Double Youden rectangles of sizes $p \times (2p+1)$ and $(p+1) \times (2p+1)$

D.A. Preece and B.J. Vowden
Institute of Mathematics and Statistics
University of Kent at Canterbury
Canterbury, Kent
CT2 7NF, UK

N.C.K. Phillips

Department of Computer Science Southern Illinois University Carbondale, Illinois USA 62901

ABSTRACT. A $k \times v$ double Youden rectangle (DYR) is a type of balanced Graeco-Latin design where each Roman letter occurs exactly once in each of the k rows, where each Greek letter occurs exactly once in each of the v columns, and where each Roman letter is paired exactly once with each Greek letter. The other properties of a DYR are of balance, and indeed the structure of a DYR incorporates that of a symmetric balanced incomplete block design (SBIBD). Few general methods of construction of DYRs are known, and these cover only some of the sizes $k \times v$ with k = p (odd) or p + 1, and v = 2p + 1. Computer searches have however produced DYRs for those such sizes, $p \le 11$, for which the existence of a DYR was previously in doubt. The new DYRs have cyclic structures. A consolidated table of DYRs of sizes $p \times (2p+1)$ and $(p+1) \times (2p+1)$ is provided for p < 11; for each of several of the sizes, DYRs are given for different inherent SBIBDs.

1 Introduction

Bailey [1] defined a double Youden rectangle (DYR) of size $k \times v$, with k < v, as a $k \times v$ rectangular arrangement of the kv distinct ordered pairs

x, y formed when x is drawn from a set X of v elements, and y from a set Y of k elements, with

- (i) each element of X appearing exactly once on each row,
- (ii) each element of Y appearing exactly once in each column,
- (iii) each element of X appearing at most once in each column, the sets of elements of X in the columns being the blocks of a symmetric balanced incomplete block design (SBIBD, or symmetric 2-design),
- (iv) each element of Y appearing either n or n+1 times in each row, where n is the integral part of v/k, the remainder being m=v-nk, and where either m=1 or, if n occurrences of each element from Y are removed from each row, the remaining sets of elements of Y in the rows are the blocks of an SBIBD.

The elements of X and Y could be chosen to be letters from, respectively, the Roman and Greek alphabets, thus justifying the description of a DYR as a special type of Graeco-Latin design; however, we do not use this notation in this paper.

DYRs of a given size can be classified into 'species' [12] akin to the 'main classes' (alias 'species') of Latin squares.

An example of a 4×7 DYR is the following:

*0	c2	a 3	<i>b</i> 1	*3 a0 C1	C3	<i>A</i> 1
a 1	<i>b</i> 3	C2	<i>B</i> 0	*3	A2	<i>c</i> 0
<i>b</i> 2	C0	c1	<i>A</i> 3	a 0	*1	B3
c3	<i>B</i> 1	A0	a2	<i>C</i> 1	<i>b</i> 0	*2

Here $X = \{^*, A, B, C, a, b, c\}$ and $Y = \{0, 1, 2, 3\}$. The horizontal and vertical lines have been inserted to illustrate the DYR's *p*-cyclic structure with p = 3:

- (a) within the 1×3 and 3×1 subrectangles, each successive entry is obtained from the previous one by use of the cyclic permutations (ABC) (abc) and (123);
- (b) within each of the two 3 x 3 subsquares, these permutations are similarly used on the main diagonal and on broken diagonals parallel to it, the elements * and 0 being invariant;
- (c) the isolated entry in the top left-hand corner contains the invariant elements.

Preece [12, 13] reviewed knowledge of DYRs. Special attention has been given to DYRs of sizes $p \times (2p+1)$ and $(p+1) \times (2p+1)$ where p is odd. For these sizes, the parameter m from condition (iv) takes the values 1 and p respectively.

We define a $p \times (2p+1)$ DYR to be 'perfect' if, within each of two disjoint sets of p columns, the symbols from Y are disposed in a Latin square. We define a $(p+1) \times (2p+1)$ DYR to be 'perfect' if, within each of two sets of p+1 columns, these sets being disjoint save for a single common member, the symbols from Y are disposed in a Latin square. The 4×7 DYR given above is readily seen to be perfect.

