ON THE INEQUALITY $dk(G) \le k(G) + 1$

SUH-RYUNG KIM*
Department of Mathematics
Kyung Hee University
Seoul, Korea
srkim@nms.kyunghee.ac.kr

Abstract

Let D be an acyclic digraph. The competition graph of D has the same set of vertices as D and an edge between vertices u and v if and only if there is a vertex x in D such that (u,x) and (v,x) are arcs of D. The competition-common enemy graph of D has the same set of vertices as D and an edge between vertices u and v if and only if there are vertices u and u in u such that u if u if and only if there are vertices u and u in u such that u if u if u if and only if there are vertices u and u in u such that u if u

It is known that $dk(G) \leq k(G) + 1$ for any graph G. In this paper, we give a sufficient condition under which a graph G satisfies $dk(G) \leq k(G)$ and show that any connected triangle-free graph G with $k(G) \geq 2$ satisfies that condition. We also give an upper bound for the double competition number of a connected triangle-free graph. Finally we find an infinite family of graphs each member G of which satisfies k(G) = 2 and dk(G) > k(G).

Key words. competition number, double competition number, triangle-free graphs, Harary graphs

1 Introduction

The competition graph of D has the same set of vertices as D and an edge between vertices u and v if and only if there is a vertex x in D such that (u, x) and (v, x) are arcs of D. Since Cohen [2] introduced the notion of competition graph in 1968, various variations have been defined and studied by

^{*}This research was supported by a grant from the Research Institute of Basic Science of Kyung Hee University and by grant BSRI-96-1432 of the Korean Ministry of Education.

many authors. (See the survey articles by Kim [6] and Lundgren [10].) The notion of competition-common enemy graph was introduced by Scott [14] in 1987 as one of these variants. The competition-common enemy graph (CCE graph) of an acyclic digraph D has the same set of vertices as D and an edge between vertices u and v if and only if there are vertices w and v in D such that (w, u), (w, v), (u, x), (v, x) are arcs of D.

We suppose that D=(V,A) is an acyclic digraph. (For all undefined graph theory terminology, see [1] or [12].) For each vertex of D, we define $S_D(v)$ and $P_D(v)$ as follows:

$$\begin{array}{lcl} S_D(v) & = & \{x \in V(D) \mid (x,v) \in A(D)\} \\ P_D(v) & = & \{x \in V(D) \mid (v,x) \in A(D)\} \end{array}$$

The edge sets of the competition graph and the CCE graph of an acyclic digraph D can be described as follows: The vertices u and v are adjacent in the competition graph of D if and only if $P_D(u) \cap P_D(v) \neq \emptyset$. Also, vertices u and v are adjacent in the CCE graph of D if and only if $S_D(u) \cap S_D(v) \neq \emptyset$ and $P_D(u) \cap P_D(v) \neq \emptyset$.

The definition of the competition number k(G) of a graph G was introduced by Roberts [13]. The competition number k(G) of a graph G is the smallest number k such that $G \cup I_k$ is a competition graph of some acyclic digraph when $G \cup I_k$ is G together with k isolated vertices. Roberts [13] showed that the competition number k(G) is well-defined. The literature of competition graphs is summarized in [5], [6], [10], and [16]. Analogously to the definition of k(G) of a graph G, Scott [14] defined the double competition number dk(G) of G to be the smallest number k such that $G \cup I_k$ is a CCE graph of some acyclic digraph and then showed that dk(G) of a graph G is well-defined. The CCE graphs have been studied by Füredi [3], Jones et al. [4], Kim et al. [9], Scott [14], and Seager [15].

