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Some sufficient conditions for non-hamiltonicity of graphs are com-
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1 Introduction

We consider connected graphs and use the terminology of Bondy and Murty [1].

Most results on hamiltonian graphs concern sufficient condition for hamil-
tonicity, like the well-known conditions of Dirac, Ore, Pésa, Bondy and Chvital,
see [2]. These conditions are of numerical nature in the sense that some graph
perameters are considered. Usually they can be calculated in polynomial time.
If for the minimum degree § we have § > % (n > 3), we have Dirac’s original
sufficient condition for hamiltonicity.

The reason for considering such conditions is, of course, the fact that the
problem of determining whether a graph is hamiltonian is NP-complete, see
Garey and Johnson [4).

A characterization of hamiltonian graphs that can be checked in polynomial
time is not to be expected. There are some necessary and sufficient conditions
for hamiltonian graphs, three of which will be mentioned. Vrba (14] gave a
characterization by indicating a, very large, matrix, the determinant of which
gives the number of Hamilton cycles. Hoede and Veldman (8] gave a necessary
condition for 2-connected non-hamiltonian graphs, in terms of contractibility
to two specific graphs, using a necessary and sufficient condition that enables
the “coupling” of cycles. The generalization to k-connected graphs was given in
(13]. These conditions are of structural nature and accept the fact that there is
no way to check the conditions in polynomial time. This is also the case with
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the necessary and sufficient condition given by Hoede (6], in terms of crossing
numbers and crossing lengths of path systems, that will be discussed in Section
3.

The remarkable thing about some of the conditions, that have appeared
in the literature lately, is the fact that they tend to have a more structural
nature and consider crossing path systems. Hendry (5] introduced the concept
of path-toughness, in which paths are required to exist that cover the vertices
of some subgraphs. Based on a result of Mader [11] on A-separators, recently
Katona [10] introduced the concept of t-edge-toughness, in which a condition is
required to hold, similar to that of t-toughness. That concept was introduced by
Chvaital, who wrote a chapter on hamiltonian graphs, in the book The Traveling
Salesman Problem [2], in which a sufficient condition for non-hamiltonicity is
discussed as part of the theory of weakly hamiltonian graphs, where certain
subgraphs called combs play a role. The result is related to the theory of factors
of Tutte [12], in particular to that of 2-factors, and via that to the existence of
perfect matchings. The form of the condition is somewhat similar to that of the
condition of Mader. In the same book Grotschel and Padberg discuss polyhedral
theory (2], in which inequalities based on Chvétal's combs are considered next
to so-called 2-matching inequalities, due to Edmonds, that are special cases of
the Chvatal comb inequalities.

All these conditions and concepts are interrelated. Some of these relation-
ships will be discussed in Sections 2 and 3. The reason for this discussion is
that the author formulated a simple sufficient condition for non-hamiltonicity,
in terms of 2-matchings, and studied how it ties up with the various results
mentioned in this introduction.

2 A-separators

In the appendix of the book of Garey and Johnson, a list of NP-complete
problems, example [ND40] reads as follows.

DISJOINT CONNECTING PATHS

INSTANCE: Graph G = (V, E), collection of disjoint vertex pairs
(sla tl)a ey (Sk, tk)'
QUESTION: Does G contain k mutually vertex-disjoint paths, one

connecting s; and t; for each ¢, 1 <i < k?

Let A be an independent set of k vertices in a graph G. A Hamilton cycle C
in G is cut into k paths, with endvertices in A, that are mutually vertex-disjoint,
but for the endvertices. On each path an edge can be-chosen arbitrarily. Two
of these k edges have at most a vertex of A in common. A 2-matching (perfect
2-matching) in a graph is a set of edges such that every vertex is contained in at
most (exactly) two edges. The k edges form therefore a special 2-matching, in
which only vertices of A may be contained in two edges and that will be called
an A-2-matching. Let Y be a set of edges of G. Y disconnects A if G—Y has no
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path connecting two vertices of A. An A-cut is a set of edges that disconnects
A. (Y) denotes the subgraph induced by Y.