For DYRs of sizes $p \times (2p+1)$ and $(p+1) \times (2p+1)$, the inherent SBIBDs from condition (iii) must come from the well known mutually complementary series of SBIBDs with

$$(v, k, \lambda) = (2p+1, p, (p-1)/2)$$
 and $(2p+1, p+1, (p+1)/2)$.

No 3×7 DYR exists [7], but two species of 4×7 DYRs have been reported [4, 9, 14]. Two species of size 5×11 have been reported [12], and many species of size 6×11 [9, 12, 14]. Many 7×15 DYRs have been reported [8, 10, 15] and an 8×15 DYR [11]. No examples of 9×19 or 10×19 DYRs have hitherto been published. Some DYRs of size 11×23 have been reported [8, 15], but none of size 12×23 .

Most of the above-mentioned published DYRs of sizes $p \times (2p+1)$ and $(p+1)\times (2p+1)$ are p-cyclic in the sense illustrated above. But only those of sizes 7×15 and 11×23 were obtained from general methods of construction [15], which, till now, have been available only for sizes $p\times (2p+1)$ where p is a prime power congruent to 3 (modulo 4). Otherwise, the published DYRs that have been referred to have been obtained by trial-and-error matching methodology, as described by Preece [14].

2 The new table of DYRs

DYRs have now been found for all of the sizes 5×11 , 7×15 , 9×19 and 11×23 , and for all of the complementary sizes 6×11 , 8×15 , 10×19 and 12×23 (as well, of course, as 4×7). This progress has been achieved primarily by complete computerisation of the search process, and mostly by restricting the search so as to produce only outcomes that are p-cyclic in the sense illustrated above. Newly found DYRs have been gathered together with previously published ones to give the consolidated Table 1 below, for $p \le 11$. Some of the DYRs in the Table are perfect, but no computer search was made specifically for such DYRs.

Within the mutually complementary series of SBIBDs with $(v, k, \lambda) = (2p+1, p, (p-1)/2)$ and (2p+1, p+1, (p+1)/2), the number Nd of mutually

non-isomorphic SBIBDs for a particular value of p is as follows:

Thus, for p = 7, 9 or 11 there is a choice of inherent SBIBD for a DYR of size $p \times (2p+1)$ or $(p+1) \times (2p+1)$. Table 1 gives a DYR for each of these SBIBDs for which a DYR has now been found. For each such SBIBD, only one DYR with a particular cyclic structure is given (even though others, perhaps from other species, may be known), except that a perfect and a non-perfect DYR are given, if known. For size 7 × 15, the labellings (e.g. C5) of the inherent SBIBDs are those of Bhat and Shrikhande [3]; for size 9×19 , the labellings (e.g. D1) are those of Bhat [2]; for size 11×23 , the labelling aC5 (a = analogue) refers to an SBIBD analogous to the SBIBD C5 for size 7×15 , etc. For size 7×15 , the inherent SBIBDs C5 and C2 are each self-dual, whereas C3 and C1 are the duals of one another; for size 9×19 , D1 and D2 are each self-dual. For sizes 8×15 , 10×19 and 12 × 23, the inherent SBIBDs are complements of inherent SBIBDs for sizes 7×15 , 9×19 and 11×23 ; the symbol \sim is used to denote complement. For further identification of each of the inherent SBIBDs, the order |A| of its automorphism group is given in Table 1.

For the p-cyclic $p \times (2p+1)$ DYRs, the 2p+1 symbols in the set X are taken to be the p letters A, B, C, \ldots , the p letters a, b, c, \ldots , and the asterisk *; the p symbols in the set Y are taken to be $1, 2, \ldots, p$ except that, when p=11, they are written $1, 2, \ldots, 9, t, u$. For the p-cyclic $(p+1) \times (2p+1)$ DYRs, the symbols in Y are taken to be $0, 1, 2, \ldots$ For both types, the permutations for the cyclic generation of the DYRs are

$$(ABC...)(abc...)$$
 and $(123...p)$.