Scott [14] observed that $2 \le dk(G) \le k(G) + 1$ for any graph G without isolated vertices. If k(G) = 1 and G does not have isolated vertices, then those inequalities are immediately replaced by equalities. This observation led Kim et al. [9] to ask for conditions under which dk(G) = k(G) + 1 for the case $k(G) \ge 2$ or for interesting families of graphs for which this is true. In Section 2, we partially answer their question by giving a sufficient condition for a graph G satisfying $dk(G) \le k(G)$. We also show that a large number of graphs including triangle-free graphs satisfy this condition. This suggests that it should not be easy to find a graph G with $k(G) \ge 2$ and dk(G) = k(G) + 1. In Section 3, we present an infinite family of graphs with k(G) = 2 and dk(G) = k(G) + 1. In Section 2, we also give an upper bound for the double competition number of a connected, triangle-free graph G with $k(G) \ge 2$. Finally, we pose some open questions in Section 4.

Before preceding, we need the following results:

Theorem 1 (Roberts [13]) If G is a triangulated graph, then $k(G) \leq 1$.

Theorem 2 (Roberts [13]) If a graph G is connected, |V(G)| > 1, and G has no triangles, then k(G) = |E(G)| - |V(G)| + 2.

He also showed that for any triangle-free graph G with |V(G)| > 1, $k(G) \ge |E(G)| - |V(G)| + 2$. Kim [7] gave the following formula for computing the competition number of triangle-free graphs without isolated vertices. For a triangle-free graph G, we define f(G) by

$$f(G) = \max\{0, -|E(G)| + |V(G)| - 1\}.$$

Theorem 3 (Kim [7]) If G has no isolated vertices and no triangles, then

$$k(G) = |E(G)| - |V(G)| + 2 + f(G).$$

2 A condition under which a graph G satisfies dk(G) < k(G) + 1

Given a graph G with n vertices and without isolated vertices, we take a vertex v of G. We denote by $H_G(v)$ the graph induced by the vertices in the nontrivial components of G-v. We denote by $i_G(v)$ the number of isolated vertices in G-v. We denote by $D_G(v)$ an acyclic digraph whose competition graph is $H_G(v)$ plus $k(H_G(v))$ isolated vertices. From the digraph $D_G(v)$, we construct a digraph denoted by $\mathcal{D}_G(v)$ as follows. We let $m=n-i_G(v)-1$. We label v as v_n and the isolated vertices of $G-v_n$ as v_{m+1},\ldots,v_{m-1} . We note that v_{m+1},\ldots,v_{m-1} are pendant vertices that are adjacent to v_n . Since $D_G(v)$ is acyclic, the vertices of $H_G(v)$ can be labeled v_1,\ldots,v_m so that if (v_i,v_j) is in $A(D_G(v))$, then i>j. Now we define $\mathcal{D}_G(v)$ as follows:

$$\begin{array}{lll} V(\mathcal{D}_{G}(v)) & = & V(D_{G}(v)) \cup \{v_{m+1}, \dots, v_{n}\} \cup \{b\}; \\ A(\mathcal{D}_{G}(v)) & = & A(D_{G}(v)) \cup \{(v_{n}, w) \mid w \in V(D_{G}(v))\} \\ & \cup & \{(v_{n}, v_{i}) \mid i = m+1, \dots, n-2\} \\ & \cup & \{(b, v_{n})\} \cup \{(b, w) \mid v_{n}w \in E(G)\} \\ & \cup & \{(v_{i+1}, v_{i}) \mid i = m, \dots, n-2\} \end{array}$$

It is obvious that $\mathcal{D}_G(v)$ is acyclic. We call $\mathcal{D}_G(v)$ a v-dominating digraph obtained from $\mathcal{D}_G(v)$. Now we may claim as follows:

Lemma 4 Suppose that a graph G has no isolated vertices and $G \neq K_{1,l}$ for any integer $l \geq 1$. For a vertex v^* of G, we take an acyclic digraph

 $D_G(v^*)$ whose competition graph is $H_G(v^*)$ together with $k(H_G(v^*))$ isolated vertices. If $D_G(v^*)$ is a v^* -dominating digraph obtained from $D_G(v^*)$, then the CCE graph of $D_G(v^*)$ is G together with $k(H_G(v^*)) + 1$ isolated vertices.

