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Abstract

Let D be an acyclic digraph. The competition graph of D has
the same set of vertices as D and an edge between vertices u and v
if and only if there is a vertex z in D such that (u,z) and (v,z) are
arcs of D. The competition-common enemy graph of D has the same
set of vertices as D and an edge between vertices u and v if and only
if there are vertices w and z in D such that (w,u), (w,v), (u,z), and
(v,) are arcs of D. The competition number (respectively, double
competition number) of a graph G, denoted by k(G) (respectively,
dk(G)), is the smallest number k such that G together with k isolated
vertices is a competition graph (respectively, competition-common
enemy graph) of an acyclic digraph.

It is known that dk(G) < k(G) + 1 for any graph G. In this
paper, we give a sufficient condition under which a graph G satisfies
dk(G) < k(G) and show that any connected triangle-free graph G
with k(G) > 2 satisfies that condition. We also give an upper bound
for the double competition number of a connected triangle-free graph.
Finally we find an infinite family of graphs each member G of which
satisfies k(G) = 2 and dk(G) > k(G).
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1 Introduction

The competition graph of D has the same set of vertices as D and an edge
between vertices » and v if and only if there is a vertex z in D such that
(u, z) and (v, z) are ares of D. Since Cohen [2] introduced the notion of com-
petition graph in 1968, various variations have been defined and studied by
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many authors. (See the survey articles by Kim [6] and Lundgren [10].) The
notion of competition-common enemy graph was introduced by Scott {14]
in 1987 as one of these variants. The compelition-common enemy graph
(CCE graph) of an acyclic digraph D has the same set of vertices as D and
an edge between vertices u and v if and only if there are vertices w and =
in D such that (w,u), (w,v), (u,z), (v,z) are arcs of D.

We suppose that D = (V, A) is an acyclic digraph. (For all undefined
graph theory terminology, see [1] or [12].) For each vertex of D, we define
Sp(v) and Pp(v) as follows:

Sp(w) = {zeV(D)|(z,v) e A(D)}
Pp(v) = {zeV(D)|(v,x) € A(D)}

The edge sets of the competition graph and the CCE graph of an acyclic
digraph D can be described as follows: The vertices » and v are adjacent in
the competition graph of D if and only if Pp(u)N Pp(v) # 9. Also, vertices
u and v are adjacent in the CCE graph of D if and only if Sp(u)NSp(v) # 9
and Pp(u) N Pp(v) # 9.

The definition of the competition number k(G) of a graph G was intro-
duced by Roberts [13]. The competition number k(G) of a graph G is the
smallest number & such that G U I is a competition graph of some acyclic
digraph when G U I}, is G together with k isolated vertices. Roberts [13]
showed that the competition number k(G) is well-defined. The literature
of competition graphs is summarized in [5], [6], [10], and [16]. Analogously
to the definition of k(G) of a graph G, Scott [14] defined the double com-
petition number dk(G) of G to be the smallest number &k such that G U I},
is a CCE graph of some acyclic digraph and then showed that dk(G) of a
graph G is well-defined. The CCE graphs have been studied by Fiiredi [3],
Jones et al. [4], Kim et al. [9], Scott [14], and Seager {15].

Scott [14] observed that 2 < dk(G) < k(G) +1 for any graph G without
isolated vertices. If k(G) = 1 and G does not have isolated vertices, then
those inequalities are immediately replaced by equalities. This observation
led Kim et al. [9] to ask for conditions under which dk(G) = k(G) + 1 for
the case k(G) > 2 or for interesting families of graphs for which this is
true. In Section 2, we partially answer their question by giving a sufficient
condition for a graph G satisfying dk(G) < k(G). We also show that a large
number of graphs including triangle-free graphs satisfy this condition. This
suggests that it should not be easy to find a graph G with k(G) > 2 and
dk{G) = k(G)+1. In Section 3, we present an infinite family of graphs with
k(G) = 2 and dk(G) = k(G)+ 1. In Section 2, we also give an upper bound
for the double competition number of a connected, triangle-free graph G
with £(G) > 2. Finally, we pose some open questions in Section 4.

Before preceding, we need the following results:
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Theorem 1 (Roberts [13]) If G is a triangulated graph, then k(G) < 1.

