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Abstract

Let T = (V, E) be a tree on |V| = n vertices. T is graceful if there
exists a bijection f: V' — {0,1,...,n — 1} such that {|f(u) — f(v)] |
w € E} = {1,2,...,n — 1}. If, moreover, T contains a perfect
matching M and f can be chosen in such a way that f(u) + f(v) =
n — 1 for every edge uv € M (implying that {|f(u) — f(v)] | wv €
M} ={1,3,...,n—1}), then T is called strongly graceful. We show
that the well-known conjecture that all trees are graceful is equivalent
to the conjecture that all trees containing a perfect matching are
strongly graceful. We also give some applications of this result.
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1 Introduction

We use BONDY & MURTY [2] for terminology and notation not defined
here and consider finite simple graphs only.

Let T = (V,E) be a tree on |V| = n vertices. A bijection f : V —
{0,1,...,n—1} is called a labeling of (the vertices of) T. T is graceful if f
is a graceful labeling, that is, if {|f(u) — f(v)| |uwv € E} ={1,2,...,n—1}.
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If, moreover, T contains a perfect matching M and f can be chosen in
such a way that f(u) + f(v) = n — 1 for every edge uv € M (implying
that {|f(u) — f(v)| | wv € M} = {1,3,...,n —1}), then T and f arc
called strongly graceful (See also [11]). Examples of trees with a (strongly)
graceful labeling are given in Figure 1.c (1.a,1.b).

The conjecture that the edges of a complete graph on 2n +1 vertices can
be covered by 2n+1 copies of an arbitrary tree on n+1 vertices is known as
the Ringel Conjecture. The stronger Ringel-Kotzig Conjecture asserts that
this decomposition can be done in a certain cyclic way. Rosa [12] pointed
out that both conjectures would be settled if an arbitrary tree admits a
certain valuation. One of these valuations, which he called a B-valuation
is nowadays commonly referred to as a graceful labeling, as defined above.
This term was introduced by Golomb [9]. We refer to [1], [4], [6], (8], and [9]
for more information on the Ringel-Kotzig Conjecture and other surveys of
results, conjectures and open problems concerning the labeling of graphs.
For later reference we formulate the graceful tree conjecture explicitly.

Conjecture 1
Every tree is graceful.

In Section 2 we show that Conjecture 1 and the following conjecture are
equivalent.

Conjecture 2
Every tree containing a perfect matching is strongly graceful.

In Section 3 we consider some transformations of strongly graceful graphs.
In Section 4 we give some applications to show that the established equiv-
alence could be useful in trying to prove Conjectures 1 and 2 or special
cases of the conjectures. We also give a procedure to generate a large class
of (strongly) graceful trees.

2 Conjectures 1 and 2 are equivalent

Before we prove that Conjecture 1 and Conjecture 2 are equivalent, we
first need some definitions. The spiketree of a tree T = ({v1,...,va}, E)
is obtained from T by adding n distinct new vertices uy,...,u, and the
edges ujvy,...,UnUn. A spiketree is a tree which is a spiketree of some tree.
The contree of a tree T' with a perfect matching M is obtained from T by
contracting the edges of M.
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Theorem 3
Conjecture 1 and Conjecture 2 are equivalent.

Proof First assume every tree is graceful. Let T be a tree on n vertices
(n even) containing a perfect matching M, and let L be the contree of T'
on % vertices. By assumption L is graceful, hence there exists a bijection
f:V(L) - {0,1,...,|V(L)| — 1} such that {|f(u) — f(v)| | wv € E(L)} =
{1,2,...,|V(L)| — 1}. Assign to each vertex z € V(L) the label A(z) =
2f(z). Then {|A(u) — A(v)| | wv € E(L)} = {2,4,...,2|V(L)| - 2} =
{2,4,...,n — 2}. Every vertex z € V(L) corresponds to an edge pg € M
of T. We will assign labels A(z) and n — 1 — A(z) to p and ¢ in such a way
that A : V(T) — {0,1,...,|V(T)| — 1} is a strongly graceful labeling. Let
piq: be the edge of M in T corresponding to z; € V(L) (i=1....,|V(L)|)
chosen in such a way that every edge z;x; in L corresponds to an edge p;p;
or to an edge ¢;g; in T". This can be done by starting at an end vertex zj, of
L and choosing either py, or g, corresponding to zj. For all other vertices
and edges of L and T the correspondence is easily determined using the
connectedness of L and T. Define A(p;) = A(z;) and A(¢:) = n—1 - A(=;).
Then clearly A(p;) + A(¢;) = n — 1 for every p;q; € M. Hence the edges
of M in T yield all odd (absolute) differences 1,3,...,n — 1. Moreover, by
the choice of p;, g;, all other edges p;p; (or ¢iq;) of T correspond to edges
z:z; of L, so that [A(p:) — Mpj)| = [A(®:) — Alz)| (or [A() — Alg)] =
[n— 1= Axi) = (n — 1 - Xz;))| = |M=:) — AMz,)]). Hence the edges of
E(T)\ M yield all even (absolute) differences 2,...,n —2. This proves that
A |V(T)| — {0,1,...,n — 1} is a strongly graceful labeling of T
Conversely, assume every tree containing a perfect matching is strongly
graceful. Let T' = ({v1,...,vn},E) be a tree on n vertices and let G =
({ur, - un,v1, ., vn }, EU {uvy, . .., unvn}) be the spiketree of T. By
assumption G is strongly graceful, hence there exists a bijection f : V(G) —
{0,1,...,2n — 1} such that f(u;) + f(v;) = 2n -1 for i=1,2,...,n. Since
the edges of E yield all even differences {2,...,2n — 2} in G, without
loss of generality we may assume that all f(v;) are even and all f(u;) are
odd (otherwise we use labels 2n — 1 — f(z) for all z € V(G)). Define
AMvi) = 3 f(vi) (i=1,...,n). Then {A(v;) |i=1,...,n} ={0,1,...,n ~ 1}
and the edges of E yield the differences {1,2,...,n~1}. Clearly A : V(T) —
{0,1,...,n — 1} is a graceful labeling of T ]