Proof. We let G' be the CCE graph of $\mathcal{D}_G(v^*)$. Then v^* is labeled v_n in $\mathcal{D}_G(v^*)$. We let $H = H_G(v^*)$, $D = D_G(v^*)$, and $\mathcal{D} = \mathcal{D}_G(v^*)$. Since there is no vertex incoming toward b, b is isolated in G'. It is enough to show that $V(G') = V(G) \cup I_{k(H)} \cup \{b\}$ and E(G') = E(G). Since $V(\mathcal{D}) = V(\mathcal{D}) \cup \{v_{m+1}, \ldots, v_n\} \cup \{b\}$ and $V(\mathcal{D}) = V(G) - \{v_{m+1}, \ldots, v_n\} \cup I_{k(H)}$, $V(\mathcal{D}) = V(G) \cup I_{k(H)} \cup \{b\}$.

We take an edge vw of G. If neither of v, w is v_n , then vw is an edge of H and there is a vertex x in V(D) so that $\operatorname{arcs}(v,x)$ and (w,x) are in A(D). Since $\operatorname{arcs}(v_n,v)$ and (v_n,w) are added to A(D) to obtain A(D), v and w are adjacent in G'. If one of v and w, say v, is v_n , then either w is a vertex of H or $w=v_j$ for some $j\in\{m+1,\ldots,n-1\}$. We assume the former. Since H does not have isolated vertices, w is adjacent to some vertex in H and therefore there is a vertex x in V(D) such that $\operatorname{arc}(w,x)$ is in A(D). Since $\operatorname{arcs}(v_n,x)$, (b,v_n) , (b,w) are added to A(D) to obtain A(D), v_n is adjacent to v in G'. Now we suppose that $w=v_j$ for some $j\in\{m+1,\ldots,n-1\}$. Then there are $\operatorname{arcs}(b,v_n)$, (b,v_j) , (v_n,v_{j-1}) , (v_j,v_{j-1}) and therefore v_nv_j is in E(G'). We have just shown that $E(G)\subseteq E(G')$.

We take two nonadjacent vertices v, w of G. If v and w are both vertices of H, then they are not adjacent in H and therefore $P_D(v) \cap P_D(w) = \emptyset$ since $H \cup I_{k(H)}$ is the competition graph of D. Since no arcs outgoing from v or w were added to obtain D, it is also true that $P_D(v) \cap P_D(w) = \emptyset$ and therefore they are not joined in G'. Now we assume that v or w, say v, is v_n . Since all the arcs go from a higher index to a lower one, $S_D(v_n) = \{b\}$. However, by the definition of $D_G(v^*)$, b is not in $S_D(w)$ since v_n and w are not adjacent in G. Therefore $S_D(v_n) \cap S_D(w) = \emptyset$ and v_n and w are not adjacent in G'. Finally, we suppose that v or w, say v, is v_j for some $j \in \{m+1,\ldots,n-1\}$. Then w cannot be v_n . It is obvious from the definition of $D_G(v^*)$ that $P_D(v_j) = \{v_{j-1}\}$ and $S_D(v_{j-1}) = \{b, v_j, v_n\}$. The latter implies that v_{j-1} is not in $P_D(w)$. Therefore, $P_D(v_j) \cap P_D(w) = \emptyset$ and v_j is not adjacent to w in G'. Thus $E(G) \supseteq E(G')$. Hence E(G) = E(G').

The following result gives a large class of graphs G with $dk(G) \leq k(G)$.