Lemma 2.1. Let A be an independent set of a hamiltonian graph G(V, E). If
Y is an A-cut, then (Y) contains an A-2-matching with |4| edges.

Proof. The |A| paths of the Hamilton cycle, between pairs of vertices of A,
each contain at least one edge of Y. 0o

It is sufficient for non-hamiltonicity to find an A-cut that induces a subgraph
not containing an A-2-matching with |A| edges. This is the simple sufficient
condition meant in the introduction.

As an example we consider three classes of non-hamiltonian graphs, consid-
ered often in hamiltonian graph theory, see e.g. Jackson [9]. In Figure 1 we give
these classes consisting of three cliques Ky, K, and K, p > 3,¢ > 3,7 >3 and
respectively

(a) two adjacent vertices x; and x5 connected to all other vertices,

(b) one vertex z adjacent to all other vertices and three vertices v} v, and vs,
one in each clique, forming a triangle,

(c) two times three vertices v;, v, and v3 respectively w;, wo and w3, one in
each clique, forming a triangle.

Figure 1
Three classes of non-hamiltonian graphs

The A-set consists of the three independent vertices a1, a; and a3. The
A-cuts we consider consist of

(a) the set Y; of edges incident with z; or z3,

(b) the set Y; of edges incident with = and the three edges of the triangle,
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(c) the set Y3 of six edges that form the two triangles.

Y1, > and Y3 have at most two edges in an A-2-matching. In case (a) all edges
are incident with x,; or 2, but two edges cannot meet in z; or z2, as x;,z2 € A.
In case (b) only one edge can be incident with z and only one edge of the triangle
can be chosen as z,v;,vs,v3 € A. In case (c) each triangle can contribute at
most one edge to the A-2-matching, as all six vertices v, ve, v3, w;, w2 and w;
do not belong to A. All graphs are non-hamiltonian according to Lemma 2.1.

Let us now start the comparison with some other results and problems. The
concept of an A-2-matching may seem somewhat unusual. However, we may
replace each vertex e; in A by two non-adjacent vertices a;,; and a; 3 that both
are made adjacent to all vertices of G that were adjacent to a;. Consider the
set A* of these new vertices in the resulting graph G*. An edge cut Y* that
disconnects, in G*, the vertices e € A" that belong to different pairs of a's
induces a graph (Y*), that contains a matching of |A| edges if G is hamiltonian.
The paths into which the Hamilton cycle is cut by the vertices of A can be set
in correspondence with paths in G* which do not share an endvertex in A®.
Due to this transformation we are in the context of the N P-complete problem
DISJOINT CONNECTING PATHS mentioned in the beginning of this section. A
Hamilton cycle in G determines an ordering of the vertices of A. The paths
in G* between elements of A* determine the disjoint vertex pairs (s;,t;) in
the formulation of the problem, s; and ¢; belonging to different pairs of a’s.
If, conversely, no ordering of the vertices of A gives a positive answer to the
question, for the graph G*, then the graph G is non-hamiltonian.

A-cuts in G have been extensively studied for |A| = 2, in which case the well-
known max-flow min-cut theorem of Ford and Fulkerson has a central place. In
trying to prove that a graph G is non-hamiltonian one looks for A-cuts without
an A-2-matching of |A| edges. The natural question is then that for A-cuts
that have minimum cardinality. For |A| > 3 this is an interesting but difficult
problem. The related problem, analogous to the relation of cut and flow in
flow theory, is to determine the maximum number of vertex-disjoint paths with
endvertices in A. We shall come back to this natural concept in our discussion
later. It is essentially what the concept of 1-edge-toughness of Katona is about
too.

