus. if M < n — 2, then exp(G) < n —3.
Now observing that exp(G) > M — 1, we have exp(G) = M — 1 provided
M >n—2. We also observe that if exp(G) > n — 2, then M > n —1. This
proves part (b). u}

Theorem 2.11 tells us that if G admits loops, then for each integer m
in the set {n,n+1,...,2n — 2}, exp(G) = m if and only if m + 1 =
max{|W,|: u € V(G)}. Also, if G admits no loops, then Theorem 2.11 tells
us that for each integer m in the set {n—2,n—1,n...,2n—4}, exp(G) =m
if and only if m + 1 = max{|W,|: v € V(G)}.

In the case G admits loops and M = n, we obtain, by Theorem 2.11,
exp(G) = M —1 = n—1. However, if exp(G) = n—1 we do not necessarily
have M = n. For example. consider the primitive symmetric graph with
diameter » — 1 and a loop at every vertex.

2.3 The Exponent Set of Symmetric Graphs

We call now apply Theorems 2.9 and 2.11 to determine the exponent set
of primitive symmetric graphs. This exponent set was determined by J.
Shao [9] but can be proved much more expediently using the two theorems
mentioned.

Theorem 2.12. The exponent set of primitive symmetric graghs on n
vertices, E5, is the set {1,2,...,2n—2}/S where S is the set of odd numbers
in {n,n+1,...,2n — 3}. Moreover, if G = (V,E) where V ={1,2,...,n}
and E = {(3,i+1): 1 <i <n-—1}U{(n,n)}. then G is the unique (up to
isomorphisrn) symmetric graph with exponent 2n — 2.

Proof: By Theorem 2.11 there is no primitive symmetric graph of order
n which has an exponent in S since if exp(G) > n, then it must be even.
It remains to be shown that all other integers in {1,2,...,2n — 2} can be
attained as exponents of primitive symmetric graphs on n vertices.

We note first of all the complete graph on n vertices with n loops has
exponent 1 and the complete graph with k loops where 1 < k& < n has
exponent 2. Figure 1 shows graphs G on n vertices and diameter d, 2 <
d < n—1, which have the property that for vertex ug € V(G), the shortest
closed walk of odd length containing ug has length 2d+1. Thus, by Theorem
2.9, exp(G) = 2d and hence for each integer k in {2,4,...,2n — 2} there is
a graph on n vertices with exponent k.

Suppose in Figure 1 that d is odd and a loop is added to each vertex.
The diameter of the resulting graph G’ is then d and so exp(G’) = d. Also,
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since G’ has a loop at every vertex, exp(G’) < d and so exp(G’) = d. Since
3<d<n-1and1 € E? we have that for each odd integer k in the set
{1,2,...,n — 1} there is a symmetric graph on n vertices with exponent k.
This proves the first part of the theorem.

r——eo———o e o
iy 1 2 d-2

d—1 d
Figure 1. Graphs with even exponent

Suppose exp(G) = 2n — 2. Then by Theorem 2.3, the diameter of G
is n — 1 and by Theorem 2.9 there is a vertex up in G such that among
all closed walks of odd length containing g, a shortest one W is of length
|W| = 2d+1 = 2n—1. Now by Lemma. 2.10, the number of distinct vertices
in Wis (|W|+1)/2 = n and thus, also by Lemma 2.10, the extremal graph
attaining the exponent 2n — 2 is unique (up to isomorphism). This graph
is given in Figure 1 when d = n — 1. This proves the second part of the
theorem. ]

B. Liu et al [8] obtained the exponent set for primitive symmetric graphs
G with no loops. We show that Theorems 2.9 and 2.11 can be applied here
as well to obtain the exponent set of symmetric primitive graphs with no
loops and, in addition, characterize those symmetric primitive graphs with
exponent 2n — 4.

Theorem 2.13. The exponent set of primitive symmetric graphs on n
vertices with no loops, E¢ , is the set {2,...,2n — 4}/S where S is the set
of odd integers in {n—2,n—1,...,2n—5}. Moreover, if G = (V, E) where
V={1,2,...,n}and E = {(3,i+1): 1 < i <n-2}U{(n-2,n),(n—-1,n)},
then G is the unique (up to isomorphism) symmetric graph with no loops
and exponent 2n — 4.

Proof: Clearly 1 ¢ E‘,ﬁ'. Also, the largest achievable exponent is 2n — 4
since if exp(G) = 2n — 2, then G has a loop and, by Theorem 2.12, the
exponent 2n — 3 is not permitted.
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By Theorem 2.11 there is no graph G on n vertices and odd exponent k
where k is in the set {n —2,n —1,n,...,2n — 5}. It remains to be shown
that all other integers in {2,3,...,2n — 4} can be attained as exponents of
symmetric primitive graphs on n vertices with no loops.

If the diameter d = 1 consider the complete symmetric graph on n > 3
vertices. This graph has exponent 2. For 2 < d < n—2 consider the graghs
shown in Figure 2. Here a shortest closed walk W of odd length containing
vertex ug is of length |[W|=2d+1and 5 < |W|=2d+1<2n-3. Thus,
by Theorem 2.9, exp(G) = 2d = |W|—1 and hence {2,4,...,2n -4} C EZ .
Let T be the set of odd integers in {3,5,...,n—3}. We now show TC E’

n

d
Uy 1 92

d+1
Figure 2. Graphs with no loops and even exponent

The graphs in Figure 3 consist of a path of odd length d, where 3 <
d < n — 3, and 3-cycles attached as shown. The diameter of G is d and so
exp(G) > d. Let P be a shortest u — v path. If P intersects a 3-cycle,
then there is a u — v walk of length at most d+ 1 and parity opposite P so
exp(G; u,v) < d by Lemma 2.6. Thus. suppose v and v € {2,3,...,d —2}.
Because of the symmetrically placed 3-cycles (ug,1,d + 1,u9) and (d —
1,d,d + 2,d — 1) we may suppose with no loss of generality that v < v
and d —1 —v < u — 1 which implies ©« + v > d. Then the © — » walk
u,u+1,...,d,d+ 2,d - 1,...,v has parity opposite P and has length
(d-1-u)+3+(d—1-v) =2d+1-(u+v) < d+1. Thus, by Lemma 2.6,
exp(G;u,v) < d. Thus, for all choices of u and v we have exp(G;u,v) < d
and so exp(G) < d. We conclude then exp(G) = d and hence T C E?'.
This completes the proof of the first part of the theorem.
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d+1

g 1 2 d-2 d-1 d
Figure 3. Graphs with no loops and odd exponent

We note that if G has no loops, then the diameter of G is at most n — 2.
Thus, if exp(G) = 2n—4, then d = n —2 by Theorem 2.3, and by Theorem
2.9 there must be a vertex ug € V(G) such that a shortest closed walk
W of odd length containing ug is of length 2d + 1 = 2n — 3. Since G has
no loops, by Lemma 2.10, the number of distinct vertices in W is at least
(IW] + 3)/2 = n. Thus, also by Lemma 2.10, the extremal graph shown
in Figure 2, with d = n — 2, is the unique (up to isomorphism) symmetric
graph on 7 vertices and no loops with exponent 2n — 4. ]
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