Theorem 2 (Roberts [13]) If a graph G is connected, |V(G)| > 1, and
G has no triangles, then k(G) = |E(G)| - |V(G)| + 2.

He also showed that for any triangle-free graph G with |V(G)| > 1, k(G) >
|E(G)| = |V(G)| + 2. Kim [7] gave the following formula for computing the
competition number of triangle-free graphs without isolated vertices. For a
triangle-free graph G, we define f(G) by

f(G) = max{0, -|E(G)| + |V(G)| - 1}.
Theorem 3 (Kim [7]) IfG has no isolated vertices and no triangles, then

k(G) = |E(G) - V(&) + 2+ f(G).

2 A condition under which a graph G satisfies dk(G) <
k(G)+1

Given a graph G with n vertices and without isolated vertices, we take a
vertex v of G. We denote by Hg(v) the graph induced by the vertices in
the nontrivial components of G — v. We denote by ig(v) the number of
isolated vertices in G — v. We denote by D¢ (v) an acyclic digraph whose
competition graph is Hg(v) plus k(Hg(v)) isolated vertices. From the
digraph Dg(v), we construct a digraph denoted by Dg(v) as follows. We
let m = n—ig(v) — 1. We label v as v,, and the isolated vertices of G — v,
aS U1, -- -, Un—i. We note that vy41, ..., vy—1 are pendant vertices that
are adjacent to v,. Since D¢(v) is acyclic, the vertices of Hg(v) can be
labeled vy, ..., vy so that if (v;,v;) is in A(Dg(v)), then ¢ > j. Now we
define D¢ (v) as follows:

V(Dg(v))
A(Dg(v))

V(De(®)) U {Omat, - ., vn} U {b):
A(Dg(v)) U {(vn, w) | w € V(Dg{v))}
{(vn, ) |i=m+1,...,n -2}
{(b,vn)} U {(b,w) | vow € E(G)}
{(wi1,v) Ji=m,...,n -2}

cccuu

It is obvious that Dg(v) is acyclic. We call Dg(v) a v-dominating digraph
obtained from Dg(v). Now we may claim as follows:

Lemma 4 Suppose that a graph G has no isolated vertices and G # K1,
for any integer | > 1. For a vertex v* of G, we take an acyclic digraph
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D¢ (v*) whose competition graph is Hg(v*) together with k(Hg(v*)) iso-
lated vertices. If Dg(v*) is a v* -dominating digraph obtained from Dg(v*),
then the CCE graph of Dg(v*) is G together with k(Hg(v*)) + 1 isolated
vertices.

Proof. We let G’ be the CCE graph of Dg(v*). Then v* is labeled v,
in Dg(v*). We let H = He(v*), D = Dg(v*), and D = Dg(v*). Since
there is no vertex incoming toward b, b is isolated in G’. It is enough to
show that V(G') = V(G) U Iy U {b} and E(G') = E(G). Since V(D) =
V(D)U {vmit,---,vn} U {b} and V(D) = V(G) = {vm+1,.. ., 90} U Iy,
V(D) = V(G) U Iy U {b}.

We take an edge vw of G. If neither of v, w is vy, then vw is an edge of
H and there is a vertex z in V(D) so that arcs (v, z) and (w, z) are in A(D).
Since arcs (vn,v) and (v, w) are added to A(D) to obtain A(D), v and w
are adjacent in G’. If one of v and w, say v, is v,, then either w is a vertex of
H or w = v; for some j € {m+1,...,n—1}. We assume the former. Since
H does not have isolated vertices, w is adjacent to some vertex in H and
therefore there is a vertex z in V(D) such that arc (w, z) is in A(D). Since
arcs (v, x), (b,vn), (b, w) are added to A(D) to obtain A(D), vy is adjacent
to v in G'. Now we suppose that w = v; for some j € {m+1,...,n —1}.
Then there are arcs (b, v,), (b,v;), (vn,vj-1), (vj,v;-1) and therefore v,v;
is in E(G’). We have just shown that E(G) C E(G').