Let X CV(G-A)and Y C E(G - A-X) be a pair (X,Y) that disconnects
A. If X = 0 we are back to our A-cut, if Y = @} we are back to the well-known
situation wherein w(G — X) > |A| and |A| > |X] leads to w(G - X) > |X|, a
sufficient condition for non-hamiltonicity. The components Q;, i = 1,...,p, of
(Y') are now considered with respect to the number of vertex-disjoint paths that
may “cross” them. Katona defines for a subgraph B of a graph A the boundary
and the inner vertices of B with respect to A by

bda(B)
ina(B)

{v € V(B) | v has a neighbour outside B} and
V(B) - bda(B).

The cardinality of the boundary of Q; with respect to G — X determines how
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many vertex-disjoint paths may cross @;. Paths go in and out of Q; via boundary
vertices, so at most [ML;‘@-‘HJ can pass Q;. Only one path can cross a vertex
of X. Referring to Mader, Katona states

Lemma 2.2. [Mader] If there exists a pair (X,Y) disconnecting A such that

P
lbde - x(Qi)l
41> 1X]+ 31—,
=1
then there is no cycle containing all vertices of A.

A pair (X, Y) satisfying the condition in Lemma 2.2 is called an A-separator.
The right hand side of the inequality gives an upper bound on the number of
vertex disjoint paths that have their endvertices in A. As an example from
Katona’s paper, consider the graph in Figure 2.

Q, Q,

Figure 2

|A| =5 and | X| = 2. @, and Q2 should allow three paths to cross. However,
both have |bdg—x(Q;)| = 3 and allo.v only one path to cross. Q; has an inner

2
vertex. As 5 > 2+ Y |3], the graph does not contain a cycle containing

i=1
the vertices of A. The condition is sufficient for non-hamiltonicity and can be

checked easily.
A graph is t-tough if for every vertex set X with w(G — X) > 1 we have
w(G-X)< l):—l

Katona defines the t-edge-toughness analogously. A graph is t-edge-tough if
R
t )

P
w(G-X-Y - | Jinc-x(Q)) <

i=1

P
forevery X C V(G)and Y C E(G-X) withw(G-X-Y - inc_x(Q:)) > 1.
i=1
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Among his results are
Lemma 2.3. [Katona] If G is t-edge-tough then G is t-tough.
Lemma 2.4. [Katona) If G is hamiltonian then G is 1-edge-tough.
Lemma 2.5. [Katona] If G is 2t-tough then G is t-edge-tough.

Comparing Lemma 2.1 with Lemma 2.2 we note that Lemma 2.1 does not
show the graph in Figure 2 to be non-hamiltonian and Lemma 2.2 does not
show the graph in Figure 1(c), with p = ¢ = r = 3, to be non-hamiltonian.
Both lemmata focus on the fact that, given an independent set A in G, for G
to be hamiltonian there should be enough paths with endvertices in A. In the
next section we discuss a necessary and sufficient condition consisting of four
parts, of which this fact is the first.

3 Crossing theory

Let A be an independent set of vertices of G and let (R} be the subgraph
induced by R = V(G) — A with components R;, i =1,...,p. A component R;
and its neighbours N; in A determine a fragment F; = (V(R;)UN;). P;is a
set of vertex-disjoint paths of this fragment with distinct endvertices in N;. We
exclude the uninteresting case in which |A4| = 1. P; is called a crossing of F;.
The crossing number CN(R;, P;) is the number |P;|of paths in a crossing of R;.
The maximum value of this number over all crossings is denoted by CN(R;).
The crossing length CL(R;, P;) of a crossing is the sum of the lengths of the
paths in P;.

Theorem 3.1. [Hoede] A graph G is hamiltonian if and only if for every in-
dependent set A(|A| > 2) there exist crossings P;, such that for each of the p
components R; of G — A

mgwmﬂmw

(i) Vic1,..p: CL(RP2) = [V(R)| +[Pi|  and éﬂwﬂhW@h

(iii) Each vertex of A occurs twice as endvertex of a crossing path.