Theorem 5 Suppose that a graph G has no isolated vertices and $G \neq K_{1,l}$ for $l \geq 1$. If there exists a vertex v^* in V(G) such that $k(H_G(v^*)) < k(G)$, then $dk(G) \leq k(G)$

Proof. We take an acyclic digraph $D_G(v^*)$ such that the competition graph of $D_G(v^*)$ is $H_G(v^*) \cup I_{k(H_G(v^*))}$. If $\mathcal{D}_G(v^*)$ is a v^* -dominating

digraph obtained from $D_G(v^*)$, then the CCE graph of $\mathcal{D}_G(v^*)$ is $G \cup I_{k(H_G(v^*))}$ together with one more isolated vertex by Lemma 4. Therefore,

$$dk(G) \le k(H_G(v^*)) + 1 \le k(G) - 1 + 1 = k(G).$$

A large class of graphs satisfy the hypothesis of Theorem 5. We present the following two interesting families of graphs which are included in this class. We denote by $d_G(v)$ the degree of a vertex v of a graph G.

Corollary 6 For any connected, triangle-free graph G with k(G) > 2,

$$dk(G) \leq k(G)$$
.

Proof. Since $k(G) \geq 2$, there exists a cycle C in G. We take a vertex v' on C. Since the two vertices on C that are adjacent to v' are in the same component in G-v', $d_G(v')-i_G(v')\geq 2$. We let $H=H_G(v')$. If f(H)=0, then

$$k(H) = |E(H)| - |V(H)| + 2$$
 (Theorem 3)

$$= (|E(G)| - d_G(v')) - (|V(G)| - i_G(v') - 1) + 2$$

$$= |E(G)| - |V(G)| + i_G(v') - d_G(v') + 3$$

$$\leq |E(G)| - |V(G)| + 1 < k(G).$$

If f(H) > 0, then f(H) = -|E(H)| + |V(H)| - 1 by the definition of f(H). Then

$$k(H) = |E(H)| - |V(H)| + 2 + f(H) = 1 < k(G).$$

Therefore, by Theorem 5, $dk(G) \leq k(G)$.

Kim [8] showed that if a graph G has exactly one cycle of length at least four as an induced subgraph, then $k(G) \leq 2$.

Corollary 7 Suppose that a graph G without isolated vertices has exactly one cycle of length at least four as an induced subgraph and satisfies equality k(G) = 2. Then

$$dk(G) \le k(G)$$
.

Proof. We take a vertex v' on the cycle of length at least four. Then $H_G(v')$ is triangulated and therefore $k(H_G(v')) \leq 1$ by Theorem 1. Hence $dk(G) \leq k(G)$ by Theorem 5.

Kim et al. [9] asked for infinite families of graphs for which k(G) - dk(G) remains bounded, though dk(G) < k(G) + 1. Corollary 7 answers their question. There are infinitely many graphs satisfying the hypothesis of

Corollary 7 and therefore the equality k(G) - dk(G) = 0. For example, each of wheels W_n has exactly one cycle of length at least four as a generated subgraph. Kim [8] showed that $k(W_n) = 2$ for wheels W_n and therefore wheels W_n satisfy the hypothesis of Corollary 7. We also note that the hypothesis of Theorem 5 can be satisfied by graphs with many triangle such as wheels.

For a nontrivial graph G that is not isomorphic to $K_{1,l}$ for any integer $l \geq 1$, we let $\Delta^*(G) = \max_{v \in V(G)} \{d_G(v) - i_G(v) - f(H_G(v))\}$ and $\Delta^*(K_{1,l}) = 1$ for any integer $l \geq 1$. The following theorem gives an upper bound for the double competition number of a triangle-free graph:

Theorem 8 Suppose that a nontrivial graph G is connected and triangle-free. Then

$$dk(G) \le |E(G)| - |V(G)| + 4 - \Delta^*(G).$$

Proof. If $G = K_{1,l}$ for some $l \ge 1$ then |E(G)| - |V(G)| + 4 = 3 and $\Delta^*(K_{1,l}) = 1$. Since $dk(K_{1,l}) = 2$, the theorem follows. Hence we may assume that $G \ne K_{1,l}$. Let |V(G)| = n and |E(G)| = e. We take a vertex v' such that $d_G(v') - i_G(v') - f(H_G(v')) = \Delta^*(G)$. Then $H_G(v')$ is not an empty graph and is still triangle-free. We let $H_G(v') = H$ and $i = i_G(v')$. Then by Theorem 3,

$$k(H) = (e - d_G(v')) - (n - 1 - i) + 2 + f(H) = e - n + 3 - d_G(v') + i + f(H).$$