We take two nonadjacent vertices v, w of G. If v and w are both vertices
of H, then they are not adjacent in H and therefore Pp(v) N Pp(w) = 0
since H U Iy is the competition graph of D. Since no arcs outgoing from
v or w were added to obtain D, it is also true that Pp(v) N Pp(w) = @ and
therefore they are not joined in G’. Now we assume that v or w, say v, is
vy,. Since all the arcs go from a higher index to a lower one, Sp(v,) = {b}.
However, by the definition of Dg(v*), b is not in Sp(w) since v, and w
are not adjacent in G. Therefore Sp(v,) N Sp(w) = @ and v, and w
are not adjacent in G’. Finally, we suppose that v or w, say v, is v; for
some j € {m+1,...,n—1}. Then w cannot be v,,. It is obvious from the
definition of D¢ (v*) that Pp(v;) = {v;—1} and Sp(vj—1) = {b,v;,vn}. The
latter implies that v;_; is not in Pp(w). Therefore, Pp(v;)NPp(w) = ¥ and
v; is not adjacent to w in G'. Thus E(G) 2 E(G’). Hence E(G) = E(G').
a

The following result gives a large class of graphs G with dk(G) < k(G).

Theorem 5 Suppose that a graph G has no isolated vertices and G # Ky,
for 1 > 1. If there erists a vertez v* in V(G) such that k(Hg(v*)) < k(G),
then dk(G) < k(G)

Proof. We take an acyclic digraph Dg(v*) such that the competition
graph of Dg(v*) is Hg(v*) U Iiag(ve))- If Dg(v*) is a v*-dominating
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digraph obtained from Dg(v*), then the CCE graph of Dg(v*) is G U
Ii(tg(v+) together with one more isolated vertex by Lemma 4. Therefore,

dk(G) < k(Ho(v*)) +1 < k(G) = 1+1 = k(G).

O

A large class of graphs satisfy the hypothesis of Theorem 5. We present

the following two interesting families of graphs which are included in this
class. We denote by dg(v) the degree of a vertex v of a graph G.

Corollary 6 For any connected, triangle-free graph G with k(G) > 2,
dk(G) < k(G).

Proof. Since k(G) > 2, there exists a cycle C in G. We take a vertex v’
on C. Since the two vertices on C that are adjacent to v’ are in the same
component in G —v’, dg(v') —ig(v') 2 2. Welet H = Hg(v'). If f(H) =0,
then

k(H) =|E(H)|-|V(H)|+2 (Theorem 3)
= (IE(G)| - de(v')) — (IV(G)| - ic(v') - 1) +2
= |E(G)| - [V(G)| +1ig(v") — de(v') + 3
S |E(G) - [V(G) + 1 < K(G).

If f(H) >0, then f(H) = —|E(H)|+|V(H)| -1 by the definition of f(H).
Then
k(H) = |E(H)| - |V(H)|+ 2+ f(H)=1 < k(G).

Therefore, by Theorem 5, dk(G) < k(G). (]
Kim [8) showed that if a graph G has exactly one cycle of length at least
four as an induced subgraph, then &£(G) < 2.

Corollary 7 Suppose that a graph G without isolated vertices has exactly
one cycle of length at least four as an induced subgraph and satisfies equality
k(G)=2. Then

dk(G) < k(G).

Proof. We take a vertex v’ on the cycle of length at least four. Then
He(v') is triangulated and therefore k(Hg(v')) < 1 by Theorem 1. Hence
dk(G) < k(G) by Theorem 5. G

Kim et al. [9] asked for infinite families of graphs for which k(G) —dk(G)
remains bounded, though dk(G) < k(G) + 1. Corollary 7 answers their
question. There are infinitely many graphs satisfying the hypothesis of
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Corollary 7 and therefore the equality k(G) —dk(G) = 0. For example, each
of wheels W, has exactly one cycle of length at least four as a generated
subgraph. Kim [8] showed that k(W,) = 2 for wheels W, and therefore
wheels W,, satisfy the hypothesis of Corollary 7. We also note that the
hypothesis of Theorem 5 can be satisfied by graphs with many triangle
such as wheels.

For a nontrivial graph G that is not isomorphic to K;, for any inte-
ger I > 1, we let A*(G) = maxyev(e){de(v) — ic(v) — f(Ha(v))} and
A*(Kyy) = 1 for any integer [ > 1. The following theorem gives an upper
bound for the double competition number of a triangle-free graph:

Theorem 8 Suppose that a nontrivial graph G is connected and triangle-
free. Then
dk(G) < |E(G)] - IV(G)| + 4 - A*(G).