(iv) The graph H(A, P), with vertex set A and a;a; € P if and only if a; and
a; are the endvertices of a crossing path, is a cycle of length |AJ.

The simple content of this theorem is the following. When the components R;
offer enough crossing possibilities (i), the crossing paths pass all vertices of the
components (ii), the crossing paths form a 2-factor (iii) and this 2-factor is one
cycle (iv), then G is hamiltonian. The converse is obvious. The Petersen graph
only fails to satisfy condition (iv), see {6].
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The conditions (i), (ii) and (iii) are necessary and sufficient for a graph to
have a 2-factor with at least two vertices of A on each cycle. This latter state-
ment is superfluous in Theorem 3.1 as there we consider a 2-factor consisting of
one cycle and the vertices of A are automatically on it.

Although the theorem is very simple, it gives a clear picture of the road
to hamiltonicity. The comparison with other results will focus on conditions
(i) and (ii). When these are satisfied condition (iii) leads to the existence of
a 2-factor. From there to the existence of a Hamilton cycle is a step that the
author (7] recently found the following condition for.

Theorem 3.2. [7] If a connected graph G has a 2-factor then G is hamiltonian if
G does not contain one of the eleven graphs in Figure 3 as an induced subgraph.

by

Hi
b

Figure 3

The non-existence of a 2-factor is the central point of Chvétal’s [2] discussion
of non-hamiltonian graphs. We quote (page 207): “In fact, the problem of
finding a 2-factor in G can be reduced to the problem of finding a perfect
matching in another graph easily constructible from G [Tutte]. Combined with
the efficient algorithm for finding a largest matching in a graph [Edmonds], this
trick (replacing vertices of degree d by bipartite graphs K4,4-2) yields an efficient
algorithm, which, given any graph, finds either a 2-factor in G or a partition (of
the vertices of G into disjoint sets R, S and T) satisfying

2|S| + m(T) + |R| + zl_@_l <n," (italics by the author).
Q
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In this inequality |S| and |R| are cardinalities, as is n = |V(G)|. m(T) is
the number of edges of G with both endvertices in T, m(Q, T') is the number of
edges in G with one endvertex in @ and one in T. The summation is over all
components Q of (R).

The existence of R, S and T such that this condition holds is necessary and
sufficient for the non-existence of a 2-factor. Subtracting n = |R| + |S| + |T'| on
both sides we have

IS] + m(T) - |T| + Z[@J <0.
Q

m(T') is an upper bound for the number of edges of a hamiltonian cycle with
both endvertices in 7. As this latter number is at most |T'| — &(T"), where k(T
is the number of components of (T'), we find

Theorem 3.3. [Chvital] G is non-hamiltonian if, for T # V(G), V(G) can be
partitioned into sets R, S and T such that

|S| - k(T) + Z[ﬂ‘%—”J <0.
Q

For R =0, m(Q,T) = 0 and we find |S| < k(T'). For a hamiltonian graph G we
must then have |S| > k(T'), meaning that k(T'), the number of components of
G - S, is at most |S| or that G is 1-tough.

For the condition for non-hamiltonicity of Theorem 3.3 there is a direct inter-
pretation in terms of crossings. A Hamilton cycle C has to cross the components
of (T') at least k(T") times. On the other hand C has to cross the vertices of S
and the components @ of (R). The number of these crossings has upper bound

18] + 2[-"33—1‘)-] Therefore
Q

151+ 12D 2 k)
Q

is necessary for hamiltonicity. Sofar the comparison with Chvatal’s theory.

The link of crossing theory with path-toughness and edge-toughness is the
following. Given a set X of vertices on a Hamilton cycle C of a graph G, the
components of G~ X are covered by at most | X| vertex-disjoint paths belonging
to C, possibly of length 0. In the case of an independent set A there are exactly
|A] paths covering G — A. Denote by u(G — X)) the minimum number of vertex-
disjoint paths that are needed to cover all vertices of G — X. A graph is called
path-tough if and only if (G — X) < |X] for all non-empty sets X C V(G).
Clearly a graph G is path-tough if G is hamiltonian.