We let $D_G(v')$ be an acyclic digraph such that the competition graph of $D_G(v')$ is H plus k(H) isolated vertices. Then the CCE-graph of a v'-dominating digraph $D_G(v')$ obtained from $D_G(v')$ is G together with k(H)+1 isolated vertices by Lemma 4. Thus

$$dk(G) < k(H) + 1 \le e - n + 3 - d_G(v') + i + f(H) + 1.$$

Since $d_G(v') - i - f(H) = \Delta^*(G)$, the theorem follows.

The upper bound given in the above theorem is sharp and it can be achieved by C_4 . In fact, if G has no cut vertices, the upper bound in the above theorem can be simplified as follows:

Corollary 9 If G is connected, triangle-free and has no cut vertices, then

$$dk(G) \le k(G) - \Delta(G) + 2$$

where $\Delta(G)$ denotes the maximum degree of G.

Proof. For any vertex v in G, $f(H_G(v)) = 0$ and $i_G(v) = 0$ since $H_G(v) = G - v$ is connected. Hence, $\Delta^*(G) = \max_{v \in V(G)} \{d_G(v)\} = \Delta(G)$ and the corollary immediately follows.

3 A family of graphs G with k(G) = 2 and dk(G) = 3 = k(G) + 1

We let $|i-j| \pmod{n} = \min\{|i-j|, n-|i-j|\}$. A graph G of n vertices is called a Harary graph of the form H(2m, n) for some positive integers m, n with $m \leq n$ if there is a vertex labeling v_1, \ldots, v_n such that v_i is adjacent to v_j if and only if

$$|i-j| \pmod{n} \leq m-1.$$

Harary graph H(6,6) is given in Figure 1.

Figure 1: H(6,6).

We denote the edge clique covering number of a graph G by $\theta(G)$.

Theorem 10 For any positive integer m and n, $n \ge 6$, $\frac{n}{3} + 1 \le m \le \frac{n}{2}$, k(H(2m, n)) = 2 and dk(H(2m, n)) = 3.

Proof. It is known that a Harary graph H(2m, n) is a proper circular arc graph. (See Wang [16].) Wang [16] showed that the competition number of a proper circular arc graph is less than or equal to two. Therefore $k(H(2m,n)) \leq 2$. Opsut [11] showed that $k(G) \geq \min_{v} \theta(N(v))$ for any graph G, where N(v) is the open neighborhood of v. Since $\theta(N(v)) = 2$ for any v in H(2m,n), $k(H(2m,n)) \geq 2$. Therefore, k(H(2m,n)) = 2.

Now we suppose that dk(H(2m,n)) = 2. We will reach a contradiction. We let D be a minimal digraph among the acyclic digraphs whose CCE graphs are H(2m,n) plus two isolated vertices a_1 and a_2 . Since D is acyclic, there exists a labeling $w_0, w_1, \ldots, w_n, w_{n+1}$ of the vertices of D so that if $(w_i, w_j) \in A(D)$, then i > j. Since w_0 and w_{n+1} have only incoming arcs

and only outgoing arcs, respectively, they are isolated in the CCE graph of D and therefore they should be a_1 and a_2 . Since the arcs outgoing from w_1 can go toward only w_0 (i.e. $P_D(w_1) = \{w_0\}$), $S_D(w_0) \supseteq N[w_1]$ in H(2m,n) where $N[w_1]$ is the closed neighborhood of w_1 in H(2m,n). Since H(2m,n) is point-symmetric, we may assume that $v_1 = w_1$. Then there are arcs from $v_1, \ldots, v_m, v_{n-m+2}, \ldots, v_n$ to w_0 in D since they belong to $N[v_1]$ in H(2m,n). Now we consider the following cases:

Case 1 $w_n = v_j$ for some $2 \le j \le m-1$.

