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ABSTRACT. A k X v double Youden rectangle (DYR) is a type
of balanced Graeco-Latin design where each Roman letter oc-
curs exactly once in each of the k rows, where each Greek let-
ter occurs exactly once in each of the v columns, and where
each Roman letter is paired exactly once with each Greek let-
ter. The other properties of a DYR are of balance, and indeed
the structure of a DYR incorporates that of a symmetric bal-
anced incomplete block design (SBIBD). Few general methods
of construction of DYRs are known, and these cover only some
of the sizes k X v with k = p (odd) or p+1, and v = 2p + 1.
Computer searches have however produced DYRs for those such
sizes, p < 11, for which the existence of a DYR was previously
in doubt. The new DYRs have cyclic structures. A consoli-
dated table of DYRs of sizes p X (2p+1) and (p+1) x (2p+1)
is provided for p < 11; for each of several of the sizes, DYRs
are given for different inherent SBIBDs.

1 Introduction

Bailey [1] defined a double Youden rectangle (DYR) of size k x v, with
k < v, as a k x v rectangular arrangement of the kv distinct ordered pairs
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z,y formed when z is drawn from a set X of v elements, and y from a set
Y of k elements, with

(i) each element of X appearing exactly once on each row,
(ii) each element of Y appearing exactly once in each column,

(iii) each element of X appearing at most once in each column, the sets
of elements of X in the columns being the blocks of a symmetric
balanced incomplete block design (SBIBD, or symmetric 2-design),

(iv) each element of Y appearing either n or n 4 1 times in each row,
where n is the integral part of »/k, the remainder being m = v — nk,
and where either m = 1 or, if n occurrences of each element from Y
are removed from each row, the remaining sets of elements of Y in
the rows are the blocks of an SBIBD.

The elements of X and Y could be chosen to be letters from, respectively,
the Roman and Greek alphabets, thus justifying the description of a DYR as
a special type of Graeco-Latin design; however, we do not use this notation
in this paper.

DYRs of a given size can be classified into ‘species’ [12] akin to the ‘main
classes’ (alias ‘species’) of Latin squares.

An example of a 4 x 7 DYR is the following:

*0|] 2 a3 1| B2 C3 Al

al| B3 C2 BO| *3 A2
b2|C0 1 A3| a0 *1 B3
3| Bl A0 e2|Cl1 b0 *2

Here X = {*,A,B,C,a,b,c} and Y = {0,1,2,3}. The horizontal and
vertical lines have been inserted to illustrate the DYR’s p-cyclic structure
with p=3:

(a) within the 1 x 3 and 3 x 1 subrectangles, each successive entry is

obtained from the previous one by use of the cyclic permutations
(ABC) (abc) and (123);

(b) within each of the two 3 x 3 subsquares, these permutations are sim-
ilarly used on the main diagonal and on broken diagonals parallel to
it, the elements * and 0 being invariant;

(c) the isolated entry in the top left-hand corner contains the invariant
elements.
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Preece [12, 13] reviewed knowledge of DYRs. Special attention has been
given to DYRs of sizes p x (2p+ 1) and (p+ 1) x (2p + 1) where p is odd.
For these sizes, the parameter m from condition (iv) takes the values 1 and
p respectively.

We define a p x (2p+1) DYR to be ‘perfect’ if, within each of two disjoint
sets of p columns, the symbols from Y are disposed in a Latin square. We
define a (p+1) x (2p+ 1) DYR to be ‘perfect’ if, within each of two sets of
p+ 1 columns, these sets being disjoint save for a single common member,
the symbols from Y are disposed in a Latin square. The 4 x 7 DYR given
above is readily seen to be perfect.

For DYRs of sizes p x (2p+1) and (p+1) x (2p+1), the inherent SBIBDs
from condition (iii) must come from the well known mutually complemen-
tary series of SBIBDs with

(v,k,A) = (2p+1,p,(p—1)/2) and (2p+1,p + 1,(p+ 1)/2).

No 3 x 7 DYR exists [7], but two species of 4 x 7 DYRs have been reported
[4, 9, 14]. Two species of size 5 x 11 have been reported [12], and many
species of size 6 x 11 [9, 12, 14]. Many 7 x 15 DYRs have been reported |8,
10, 15] and an 8 x 15 DYR [11]. No examples of 9x 19 or 10x 19 DYRs have
hitherto been published. Some DYRs of size 11 x 23 have been reported [8,
15], but none of size 12 x 23.