Amongst the new DYRs in Table 1 is a 7×15 DYR whose inherent SBIBD is C2. This DYR has

$$X = \{*, A, B, \dots, F, a, b, \dots, f, G, g\}$$
 and $Y = \{0, 1, 2, \dots, 6\}$,

and is 3-cyclic with permutations

$$(ABC)(DEF)(abc)(def)$$
 and (123)(456),

the symbols *, G and g from X being invariant, as is the symbol 0 from Y. Inspection of the DYR is sufficient to show that the role of symbol * in the design differs from that of G or g.

Also amongst the new DYRs in Table 1 is a perfect 9×19 DYR whose inherent SBIBD is D3 and whose structure is bicyclic with permutations

$$(ABC)(DEF)(GHI)(abc)(def)(ghi)$$
 and $(123)(456)(789)$

and

$$(ADG)(BEH)(CFI)(adg)(beh)(cfi)$$
 and $(147)(258)(369)$.

Acknowledgments The computer program Nauty [6] was used to obtain values of |A|, and the ANOVA facility of the program Genstat [5] was used to check that each DYR had the required balance. The third author's contribution to this paper was made whilst he held a Visiting Research Fellowship in the Institute of Mathematics and Statistics, University of Kent at Canterbury, England.

References

- [1] R.A. Bailey, Designs: mappings between structured sets, in J. Siemons, ed., Surveys in Combinatorics, 1989, pp. 22-51 (Cambridge Univ. Press, Cambridge, 1989).
- [2] V.N. Bhat, Non-isomorphic solutions of some balanced incomplete blocks designs: III, J. Combin. Theory A 12 (1972), 225-252.
- [3] V.N. Bhat and S.S. Shrikhande, Non-isomorphic solutions of some balanced incomplete block designs: I, J. Combin. Theory 9 (1970), 174– 191.
- [4] G.M. Clarke, Four-way balanced designs based on Youden squares with 5, 6 or 7 treatments, *Biometrics* 23 (1967), 803-812.
- [5] Genstat 5 Committee (of the Statistics Department, Rothamsted Experimental Station), Genstat 5 Release 3 Reference Manual (Oxford Science Publications, Clarendon Press, Oxford, 1993).
- [6] B.D. McKay, 'nauty' User's Guide (Version 1.5), Technical Report TR-CS-90-02 (Computer Science Department, Australian National University, 1990).
- [7] D.A. Preece, Some row and column designs for two sets of treatments, *Biometrics* **22** (1966), 1–25.
- [8] D.A. Preece, Some new row-and-column designs for two non-interacting sets of treatments, *Biometrics* 27 (1971), 426-430.
- [9] D.A. Preece, Double Youden rectangles of size 6 × 11, Mathematical Scientist 16 (1991), 41-45.
- [10] D.A. Preece, Enumeration of some 7×15 Youden squares and construction of some 7×15 double Youden rectangles, *Utilitas Mathematica* 41 (1992), 51-62.

- [11] D.A. Preece, A set of double Youden rectangles of size 8 × 15, Ars Combinatoria 36 (1993), 215-219.
- [12] D.A. Preece, Double Youden rectangles an update with examples of size 5 x 11, Discrete Mathematics 125 (1994), 309-317.
- [13] D.A. Preece, Youden squares, in: C.J. Colbourn and J.H. Dinitz, eds, The CRC Handbook of Combinatorial Designs, pp. 511-514 (CRC Press, Boca Raton, 1996).
- [14] D.A. Preece, Some 6×11 Youden squares and double Youden rectangles, Discrete Mathematics (to appear).
- [15] B.J. Vowden, Infinite series of double Youden rectangles, *Discrete Mathematics* 125 (1994), 385-391.

Table 1 $k \times v$ double Youden rectangles (DYRs) with v = 2p + 1 and k = p or p + 1, where $p \le 11$.

For each DYR, |A| = the order of the automorphism group of the inherent SBIBD.

Within the DYRs, horizontal and vertical lines are used to show the cyclic structure (see text).

For sizes 11×23 and 12×23 , the symbols ..., 8, 9, t, u are used for Y, to avoid confusion with symbols from X.