To prove Conjecture 2 it would be sufficient to prove that every spiketree
is strongly graceful. This is shown in the next section. Since there are far
less spiketrees (and trees with a perfect matching) on n vertices than trees,
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one might hope that Conjecture 2 is easier to prove than Conjecture 1. On
the other hand, of course, the conclusion of Conjecture 2 is much stronger,
and might therefore be more difficult to reach.

3 Transformations of strongly graceful trees

We consider some transformations of strongly graceful trees that might
be useful in a possible proof of Conjecture 2, and its applications to gen-
erate large classes of (strongly) graceful graphs. We first need one more
definition.

If f is a labeling of the tree T on n vertices, then the complementary
labeling g of T is defined by: g(v) =n—1— f(v) for all v € V(T).

Lemma 4

Let T be a tree on n vertices containing a perfect matching M and having
a strongly graceful labeling f. Let uv and xy be edges of M and let uz €
E(T). Then the following two types of transformations of T' give another
strongly graceful tree.

Type 1. Delete ux and add vy.
Type 2. Delete uz and add uy or vz.

Proof Consider the labels of u, v, z, and y. By the definition of f,
flu)+ f(v) =n—1= f(z) + f(y). Hence |f(v) = f)| =In—1- f(u) -
(n—1— f(x))| = |f(u) — f(z)|. So after a transformation of Type 1 the
resulting tree has exactly the same strongly graceful labeling.

In case of a transformation of Type 2, let T} and 7% denote the trees
of T — ux containing the vertices u and z, respectively. Maintain the
labels of T and replace the labels of T3 by the complementary labels. It
is easy to check that this gives a strongly graceful labeling for the tree
(T — ux) + uy. Similarly, it is easy to give a strongly graceful labeling for
the tree (T — uz) + vz. ]

Lemma 4 can be used to construct classes of graceful trees, starting from
a strongly graceful labeling of a tree containing a perfect matching. Since
the transformations can be applied in the “inverse” direction as well, any
graph in such a generated class could be taken as a starting point. All
graphs in such a class have the same contree.
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Lemma 5

Let T be a tree containing a perfect matching, and let T be the contree of
T. Then T is strongly graceful if and only if the spiketree T* with contree
T< is strongly graceful.

Proof Let T be a strongly graceful tree containing a perfect matching,
and let T° be the contree of T'. If T' is a spiketree, there is nothing to prove.
Suppose T is not a spiketree. Then T contains an edge uv € M such that
the degree of both u and v is at least 2. By repeated transformations of
Type 2 all edges incident with u can be made incident with v, yielding a
strongly graceful tree T/ in which u has degree 1, and with the same contree
as T. Repeating this procedure as long as there are edges of M which are
not incident with an end vertex, we obtain a strongly graceful spiketree T*
with the same contree as T

For the proof of the converse, note that we can use the “inverse” trans-
formations to find a strongly graceful labeling of T starting from a strongly
graceful labeling of T*. [ ]

Lemma 5 shows that to prove Conjecture 2 it would be sufficient to prove
that every spiketree is strongly graceful. However, since a strongly graceful
labeling of a spiketree immediately yields a graceful labeling of its contree
(as in the proof of Theorem 3), this hardly improves the situation. As
remarked by Van den Heuvel [10], interesting trees with a perfect matching
might be those trees for which all nonmatching edges induce stars. It is
easily seen that any spiketree can be transformed into such a type of tree
using transformations of Type 1 or 2.