Lemma 3.4. [Hendry] If G is non-path-tough then G is non-hamiltonian.
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The concept of path-toughness clearly ties up with the second condition of
Theorem 3.1, where crossing paths are required to cover all vertices of G — A.
Differences are that in Theorem 3.1 paths are required to have endvertices in A
and A is required to be an independent set.

More directly related to crossing theory is the concept of edge-toughness.

Lemma 3.5. If a graph G satisfies condition (i) of Theorem 3.1 then G is 1-
edge-tough.

Proof. Consider vertex set X and edge set Y in G such that w(G - X -Y —

P
U ing-x(Q:)) > 1. Choose arbitrarily one vertex in each of the w components,

i=1

but not in U bdg_x(Q;). By the definition of boundary vertices such vertices
=1
exist. Th&se w vertices constitute an independent set A. The vertices of X and

the vertices of the components Q;, of the graph induced by Y, belong to G — A4,
that has components R;, j = 1,...,n. In the definition of 1-edge-toughness the

right hand side of the inequality reads
P
|bde - x(Qs)l
|X| + ;t )
By condition (i) we have

> CN(R;,P;) 2 |Al.
j=t

P
As we have chosen |A| = w(G-X-Y - | ing-x(Q;)) we only have to compare
i=1

n
the right hand side with the sum of the crossing numbers. Y, CN(R;) is the
=

maximum number of vertex-disjoint paths with distinct endvertices in A. These
paths have to pass the vertices of X or go in and out boundary vertices of the
components Q; as (X,Y) is an A-separator. Therefore

P X n
x4 Y Po=x@ 5 5~ owmy),
i=1 Jj=1

and the result follows. O
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4 Discussion

Unlike the sufficient conditions for hamiltonicity, the known sufficient conditions
for non-hamiltonicity are not easily checked and are less clearly interrelated. The
necessary and sufficient condition given by Theorem 3.1 in terms of crossings
gives some hold in comparing them.

Condition (i) concerns crossing numbers. Both Lemma 2.1 and Lemma 2.2
involve conditions on the crossing number. If condition (i) is satisfied then G is
1-edge-tough by Lemma 3.5. Lemma 2.4 stated that G is 1-edge-tough under
the much stronger condition that G is hamiltonian, i.e. satisfies conditions (i)
up to (iv).

Condition (ii) concerns crossing lengths and the covering of vertices, like in
the concept of path-toughness. If condition (ii) does not hold for a graph G it
implies, like non-path-toughness by Lemma 3.4, that G is non-hamiltonian.

The link with crossing theory is most clear in the interpretation of Theorem
3.3, that stems from a necessary and sufficient condition for the existence of a
2-factor. Conditions (i), (ii) and (iii) also imply the existence of a 2-factor, but
in reference to the independent set A.

The step from the existence of a 2-factor to the existence of a Hamilton cycle
is made by posing condition (iv). For this we would have to have a survey of all
systems of crossings paths satisfying the first three conditions of Theorem 3.1.
An attempt to make the step from 2-factor to Hamilton cycle without reference
to crossings is given in Theorem 3.2.

The interesting conjecture that 2-tough graphs are hamiltonian does not
really tie up with the conditions that we discussed. By Lemma 2.5 a 2-tough
graph is 1-edge-tough and, by Lemma 2.3, also 1-tough. These results were
derived, however, in the discussion of non-hamiltonicity. Enomoto et al (3]
showed that 2-tough graphs have a 2-factor. The existence of a 2-factor does
not directly imply that the first three conditions of Theorem 3.1 hold, as a 2-
factor may fail to have two vertices from A on each of its cycles. To tie up
with Theorem 3.1 we would have to prove that 2-tough graphs imply a 2-factor
consisting of paths with distinct endvertices in A for which condition (iv) holds.
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