SBIBE)						
sole	Perfect:						
168	*0	c2	a 3	b 1	B2	C3	<i>A</i> 1
	<u>a</u> 1	. b3	C2	B0	*3	A2	<i>c</i> 0
	<i>b</i> 2	C0	<i>c</i> 1	A3	a 0	*1 <i>b</i> 0	B3 *2
	c3	b3 C0 B1	<i>A</i> 0	a2	C1	<i>b</i> 0	*2

Ditto Non-perfect:

DID

*0	b3 C1 B0 c2	<i>c</i> 1	a 2	<i>B</i> 1	C2	A3
<i>c</i> 3	C1	a 3	<i>A</i> 0	*2	<i>b</i> 0	B2
a1	B0	A2	<i>b</i> 1	C3	*3	<i>c</i> 0
<i>b</i> 2	<i>c</i> 2	C0	B3	a 0	A 1	*1

```
5 \times 11
            3-cyclic with permutations (ABC) (DEF) (GHI) and (123):
     sole
     660
     E3
            I5
                   J3
                         K2
                                C2
                                      H4
                                             G1
                                                    F4
                                                          B5
                                                                 A1
                                                                        D1
      J1
            F1
                  G_5
                               K3
                                       A3
                                                          D4
                                                                 B2
                         I4
                                             C5
                                                   H2
                                                                        E2
     H_5
            J2
                  D2
                         B1
                                G4
                                      K1
                                             E4
                                                    A5
                                                           I3
                                                                 C3
                                                                        F3
     \overline{C4}
            <u>A4</u>
                  \overline{B4}
                         \overline{H3}
                                \overline{I1}
                                      \overline{G2}
                                             \overline{F2}
                                                          \overline{E1}
                                                                        \overline{K5}
                                                    \overline{D3}
                                                                 J5
      \overline{I2}
            \overline{G3}
                         \overline{F5}
                                \overline{D5}
                                      E5
                  H1
                                             B3
                                                    C1
                                                          A2
                                                                 K4
                                                                        J4
            3-cyclic with permutations (ABC) (DEF) (GHI) and (123)
  6 \times 11
     sole
               (456):
     660
     K6
           H2
                  E2
                         A3
                                J5
                                      F1
                                             I4
                                                    B3
                                                          G4
                                                                 D5
                                                                        C6
     F3
           K4
                   I3
                         D2
                                B1
                                       J6
                                             H_5
                                                    G_5
                                                          C1
                                                                 E6
                                                                        A4
                                                                 F4
     G1
            D1
                  K5
                         J4
                                E3
                                      C2
                                             A2
                                                    I6
                                                          H6
                                                                        B_5
     \overline{B2}
            E_5
                                \overline{A6}
                                      \overline{D3}
                                             \overline{J1}
                                                    \overline{K1}
                                                          \overline{F5}
                                                                  I2
                                                                        \overline{H3}
                  C4
                         G6
            C3
                  F6
                               H4
                                      B4
                                                          K2
                                                                 G3
     A5
                         E1
                                             D6
                                                    J2
                                                                        I1
     D4
            B6
                                F2
                                       I5
                                            K3
                                                                        G2
                  A1
                         C5
                                                    E4
                                                           J3
                                                                 H1
Ditto p-cyclic with p = 5:
      *0
                                                   C3
            e1
                          b3
                                      d5
                                            B2
                                                         D4
                                                                E5
                   a2
                                c4
                                                                       A1
      \overline{b2}
                         E4
                               \overline{D1}
                                      C4
                                                   *2
                                                         \overline{B5}
                                                                 <u>e3</u>
                                                                       \overline{d3}
            a0
                   c5
                                             A0
      c3
                                      E2
                                                          *3
            D5
                   b0
                         d1
                               A5
                                             e4
                                                   B0
                                                                C1
                                                                       a4
      d4
            A3
                  E1
                          c0
                                e2
                                      B1
                                             b5
                                                   a5
                                                         C0
                                                                 *4
                                                                       D2
      e5
            C2
                  B4
                         A2
                                d0
                                      a3
                                             E3
                                                    c1
                                                          b1
                                                                D0
                                                                       *5
                  D3
                         C5
                               B3
                                       e0
                                             *1
                                                   A4
                                                          d2
      a1
            b4
                                                                 c2
                                                                       E0
  7 \times 15
            Perfect:
      C5
   20160
        A1 | *1 c7 e6 F5 b4 G3 D2 | a1 C7 E6 g5 B4 d3 f2
       B2 E3 *2 d1 f7 G6 c5 A4 g3 b2 D1 F7 a6 C5 e4
      etc.
                         etc.
                                                         etc.
  Ditto Non-perfect:
       A1 | *1 c5 e2 F5 b3 G3 D2 | a1 C7 E6 g6 B4 d7 f4
       B2 E3 *2 d6 f3 G6 c4 A4 g5 b2 D1 F7 a7 C5 e1
                         etc.
      etc.
                                                         etc.
  7 \times 15
            Perfect:
      C3
     168
       A1 | *1 c7 e6 F5 b4 G3 D2 | a1 E7 B6 f5 C4 g3 d2
       B2 E3 *2 d1 f7 G6 c5 A4 e3 b2 F1 C7 g6 D5 a4
      etc.
                         etc.
                                                         etc.
```