Since $w_n=v_j$, $S_D(v_j)=\{w_{n+1}\}$. We take vertices v_{j+1} and $v_{n-m+j+1}$. By the definition of H(2m,n), v_{j+1} and $v_{n-m+j+1}$ both are adjacent to v_j . Then since $S_D(v_j)=\{w_{n+1}\}$, $(w_{n+1},v_{n-m+j+1})$, (w_{n+1},v_{j+1}) , $(w_{n+1},v_j)\in A(D)$. Since $j\leq m-1$, v_{j+1} is adjacent to v_1 . Since $1\leq n-[(n-m+j+1)-1]=m-j\leq m-2$, $v_{n-m+j+1}$ is adjacent to v_1 . Therefore, there are arcs (v_1,w_0) , (v_{j+1},w_0) , $(v_{n-m+j+1},w_0)$ in D since $P_D(v_1)=\{w_0\}$. Hence we can conclude that v_{j+1} and $v_{n-m+j+1}$ are adjacent in $H(2m,n)\cup\{a_1,a_2\}$ which is the CCE of D. However, since $(n-m+j+1)-(j+1)=n-m\geq 2m-m=m$ and n-[(n-m+j+1)-(j+1)]=m, v_{j+1} and $v_{n-m+j+1}$ are not adjacent in H(2m,n) and therefore we reach a contradiction.

Case 2 $w_n = v_m$.

We take two vertices v_{m-1} and v_{2m-1} . It is obvious that v_{m-1} and v_{2m-1} both are adjacent to v_m . Therefore, there are arcs (w_{n+1}, v_{m-1}) , (w_{n+1}, v_{2m-1}) , $(w_{n+1}, v_{m}) \in A(D)$. Since $1 < n - [(2m-1)-1] \le 3(m-1) - 2m + 2 = m - 1$, v_{2m-1} is adjacent v_1 . Clearly v_{m-1} is also adjacent to v_1 . Therefore, there are arcs (v_{m-1}, w_0) , (v_{2m-1}, w_0) , (w_{n+1}, v_{m-1}) , (w_{n+1}, v_{2m-1}) . Hence v_{m-1} and v_{2m-1} are adjacent in $H(2m, n) \cup \{a_1, a_2\}$. However, since (2m-1) - (m-1) = m and $n - [(2m-1) - (m-1)] = n - m \ge m$, they are not adjacent in H(2m, n) and therefore we reach a contradiction.

Case 3 $w_n = v_j$ for some $m+1 \le j \le n-m+1$.

In this case, we take two vertices $v_{j-n+2m-1}$ and v_{m+j-1} . Since $1 < (j-n+2m-1)-1 \le (n-m+1)-n+2m-2=m-1$ and $1 \le j-(j-n+2m-1)=n-2m+1 \le (3m-3)-2m+1=m-2, v_{j-n+2m-1}$ is adjacent to both w_1 and w_n . Since $1 \le n-[(m+j-1)-1]=n-m-j+2 \le (3m-3)-m-(m+1)+2=m-2$ and $(m+j-1)-j=m-1, v_{m+j-1}$ is adjacent to both w_1 and w_n . Therefore, by applying a similar arguments as in the previous cases, we can show that $v_{j-n+2m-1}$ and v_{m+j-1} are adjacent in $H(2m,n) \cup \{a_1,a_2\}$. However, since $(m+j-1)-(j-n+2m-1)=n-m \ge 2m-m=m$ and $n-[(m+j-1)-(j-n+2m-1)]=m, v_{j-n+2m-1}$ and v_{m+j-1} are not adjacent in H(2m,n). Hence we reach a contradiction.

Case 4 $w_n = v_{n-m+2}$.

This case is symmetric to Case 2. We take v_{n-m+3} and v_{n-2m+3} and then apply a similar argument.