Most of the above-mentioned published DYRs of sizes p x (2p + 1) and
(p+1)x (2p+1) are p-cyclic in the sense illustrated above. But only those of
sizes 7x 15 and 11 x 23 were obtained from general methods of construction
[15], which, till now, have been available only for sizes px (2p+1) where p is
a prime power congruent to 3 (modulo 4). Otherwise, the published DYRs
that have been referred to have been obtained by trial-and-error matching
methodology, as described by Preece [14].

2 The new table of DYRs

DYRs have now been found for all of the sizes 5 x 11, 7 x 15, 9 x 19 and
11 x 23, and for all of the complementary sizes 6 x 11, 8 x 15, 10 x 19
and 12 x 23 (as well, of course, as 4 x 7). This progress has been achieved
primarily by complete computerisation of the search process, and mostly by
restricting the search so as to produce only outcomes that are p-cyclic in the
sense illustrated above. Newly found DYRs have been gathered together
with previously published ones to give the consolidated Table 1 below, for
p < 11. Some of the DYRs in the Table are perfect, but no computer search
was made specifically for such DYRs.

Within the mutually complementary series of SBIBDs with (v, k,)) =
(2p+1,p, (p—1)/2) and (2p+1, p+1, (p+1)/2), the number Nd of mutually
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non-isomorphic SBIBDs for a particular value of p is as follows:

» 3 579 1
Nd 1 1 5 6 1102

Thus, for p=7, 9 or 11 there is a choice of inherent SBIBD for a DYR of
size px (2p+1) or (p+1) x (2p+1). Table 1 gives a DYR for each of these
SBIBDs for which a DYR has now been found. For each such SBIBD, only
one DYR with a particular cyclic structure is given (even though others,
perhaps from other species, may be known), except that a perfect and a
non-perfect DYR are given, if known. For size 7 x 15, the labellings (e.g.
C5) of the inherent SBIBDs are those of Bhat and Shrikhande (3]; for size
9 x 19, the labellings (e.g. D1) are those of Bhat {2]; for size 11 x 23, the
labelling aC5 (a = analogue) refers to an SBIBD analogous to the SBIBD
C5 for size 7 x 15, etc. For size 7 x 15, the inherent SBIBDs C5 and C2
are each self-dual, whereas C3 and C1 are the duals of one another; for
size 9 x 19, D1 and D2 are each self-dual. For sizes 8 x 15, 10 x 19 and
12 x 23, the inherent SBIBDs are complements of inherent SBIBDs for sizes
7 x 15, 9 x 19 and 11 x 23; the symbol ~ is used to denote complement.
For further identification of each of the inherent SBIBDs, the order |A| of
its automorphism group is given in Table 1.

For the p-cyclic p x (2p + 1) DYRs, the 2p + 1 symbols in the set X are
taken to be the pletters A, B, C, ..., the p letters a,b, ¢, . . ., and the asterisk
*; the p symbols in the set Y are taken to be 1,2,...,p except that, when
p = 11, they are written 1,2,...,9,t,u. For the p-cyclic (p+1) x (2p +1)
DYRs, the symbols in Y are taken to be 0,1,2,.... For both types, the
permutations for the cyclic generation of the DYRs are

(ABC...)(abc...) and (123...p).

Amongst the new DYRs in Table 1 is a 7 x 15 DYR whose inherent
SBIBD is C2. This DYR has

X={"ADB,...,Fab,...,f,Gg}and Y ={0,1,2,...,6},
and is 3-cyclic with permutations
(ABC)(DEF)(abc)(def) and (123)(456),

the symbols *, G and g from X being invariant, as is the symbol 0 from Y.
Inspection of the DYR is sufficient to show that the role of symbol * in the
design differs from that of G or g.

Also amongst the new DYRs in Table 1 is a perfect 9 x 19 DYR whose
inherent SBIBD is D3 and whose structure is bicyclic with permutations

(ABC)(DEF)(GHI)(abc)(def)(ghi) and (123)(456)(789)
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and

(ADG)(BEH)(CFI)(adg)(beh)(cfi) and (147)(258)(369).
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Table 1
k x v double Youden rectangles (DYRs)
withv=2p+1and k=por p+1, where p <11.