Ditto Non-perfect:

A1 | *1 c5 e2 F5 b3 G3 D2 | a1 d7 g6 B6 f4 E7 C4 B2 | E3 *2 d6 f3 G6 c4 A4 | D5 b2 e1 a7 C7 g5 F1 etc. | etc.

7×15 Perfect:

C1 168

A1 *1 c6 e4 G2 b7 D5 F3 a1 E4 B7 g2 C6 d5 f3 B2 G4 *2 d7 f5 A3 c1 E6 g4 b2 F5 C1 a3 D7 e6 etc.

Ditto Non-perfect:

A1 | *1 d3 g5 G2 f2 D5 F3 | a1 E4 B7 c7 C6 b4 e6 B2 | G4 *2 e4 a6 A3 g3 E6 | f7 b2 F5 C1 d1 D7 c5 etc.

 7×15 3-cyclic, with permutations (ABC) (DEF) (abc) (def) C2 and (123) (456):

*0 D2 E3 F1 f5 d6 e4 B2 C3 A1 b4 c5 a6 G0 g0 F6 *1 G5 C0 A2 e2 b5 D3 f0 c4 B6 g1 E4 D4 A0 *2 G6 c6 B3 f3 a5 E1 d0 F5 C4 g2b2 | e1 g3 D6 A5 E5 G4 B0 *3 d1 a4 C1e0 b6 F2*c*3 *A*3 $b3 \quad g6 \quad d5$ *4 E0 c2 F4 G2 e5 D1 f1 B4 C6 a0B1e6 c1 g4 a3 *5 F0 f6 D5 G3 d2 E2 b0 C5 A4 $C2 \mid g5 \mid f4 \mid a2 \mid D0 \mid b1 \mid *6 \mid G1 \mid d4 \mid E6 \mid c0 \mid e3 \mid F3 \mid A6 \mid B5$

 8×15 $C5 \sim$ 20160

*0 | F6 | G7 | A1 | B2 | C3 | D4 | E5 | c2 | d3 | e4 | f5 | g6 | a7 | b1 | e5 | D3 | g1 | b4 | C0 | E2 | f2 | c7 | F7 | A6 | d0 | a6 | *5 | B4 | G3 | f6 | d1 | E4 | a2 | c5 | D0 | F3 | g3 | A4 | G1 | B7 | e0 | b7 | *6 | C5 | etc.