Proof. If G = K, for some ! > 1 then |E(G)| - |[V(G)| +4 = 3 and
A*(Ky1) = 1. Since dk(K;) = 2, the theorem follows. Hence we may
assume that G # K1,;. Let |V(G)| = n and |E(G)| = e. We take a vertex
v’ such that dg(v') —ig(v') — f(Hg(v')) = A*(G). Then He(v') is not an
empty graph and is still triangle-free. We let Hg(v') = H and i = ig(v').
Then by Theorem 3,

k(H) = (e —dg(v')) — (n —1 =)+ 2+ f(H) = e—n+3—dg(v') +i+ f(H).

We let Dg(v') be an acyclic digraph such that the competition graph of
Dg(v') is H plus k(H) isolated vertices. Then the CCE-graph of a v'-
dominating digraph Dg(v') obtained from Dg(v') is G together with k(H )+
1 isolated vertices by Lemma 4. Thus

dk(G) <k(H)+1<e-n+3—-de(®)+i+ f(H)+ 1.

Since dg(v') —i — f(H) = A*(G), the theorem follows. c

The upper bound given in the above theorem is sharp and it can be
achieved by Cj. In fact, if G has no cut vertices, the upper bound in the
above theorem can be simplified as follows:

Corollary 9 If G is connected, triangle-free and has no cut vertices, then
dk(G) < k(G) - A(G) + 2
where A(G) denotes the mazimum degree of G.

Proof.  For any vertex v in G, f(Hg(v)) = 0 and ig(v) = O since
Hg(v) = G — v is connected. Hence, A*(G) = max,ev(g){de(v)} = A(G)
and the corollary immediately follows. ]
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3 A family of graphs G with £(G) =2 and dk(G) =3 =
k(G)+1

We let |i — j| (mmod n) = min{|: — j|,n —|¢ — j|}. A graph G of n vertices is
called a Harary graph of the form H(2m,n) for some positive integers m, n
with m < n if there is a vertex labeling vy, ..., v, such that v; is adjacent
to v; if and only if

|z = 7] (mod n) < m —1.

Harary graph H(6,6) is given in Figure 1.

U1

v3 Vs

Uy

Figure 1: H(6,6).
We denote the edge clique covering number of a graph G by 6(G).

Theorem 10 For any positive integer m and n, n > 6, g+ 1<m< g,
k(H(2m,n)) = 2 and dk(H(2m,n)) = 3.

Proof. It is known that a Harary graph H(2m,n) is a proper circular arc
graph. (See Wang [16].) Wang [16] showed that the competition number
of a proper circular arc graph is less than or equal to two. Therefore
k(H(2m,n)) < 2. Opsut [11] showed that k(G) > min, 6( N(v)) for any
graph G, where N(v) is the open neighborhood of v. Since 8(N(v)) = 2 for
any v in H(2m,n), k(H(2m,n)) > 2. Therefore, k(H(2m,n)) = 2.

Now we suppose that dk(H(2m,n)) = 2. We will reach a contradiction.
We let D be a minimal digraph among the acyclic digraphs whose CCE
graphs are H(2m, n) plus two isolated vertices a; and ag. Since D is acyclic,
there exists a labeling wg, wy, ..., Wy, Wn4 of the vertices of D so that if
(ws, w;) € A(D), then 7 > j. Since wp and wy4 have only incoming arcs
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and only outgoing arcs, respectively, they are isolated in the CCE graph
of D and therefore they should be ay and as. Since the arcs outgoing
from w; can go toward only wy (i.e. Pp(w;) = {wo}), Sp(wp) 2 N[w,] in
H(2m, n) where N [w,] is the closed neighborhood of w; in H(2m,n). Since
H(2m,n) is point-symmetric, we may assume that v; = w;. Then there
are arcs from vy, ..., Um, Un—m+2, - - -, Un t0 wp in D since they belong to
N[v] in H(2m,n). Now we consider the following cases:

Case 1 w,, =v; for some2<j<m-1.