For each DYR, |A| = the order of the automorphism group of the inherent
SBIBD.

Within the DYRs, horizontal and vertical lines are used to show the cyclic
structure (see text).

For sizes 11 x 23 and 12 x 23, the symbols ..., 8,9,%,u are used for Y, to
avoid confusion with symbols from X.

kxv DYR
SBIBD
|4l

4x7 Perfect:
sole
168

*0| 2 a3 b1 | B2 C3 Al
al| 83 C2 BO| *3 A2 0
2] CO0 1 A3| a0 *1 B3
3| Bl A0 a2 |C1 b0 *2

Ditto Non-perfect:

*0| 833 ¢l a2 | Bl C2 A3
c3|Cl a3 A0| *2 b0 B2
al | BO A2 b {C3 *3 0
2| 2 C0O B3| a0 Al *1
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5x 11 3-cyclic with permutations (ABC) (DEF) (GHI) and (123):
sole
660
E3 Is J3| K2 C2 H4|Gl F4 B5| Al | D1
Jl F1 G5| I4 K3 A3|C5 H2 D4i| B2| E2
H5 J2 D2| Bl G4 Kl1|E4 A5 I3| C3| F3
Ci4 A4 BA|H3 I1 G2|F2 D3 El1| Js5| K5
I2 G3 H1| F5 D5 E5|B3 Cl1 A2| K4 | J4

6 x 11  3-cyclic with permutations (ABC) (DEF) (GHI) and (123)

sole (456):

660

K6 H2 E2| A3 J5 F1| I4 B3 G4 | D5| Cé
F3 Ka4 I13|D2 Bl J6|H5 G5 Cl| E6| A4
Gl Dl Ks5|J4 E3 C2| A2 I6é H6| F4| B5
B2 E5 CA4|G6 A6 D3| J1 K1 Fs5| I2| H3
A5 C3 F6|FEl1 H4 BA| D6 J2 K2| G3| Il
D4 B6 A1 | C5 F2 I5| K3 E4 J3| Hl| G2

Ditto p-cyclic with p = 5:
*0| el a2 b3 4 d5| B2 C3 D4 E5 Al
2| a0 & FE4 D1 C4| A0 *2 B5 €3 d3
3| D5 b0 dl A5 E2| e4d B0 *3 Cl a4
di]| A3 El1 0 e Bl| b5 a5 CO *4 D2
e5| C2 B4 A2 d0 a3 | E3 ¢l b1 DO *5
al|{ b4 D3 C5 B3 e0| *1 A4 d2 2 EO

7x 15 Perfect:
C5
20160
Al| *1 c7 e6 F5 b4 G3 D2|al C7 E6 g5 B4 d3 f2
B2|E3 *2 dl f7 G6 c5 A4|g3 b2 D1 F7 a6 C5 ed
etc. etc. etc.

Ditto Non-perfect:
Al *1 ¢5 €2 F5 b3 G3 D2|el C7 E6 g6 BA d7 f4
B2|E3 *2 d6 f3 G6 c4 Ad|g5 b2 D1 F7 a7 C5 el

etc. ete. ete.

7x15 Perfect:
C3
168
Al| *1 ¢7 e6 F5 b4 G3 D2|al E7 B6 f5 C4 g3 d2
B2|E3 *2 dl f7 G6 ¢5 A4|e3 b2 F1 C7 g6 D5 a4
etc. etc. etc.
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Ditto
Al

etc.

7x15
C1
168
Al
B2
ete.

Ditto
Al
B2
etc.

Non-perfect:

*1 ¢c5 €2 F5 b3 G3 D2| al d7 g6 B6 f4 E7 C4
B2|E3 *2 d6 f3 G6 c4 A4|D5 b2 el a7 C7 g5 F1

etc.

Perfect:

*1 c6 e4 G2 b7 D5 F3
G4 *2 d7 f5 A3 cl E6
etc.

Non-perfect:

*1 d3 g5 G2 f2 D5 F3

G4 *2 e4 ab A3 g3 E6
etc.

ete.

al E4 BT g2 C6 d5 f3
gd b2 F5 C1 a3 DT e6
ete.

al F4 BT ¢7 C6 b eb
f7 b2 F5 C1 dl D7 ¢5
ete.