 8×15 $C3 \sim$

168

*0 F5 G6 A7 B1 C2 D3 E4 f5 g6 a7 b1 c2 d3 e4

d4 D7 g5 B3 c0 e6 b4 G2 *1 a5 f2 F6 E3 C7 A0

e5 A3 E1 a6 C4 d0 f7 c5 B0 *2 b6 g3 G7 F4 D1

etc. etc.

```
8 \times 15
   C1 \sim
    168
      *0 C7 D1 E2 F3 G4 A5 B6 c7 d1 e2 f3 g4 a5
         g0 C3 f7 A7 e3 d6 G2 b5 F4 D0
                                                *4 E6
                                                        c2 B\overline{5}
         A3 a0 D4 g1 B1 f4 e7 C6 c6 G5 E0 *5 F7 d3
    etc.
                    etc.
                                                 etc.
  9 \times 19
     D1
     171
 A1 | 1 a6 B9 I5 i7 G4 d1 C4 g8 | F9 E7 D3 f8 b6 H3 e5 h2 c2
 B2 h9 *2 b7 C1 A6 a8 H5 e2 D5 d3 G1 F8 E4 g9 c7 I4 f6 i3
etc.
                   etc.
                                                     etc.
  9 \times 19
     D2
      9
 B1 | 1 D7 G5 A3 c2 e7 i1 I6 a4 | g3 f6 d8 F2 C4 E9 H8 h5 b9
 C2 | b5 *2 E8 H6 B4 d3 f8 a2 A7 | c1 h4 g7 e9 G3 D5 F1 I9 i6
etc.
                   etc.
                                                   etc.
  9 \times 19
          Perfect and dicyclic (see text):
     D3
     72
    *1
        g4
           d7 | E8 G2
                      i5 | 16 e9 D3 | a1
                                          f8
                                              h6 | C5 H7
                                                                 b3 F4
A1
                                                          c2 B9
       *2
           ħ5
                  F9 H3
                           E1 G4
B2
                                  f7
                                       i4
                                          b2
                                              d9
                                                     A6
                                                          I8
                                                             D5 C7
               g6
                                                  a3
                                                                     c1
C3
        f9
           *3
                      D7
                           ď8
                              F2
                                  H_5
                                              сЗ
                                                  G9
                                                                E6
               I 1
                   h4
                                      e7
                                          g_5
                                                      b1
                                                         B4
                                                             a2
                                                                     A8
   C9
                                      E3
                                              I7
\overline{D4}
        h3
           \overline{G6}
                           H2
                              A5
                                          е6
                                                  d4
                                                          b9
                                                             F8
                   a7
                       91
                                   c8
                                                      i2
                                                                 B1
                                                                     f5
                                                          g3
E_5
   H4
       A7
            i1
               h2
                   *5
                       b8
                          a9
                               I3
                                  B6
                                      G8
                                          F1
                                              f4
                                                  c7
                                                      е5
                                                             d6
                                                                 D9
                                                                     C2
F6
                   i3
        I5
           B8
                       *6
                          C4
                                  G_1
                                      d5
                                          H9
    g2
               ය9
                               Ь7
                                              D2
                                                  hl
                                                      a8
                                                          f6
                                                             A3
                                                                     E7
                                                                  e4
   B_5
       D8
           f2
               F3
                   b6
                       A9
                           *7 d1
                                  a4
                                      12
                                          \overline{E4}
                                              i8
                                                 H6
                                                      h9
                                                         C_1
                                                             g7
                                                                  c5
                                                                     e3
H8 d3 C6
           E9 B7
                          b5
                              *8
                                      g9
                                         G_3
                                              F5
                                                 A2
                  D1
                                   e2
                                                      I4
                                                             f1
                       c4
                                                          i7
                                                                 h8
                                                                     a6
I9 F7 e1 A4 a5 C8 E2 f3 c6
                                  *9 D6
                                         h7 H1 g8 B3 G5 b4
                                                                     i9
  10 \times 19
   D1 \sim
     171
 *0 C9 D1 E2 F3 G4 H5 I6 A7 B8 b9 c1 d2 e3 f4 g5 h6 i7 a8
 d6 b7 I2 h5 D9 B3 i0 g2 a9 C3 *1 f6 G0 A5 E8 e8 c4 F4 H7
                i6 E1 C4 a0 h3 b1 I8 *2 g7 H0 B6 F9 f9 d5 G5
 e7 D4 c8 A3
```

etc.

etc.

etc.

10 × 19 D2 ~

O D9 E1 F2 G3 H4 I5 A6 B7 C8 h5 i6 a7 b8 c9 d1 e2 f3 g4

a4 g2 e7 h6 C6 A2 D4 b0 H3 i9 *1 F3 I8 C0 E7 B9 f5 d5 c8**
b5 a1 h3 f8 i7 D7 B3 E5 c0 I4 d9 *2 G4 A9 H0 F8 C1 g6 e6**
etc. etc. etc.