Case 5 $w_n = v_j$ for some $n - m + 3 \le j \le n$.

This case is symmetric to Case 1. We take v_{j-1} and $v_{j-1-n+m}$ and then apply a similar argument.

In each case, we obtain a contradiction. Thus $dk(H(2m, n)) \ge 3$. Since $dk(G) \le k(G) + 1$ for any graph G and k(H(2m, n)) = 2, it follows that dk(H(2m, n)) = 3.

4 Further questions

Theorem 5 partially answers the problem of characterizing graphs G with dk(G) = k(G)+1. We note that the family of graphs given in Theorem 10 do not satisfy the hypothesis of Theorem 5. To see why, for $n \geq 6$ and $m \leq n$, we take G = H(2m, n) and a vertex v of G. Then $H_G(v) = H(2m, n) - v$. It can be checked that $\theta(N(w)) \geq 2$ for any vertex w of $H_G(v)$ where N(w) is the open neighborhood of w in $H_G(v)$. Therefore $k(H_G(v)) \geq 2 = k(G)$. From the above observation, it seems natural to ask whether or not the converse of Theorem 5 holds. In fact, it will be an interesting problem to characterize graphs G satisfying $k(H_G(v)) < k(G)$ for some vertex v of G.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, North Holland, New York, 1976.
- [2] J. E. Cohen, "Interval Graphs and Food Webs: A Finding and a Problem," RAND Corporation Document 17696-PR, Santa Monica, CA, 1968.
- [3] Z. Füredi, "Competition Graphs & Clique Dimensions," Random Structures and Algorithms, 1 (1990), 183-189.
- [4] K. F. Jones, J. R. Lundgren, F. S. Roberts, and S. Seager, "Some Remarks on the Double Competition Number of a Graph," Congressus Numerantium 60 (1987), 17-24.
- [5] S-R. Kim, "Competition Graphs and Scientific Laws for Food Webs and Other Systems," Ph.D. Thesis, Rutgers University, 1988.

- [6] S-R. Kim, "The Competition Number and Its Variants," Annals of Discrete Mathematics, 55 (1993), 313-326.
- [7] S-R Kim, "The Competition Number of Triangle-Free Graphs," Congressus Numerantium 110 (1995), 97-106.
- [8] S-R Kim, "The Competition Number of a Graph Having Exactly One Cycle of Length ≥ 4 as an Induced Subgraph," Manuscript (1996)
- [9] S-R. Kim, F. S. Roberts, and S. Seager, "On 1 0 1-Clear (0,1) Matrices and the Double Competition Number of Bipartite Graphs," J. of Combinatorics, Information and System Sciences 17 (1992), 302-315.
- [10] J. R. Lundgren, "Food Webs, Competition Graphs, Competition-Common Enemy Graphs, and Niche Graphs," in Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, (F. S. Roberts, ed.), Springer-Verlag, "IMH Volumes in Mathematics and Its Application, Vol. 17, 1989."
- [11] R. J. Opsut, "On the Computation of the Competition Number of a Graph," SIAM J. Alg. Discr. Meth. 3 (1982), 420-428.
- [12] F. S. Roberts, Discrete Mathematical Models with Applications to Social, Biological, and Environmental Problems, Prentice-Hall, New Jersey, 1976.
- [13] F. S. Roberts, "Food Webs, Competition Graphs, and the Boxicity of Ecological Phase Space," *Theory and Applications of Graphs*, (Y. Alavi and D. Lick, eds.), Springer Verlag, New York, 1978, 477-490.
- [14] D. D. Scott, "The Competition-Common Enemy Graph of a Digraph," Discrete Applied Math., 17 (1987), 269-280.
- [15] S. Seager, "The Double Competition Number of Some Triangle-Free Graphs," Discrete Appl. Math. 29 (1990), 265-269.
- [16] C. Wang, "Competition Graphs, Threshold Graphs and Threshold Boolean Functions," Ph.D. Thesis, Rutgers University, 1991.