7x15 3-cyclic, with permutations (ABC) (DEF) (abc) (def)

C2
96

*0

D2 E3 F1

and (123) (456):

f5 dé ed4|B2

C3 Al| b4 c5 a6|GO

g0

Fé
D4
E5

*1 G5 CO
A0
G4 B0

A2 e2 5
c6 B3 f3
dl a4 Cl1

D3
a5
el

*2 G6
*3

0 o
El do
b6 F2

B6 g1 E4
F5 C4 g2
g3 D6 A5

al
b2
c3

d3
el

f2

A3
B1
C2

8x15
C5 ~
20160

*0|F6 G7 Al B2 C3 D4 E5| c2 d3 e4 f5 g6

b3 g6
eb
g5 f4

d5

g4
a2

*4 E0 2
a3 *5 FO
D0 b1 *6

F4
cl
Gl

f6 D5 G3

G2 e5|D1 a0 f1
d2 E2 b

c0 e3 F3

B4
C5
A6

C6
A4

d4 E6 B5

a7 bl

ed
fé

ete.

8x15
C3~
168

*0| F5 G6 A7 Bl C2 D3 EA| f5 g6 a7 bl c2

D3 gl b4 CO E2 f2 of
dl E4 a2 c5 DO F3 g3

ete.

F7 A6 d0 a6 *5
A4 G1 B7 e0 b7
etc.

B4 G3
*6 C5

d3 e4

d4
ed
etc.

D7 g5 B3 0 e6 b G2
A3 E1 a6 C4 dO f7 o5

ete.

168
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8x15
Cl~
168

*0|C7 D1 E2 F3 G4 A5 B6| c7 d1

€2 f3 g4 a5 b6

al| g0 C3 f7 A7 e3 d6 G2| b5 F4 DO *4 E6 c2 B5
b2| A3 a0 D4 gl Bl f4 e7|C6 c6 G5 EO *5 F7 d3

ete. ete.
9x19
D1
171
Al|®1 a6 B9 I5 i7 G4 dl C4 g8
B2|h9 *2 b7 C1 A6 a8 H5 €2 D5
etc. etc.
9x19
D2
9
B1|®1 D7 G5 A3 2 e7 il I6 a4

(o)
etc.

b5 *2 E8 H6 B4 d3 f8 a2 A7
etc.

9x 19 Perfect and dicyclic (see text):
D3
72
Al| *1 g4 d7|E8 G2 i5| I6 e9 D3| al f8

B2| e8 *2 h5| g6 F9 H3|El G4 f7| i4 b2
C3| 46 f9 °*3| I1 h4 D7| d8 F2 H5| e7 g5

etc.

ete.

etc.

F9 E7 D3 f8 b6 H3 5 h2 2
d3 Gl F8 E4 g9

c? I4 f6 i3

B9
D5
a2

93 f6 d8 F2 C4 E9 H8 h5 b9
cl h4 g7 €9 G3 D5 F1 I9 i6

b3
Cc7
E6

F4
cl
A8

D4|C9 h3 G6| *4 a7 gl|H2 A5 cB|E3 e6
E5|H4 A7 i1| h2 *5 8| a9 I3 B6|G8 F1
F6| g2 IS B8| 9 i3 *6|C4 b7 Gl| d5 H9

F8
A3

Bl
D9
ed

75

G7|B5 D8 f2|F3 b6 A9| *7.dl a4d| I2 E4
H8| d3 C6 E9|B7 D1 c4| b5 *8 e2] g9 G3
IS| F7 el A4| a5 C8 E2| f3 c¢6 *9|D6 h7

10x 19
D1~
171

*0|C9 D1 E2 F3 G4 H5 I6 A7 B8|b9 cl

d2 e3

f4

g5

a7
J1

h6

h8

i7

e3

i9

a8

dé| b7 12 h5 D9 B3 i0 g2 a9 C3|°1 f6
e7i{D4 8 A3 i6 E1 C4 a0 h3 bl|I8 *2
etc. ete.
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10 x 19
D2~
9
*0|D9 E1 F2 G3 H4 I5 A6 B7 C8|h5 i6 a7 b8 9 dl e2 f3
ad| g2 €7 h6 C6 A2 D4 50 H3 1i9|°1 F3 I8 GO E7 B9 J5

d5
5| a1l h3 f8 i7 D7 B3 E5 o I4|d9 °2 G4 A9 HO F8 Cl1 g6
etc. ete. ete.