11 × 23 Perfect: aC5 660

A1 | °1 Ct f7 G6 I4 K2 e8 bu j3 H5 d9 | a1 E3 i5 B7 F9 Ju c2 g4 k6 D8 ht
B2 | et °2 Du g8 H7 J5 A3 f9 c1 k4 I6 | iu b2 F4 j6 C8 Gt K1 d3 h5 a7 E9
etc. | etc.

 11×23 Non-perfect: aC5 660

A1 | 1 Ct f4 G6 I4 K2 et b6 j2 H5 d5 | a1 E3 iu B7 F9 Ju c9 g3 k8 D8 h7 B2 | e6 *2 Du g5 H7 J5 A3 fu c7 k3 I6 | i8 b2 F4 j1 C8 Gt K1 dt h4 a9 E9 etc. | etc.

11 × 23 Perfect: aC3 55

Al | *1 Ct | f7 G6 | I4 K2 | e8 | bu | j3 | H5 | d9 | a1 | Ju | g2 | F9 | D8 | B7 | h4 | kt | c5 | E3 | i6 | B2 | et | *2 | Du | g8 | H7 | J5 | A3 | f9 | c1 | k4 | I6 | | j7 | b2 | K1 | h3 | Ct | E9 | C8 | i5 | au | d6 | F4 | etc.

11 × 23 Non-perfect: aC3

A1 | °1 Ct f4 G6 I4 K2 et b6 j2 H5 d5 | a1 Ju g9 F9 D8 B7 h3 k7 cu E3 i8 B2 | e6 °2 Du g5 H7 J5 A3 fu c7 k3 I6 | j9 b2 K1 ht Gt E9 C8 i4 a8 d1 F4 etc. | etc.

11 × 23 Perfect: aC1

A1 | *1 f7 Bt e8 j3 d9 D6 J5 E4 bu F2 | a1 H6 iu K5 Gt C4 c9 g3 k8 I2 h7
B2 | G3 *2 g8 Cu f9 k4 et E7 K6 F5 c1 | i8 b2 I7 j1 A6 Hu D5 dt h4 a9 J3
etc. | etc. | etc.

```
11 x 23 Non-perfect:

aC1

55
```

A1 | *1 e6 Bt b5 ft j4 D6 J5 E4 d2 F2 | a1 Hu iu K9 G8 C7 c9 g3 k8 I3 h7 B2 | G3 *2 f7 Cu c6 gu k5 E7 K6 F5 e3 | i8 b2 I1 j1 At H9 D8 dt hA a9 J4 etc. | etc.

12 × 23 aC5 ~ 660

 *0
 A1
 B2
 C3
 D4
 E5
 F6
 G7
 H8
 I9
 Jt
 Ku
 j6
 k7
 a8
 b9
 ct
 du
 e1
 f2
 g3
 h4
 i5

 j5
 i2
 D0
 et
 K8
 d4
 au
 B5
 ht
 F4
 I2
 g8
 *1
 A6
 C9
 Ju
 f3
 H7
 k9
 E7
 c6
 b0
 G3

 k6
 h9
 j3
 E0
 fu
 A9
 e5
 b1
 C6
 iu
 G5
 J3
 H4
 *2
 B7
 Dt
 K1
 g4
 I8
 at
 F8
 d7
 c0

 etc.

12 × 23 aC3 ~ 55

 **O
 C4
 H5
 I6
 J7
 K8
 A9
 Bt
 Cu
 D1
 E2
 F3
 h9
 it
 ju
 k1
 a2
 b3
 c4
 d5
 e6
 f7
 g8

 c3
 g0
 It
 C9
 A8
 D6
 b8
 f5
 e7
 K9
 a4
 k7
 *1
 Fu
 H0
 B5
 E4
 Gu
 Jt
 j3
 d2
 i6
 h2

 d4
 a8
 h0
 Ju
 Dt
 B9
 E7
 c9
 g6
 f8
 At
 b5
 i3
 *2
 G1
 I0
 C6
 F5
 H1
 Ku
 k4
 e3
 j7

 etc.
 etc.
 etc.
 E4
 E4
 E4
 Cu
 Ju
 k4
 e3
 j7

12 × 23 aC1 ~ 55