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Abstract

Block-intersection graphs of Steiner triple systems are consid-
ered. We prove that the block-intersection graphs of non-isomorphic
Steiner triple systems are themselves non-isomorphic. We also prove
that each Steiner triple system of order at most 15 has a Hamilton
decomposable block-intersection graph.

1 Introduction

All graphs considered in this paper are finite and have no loops or mul-
tiple edges. By V(G) and E(G) we denote the vertex set and edge set,
respectively, of the graph G.

A cycle is a 2-regular connected graph. A Hamilton cycle in a graph G
is a 2-regular connected spanning subgraph of G.

A Hanulton decomposition of a regular graph G consists of a set of
Hamilton cycles (plus a 1-factor if A(G) is odd) of G such that these cycles
(and the 1-factor when A(G) is odd) partition the edges of G. If G has a
Hamilton decomposition, it is said to be Hamilton decomposable.

A Steiner triple system (S, B) of order n consists of a set B of blocks,
each being a 3-subset of S = {1,...,n}, such that each pair of elements
from the set S occurs in exactly one block.
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The block-intersection graph for the Steiner triple system (S, B) is the
graph G(S, B) for which V(G(S,B)) = B, and where two vertices of
G(S, B) are joined by an edge if and only if the corresponding blocks in
(S, B) contain a common element.

Definitions omitted in this paper can be found in [6] or [13].

In this paper we concern ourselves with two questions: whether non-
isomorphic Steiner triple systems have non-isomorphic block-intersection
graphs, and whether these graphs are Hamilton decomposable.

We prove that any pair of non-isomorphic Steiner triple systems do
indeed have non-isomorphic block-intersection graphs.

Concerning Hamilton decompositions, block-intersection graphs for all
Steiner triple systems of order n < 15 are found to be Hamilton decompos-
able.

2 The Isomorphism Question

Theorem 1 If(S1, By) and (Sa, Ba) are non-isomorphic Steiner triple sys-
tems, then their block-intersection graphs are non-isomorphic.

Proof. Clearly if the two Steiner triple systems are not of the same order,
then their block-intersection graphs will not have the same number of ver-
tices and hence will not be isomorphic. We thus need only consider pairs
of non-isomorphic Steiner triple systems having the same order.

It is known that for n € {3,7,9} there is precisely one (up to isomor-
phism) Steiner triple system of order n. So we need only consider Steiner
triple systems having larger order.

For n = 13 there are exactly two non-isomorphic Steiner triple systems.
Their block-intersection graphs were tested by computer and determined
to be non-isomorphic. Regarding the algorithm used, it consists of testing
permutations of mappings from the vertex set of one graph to the vertex
set of the other; complete details appear in [18] as well as on the author’s
web site.

For n = 15 there are precisely 80 non-isomorphic Steiner triple systems.
We refer to each system by its number given in [9, 15] since this ordering
has become somewhat entrenched in the literature.

In considering the 80 corresponding block-intersection graphs, we note
that if a Steiner triple system has a subsystem of order 7, then its block-
intersection graph will contain a corresponding clique of size 7. We also
note that each of the 15 points in these Steiner triple systems gives rise
to a clique of size 7 in each block-intersection graph, since each point is in
exactly 7 blocks.

Noting that graphs having differing numbers of cliques of size 7 will
clearly not be isomorphic, we may reduce the problem at hand by dividing
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the 80 systems into groups based on the number of subsystems of order 7
that each has.

Steiner triple system numbers 1 and 2 are the only systems to have
15 and 2, respectively, subsystems of order 7 [15]. Hence their block-
intersection graphs cannot be isomorphic to any other block-intersection
graphs.

Steiner triple systems 4, 5,6, and 7 each have three subsystems of order
7, while Steiner triple systems 7, .. .,22, and 61 each have a single subsystem
of order 7. All of the remaining Steiner triple systems contain no subsystems
of order 7 [15].

Steiner triple systems 4 through 7 were tested by computer and found to
have mutually non-isomorphic block-intersection graphs. Likewise, Steiner
triple systems 7, ...,22, and 61 were tested by computer and found to have
mutually non-isomorphic block-intersection graphs.

In considering the Steiner triple systems having no subsystems, we note
that there is a natural isomorphism between each Steiner triple system
and its block-intersection graph. The mapping from a Steiner triple sys-
tem (S, B) to its block-intersection graph G(S, B) is well-defined, so we
need only show that the inverse mapping is equally well-defined. This is
done by observing that each clique of size 7 in a block-intersection graph
can only arise from one of the 15 points of the set S. We may arbitrarily
assign unique points from S to each of these 15 cliques. Three cliques are
then mapped to a block of the design if and only if they intersect in a ver-
tex; the Steiner triple system obtained from these blocks is isomorphic to
the original one used to construct the graph.

We thus conclude that non-isomorphic Steiner triple systems of order
15 have non-isomorphic block-intersection graphs.

For n > 19, we use the same technique as for Steiner triple systems of
order 15 having no subsystems, except that we now identify each point of S
with a clique of size (n — 1)/2. Noting that it is impossible for a clique
of size larger than 7 to arise from blocks that do not all have an element
in common, this technique provides the basis for establishing a natural
isomorphism between Steiner triple systems and their block-intersection
graphs, no two graphs being isomorphic unless their corresponding Steiner
triple systems are also isomorphic.

(m}

3 The Hamilton Decomposition Question

Block-intersection graphs for Steiner triple systems are regular, and have
been shown to have vertex-connectivity equal to their degree [8, 10]. Given
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these properties it is natural to inquire if these graphs might possess Hamil-
ton decompositions.

It has been shown that block-intersection graphs for a variety of block
designs, including Steiner triple systems, are Hamiltonian [4, 11]. Moreover,
block-intersection graphs for Steiner triple systems have been shown to be
edge-pancyclic [3]. We prove the following:

Theorem 2 If (S, B) is a Steiner triple system of order n < 15 then its
block-intersection graph is Hamilton decomposable.

Proof. The Steiner triple systems of order 3 and 7 have block-intersection
graphs which are complete graphs on 1 and 7 vertices, respectively. It is a
classical result that complete graphs are Hamilton decomposable [14].

For Steiner triple systems of orders 9, 13, and 15, Hamilton decom-
positions of the corresponding block-intersection graphs were obtained by
means of an exhaustive deterministic algorithm implemented on a com-
puter. We omit a lengthy presentation of these Hamilton decompositions
from this paper. Rather, the Hamilton cycles comprising each Hamilton
decomposition, as well as specific details of the algorithm used to find the
decompositions, appear in [18] and are also available on the author’s web
site.

a

4 Discussion

We note the following conjecture, due to Nash-Williams and extended by
Jackson [2, 12, 16]:

Conjecture 1 Every k-regular graph on at most 2k+1 vertices is Hamilton
decomposable.

While this conjecture remains open, we notice that block-intersection
graphs for Steiner triple systems of order 15 or less satisfy the hypothesis.
And while the results which we have presented do not settle this conjecture,
they do tend to support it.

Block-intersection graphs for Steiner triple systems of orders greater
than 15 do not meet Nash-William’s hypothesis. So, based on the empirical
evidence presented, we now make the following conjecture:

Conjecture 2 If(S, B) is a Steiner triple system then its block-inlersection
graph is Hamilton decomposable.
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