11 x 23 Perfect:
aC5
660

*1Ct f71G6 I4 K2 8 bu 53 H5 d9
et *2 Du g8 HT J5 A3 f9 ¢l k4 I6
etc.

Al
B2
ete.

al E3 i5 BT F9 Ju
iu b2 F4 ;6 C8 Gt

11 x 23 Non-perfect:
aC5
660

‘1 Ct f4G6 I4 K2 et b6 52 H5 dS
e6 *2 Du g5 H7 J5 A3 fu c7 k3 I6
etc.

Al
B2
ete.

al E3 iu B7 F9 Ju
i8 82 F4 j1 C8 Gt

11 x 23  Perfect:
aC3
55

*1 Ct f7G6 I4 K2 8 bu 73 HS d9
et *2 Du g8 H7 J5 A3 f9 cl k4 I6
etc.

Al
B2
etc.

al Ju g2 F9 D8 B7
37 b2 K1 h3 Gt E9
etc.

11 x 23 Non-perfect:
aC3
55

‘1 Ct f4 G6 I4 K2 et b6 j2 H5 d5
e6 *2 Du g5 H7 J5 A3 fu c7 k3 I6
etc.

Al
B2
etc.

al Ju g9 F9 D8 B7
79 b2 K1 h Gt E9
ete.

11 x 23 Perfect:
aCl
55

*l1 f7 Bt e8 j3 d9 D6 J5 E4 bu F2
G3 *2 g8 Cu f9 k4 et E7T K6 F5 cl
ete.

Al
B2
etc.

etc.
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etc.

etc.

g4
c8
eb

&8

3p
89
&5
Qz

9 g3 k8 D8 A7
K1 dt k4 a9 E9

h4 kt c5 E3 i6
C8 i5 au d6 F4

h3 k7 cu E3 i8
C8 i4 a8 dl F4

al H6 iu K5 Gt C4 9 g3 kB I2 AT
i8 b2 I7 j1 A6 Hu D5 dt h4 a9 J3



11 x 23 Non-perfect:
aCl
55

*1 e6 Bt b5 ft j4 D6 J5 E4 d2 F2
G3 *2 f7T Cu c6 gu k5 E7 K6 F5 €3
ete.

al Hu iu K9 G8 C7 9 g3 k8 I3 A7
i8 b2 I1 j1 At H9 D8 dt hd a9 J4
etc.

Al
B2
etc,

12 x 23
aC5 ~
660

*0| A1 B2 C3 D4 E5 F6 G H8 19 Jt Ku| j6 k7 a8 b9 o du el f2 g3 h4 i5

35| 12 D0 et K8 d4 au B5 ht F4 12 ¢8| *1 A6 C9 Ju f3 H7 k9 E7 c6 50 G3
k6| h9 j3 EO fu A9 e5 bl C6 iu G5 J3 | H4 *2 BT Dt K1 g4 I8 at F8 d7 0
elc. etc. etc.
12x 23
aC3 ~
55

*0| G4 H5 I6 J7 K8 A9 Bt Cu D1 E2 F3| h9 it ju kl a2 b3 o4 d5 eb f7 ¢8

c3| g0 7t C9 AB D6 b8 f5 €7 K9 a4 k7| *1 Fu HO B5 E4 Gu Jt j3 d2 i6 h2
di| a8 hO Ju Dt BO ET 9 g6 f8 At b5 | i3 °2 G1 I0 C6 F5 H1 Ku k4 €3 j7
etc. etc. ete.

12x 23
aCl ~
55

*0| FO Gt Hu I1 J2 K3 A4 B5 C6 D7 E8 | e2 f3 g4 h5 i6 j7 kB a9 bt cu di

al | D8 d5 C9 E6 ed bu fu 0 Bt gt 19| J4 F8 *3 i2 H7 G5 A0 k2 j6 h3 K7
b2 Jt E9 €6 Dt F7 f5 cl gl d0 Cu hu | A8 K5 G9 *4 ;3 I8 H6 BO @3 k7 i4
ete. etc. etc.
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