Since w,, = v;, Sp(v;) = {wn41}. We take vertices v;41 and vp_myj+1-
By the definition of H(2m, n), vj4+1 and vn_m4;+1 both are adjacent to v;.
Then since SD(vj) = {'wn+l}, ('wn+l»'vn—m+j+l)’ (wn+1, 'Uj-H)7 ('wn+1,vj)
€ A(D). Since j < m—1, vj;; is adjacent tov;. Since 1 < n—[(n—m+j+
1)—1]=m—j <m—2, vy_myj+1 is adjacent to v;. Therefore, there are
arcs (vi, wo), (vj+1,w0), (Vn—m+j+1,wo) in D since Pp(v;) = {wo}. Hence
we can conclude that v, and vy —m4j+1 are adjacent in H(2m,n)U{a, a2}
which is the CCE of D. However, since (n—m+j+1)—(j+1)=n—-m >
2m—-m=mandn—[(n—-m+j+1)-(F+1)]=m, v;41 and vn_m4js1
are not adjacent in H(2m,n) and therefore we reach a contradiction.

Case 2 w,, = vy

We take two vertices v,,—; and wvg,,—;. It is obvious that v,,_; and
vom—1 both are adjacent to v,,. Therefore, there are arcs (wn41,vm—1),
(wn+lrv2m—l)’ (wn+1:vm) € A(D) Since 1 <n — [(2m - l) - l] < 3(m -
1) =2m+2 =m — 1, vay,—1 is adjacent vy. Clearly v, is also adjacent
to v,. Therefore, there are arcs (vm—1,wo), (V2m—1,w0), (Wn+1,Vm—1),
(wn41,v2m~1). Hence vpm—y and vap,—1 are adjacent in H(2m, n)U {ay, az}.
However, since (2m - 1) —(m—-1)=mandn - [2m - 1) - (m - 1)] =
n —m > m, they are not adjacent in H(2m,n) and therefore we reach a
contradiction.

Case 3 wy, =v; for somem+1<j<n-m+1.

In this case, we take two vertices vj_ni2m—1 and v;myj—1. Since 1 <
G-n+2m-1)-1<(n-m+1)-n+2m-2=m-—-1land 1 <
j—(F-n+2m-1)=n-2m+1< (Bm-3)-2m+1=m—2,v;_ni2m-1
is adjacent to both wy and w,,. Since 1 < n—[(m+j-1)—1] = n—m—j+2 <
Bm=-3)—-m—-(m+1)+2=m-2and (m+j—-1)—j=m—1,vm4j_1is
adjacent to both w; and w,,. Therefore, by applying a similar arguments as
in the previous cases, we can show that vj_n4om_1 and vy ;1 are adjacent
in H(2m,n) U {a1,az}. However, since (m+j3—1)-(j —n+2m-1) =
n-m>2m-m=mandn—-[(m+j7j—-1) - (j—n+2m-1)] =m,
Vj—nt2m—1 and vpymyj_y are not adjacent in H(2m,n). Hence we reach a
contradiction.
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Case 4 wy, = Vp_m42.

This case is symmetric to Case 2. We take vp,_pm43 and v, _2m 43 and
then apply a similar argument.

Case 5 w, =wv; for somen—m+3<j<n.

This case is symmetric to Case 1. We take v;_; and v;_j_pn+m and then
apply a similar argument.

In each case, we obtain a contradiction. Thus dk(H (2m,n)) > 3. Since
dk(G) < k(G) + 1 for any graph G and k(H(2m,n)) = 2, it follows that
dk(H(2m,n)) = 3. g

4 Further questions

Theorem 5 partially answers the problem of characterizing graphs G with
dk(G) = k(G)+1. We note that the family of graphs given in Theorem 10 do
not satisfy the hypothesis of Theorem 5. To see why, for n > 6 and m < n,
we take G = H(2m,n) and a vertex v of G. Then Hg(v) = H(2m,n) —v.
It can be checked that 8( N(w)) > 2 for any vertex w of Hg(v) where N(w)
is the open neighborhood of w in H¢(v). Therefore k(Hg(v)) > 2 = k(G).
From the above observation, it seems natural to ask whether or not the
converse of Theorem 5 holds. In fact, it will be an interesting problem to
characterize graphs G satisfying k(H¢c(v)) < k(G) for some vertex v of G.
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