Attempts to prove Conjecture 1 for trees or Conjecture 2 for trees with
a perfect matching, in any particular form, by induction, are frustrated
essentially by the fact that the vertex label 0 cannot be assumed to occur
at an arbitrary vertex. Trees in which the label 0 can be assigned to each
vertex in some graceful labeling are called 0-rotatable and were studied by
CHUNG & HWANG [7].

If we can keep control over the location of the label 0, some other
transformations, involving the growing of trees, can be mentioned. Again
let M be a perfect matching of a tree T. An edge uv € M is a pendent
edge of T if at most one of the vertices of V' \ {u, v} is adjacent to u or v.
(Note that u or v has degree one.)

Suppose T contains a pendent edge uv and suppose vw € F for a vertex
z € V\ {u} with zy € M.
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Lemma 6

If zy is a pendent edge of T’ = T — {u,v} and T’ admits a strongly graceful
labeling A such that {A(z), A(y)} = {0,n — 3}, then T admits a strongly
graceful labeling p such that {u(u), p(v)} = {0,n - 1}.

Proof Define u(w) = A(w)+1 for all w € V(T”), and choose {u(u), u(v)} =
{0,n — 1} in such a way that the edge vz yields the difference n — 2. (If
u(z) =1, take pu(v) = n — 1; if p(z) = n - 2, take p(v) =0.) |

Lemma 7
If there is a pendent edge st € M \ {uv} such that tx € E, and T' = T —
{u, v} admits a strongly graceful labeling X such that {A(s), A(t)} = {0,n—
3}, then T admits a strongly graceful labeling j such that {p(u), p(v)} =
{0,n—1}.

Proof Without loss of generality assume A(s) = 0 and A(t) = n— 3. First
observe that A(z) = 1 and A(y) = n — 4 (the difference n — 4 can only
be yielded by edges with vertex label pairs (0,n —4) or (1,n — 3)). Define
p(w) = Mw)+2 for all w € V(T") with an even label A(w), p(w) = AMw) for
all other w € V(T”), p(u) = 0, and p(v) = n — 1. Since all even differences
in 7" are yielded by edges with odd label pairs, it is clear that in T all even
differences {2,...,n — 2} are yielded. The odd difference n — 1 is yielded
by wv. It remains to show that all other odd differences are yielded by the
edges of M \ {uv}.

If n = 4k + 2 for some positive integer k, then the edges of M \ {uv} in
T’ yield the label pairs {(0,4k — 1),(1,4k - 2),...,(2k — 2,2k + 1), (2k —
1,2k)}. By adding 2 to all even labels, in T the same edges yield the
pairs {(2,4k — 1), (1,4k),...,(2k,2k + 1), (2k — 1,2k + 2)} corresponding
to differences {4k — 3,4k - 1,...,1,3} ={1,3,...,n - 3}.

If n = 4k, then similarly for 77 we obtain the pairs {(0, 4k — 3), (1,4& —
4),...,(2k — 4,2k + 1), (2k — 3,2k), (2k — 2,2k — 1)}, and for T the pairs
{(2,4k — 3),(1,4k — 2),...,(2k — 2,2k + 1), (2k — 3,2k + 2), (2k, 2k — 1)}
corresponding to differences {4k — 5,4k - 3,...,3,5,1} = {1,3,...,n - 3}.

This completes the proof. |

Note that Lemma 6 and Lemma 7 can be applied whenever a specific suit-
able labeling of a smaller tree is known. We will come back to this in the
next section. '
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4 Applications

Theorem 3, Lemma 6, and Lemma 7 can be used to “grow” (strongly)
graceful trees, what BLOOM [1] calls “horticulture”, whenever a specific
suitable labeling of a smaller tree is known.

The transformations of Type 1 and 2 give the possibility of changing
the structure of a strongly graceful tree. By “spiking” (putting a pendent
edge at every vertex of) any graceful tree, as considered in the proof of
Theorem 3, another (strongly) graceful tree, on twice the number of ver-
tices, is obtained. This spiking procedure can be continued leading to a
growth of each vertex of the original tree into a subtree on 2,4,8,16, etc.
vertices.

In the next examples Lemma 6 and 7 can be applied to yield a strongly
graceful labeling.

It is not difficult to see that every spiketree (or in fact every tree containing
a perfect matching) can be reduced to a path on two vertices by successively
deleting the vertices of a pendent edge at each stage. This is not enough
for our purpose.

We say that two vertex disjoint pendent edges uv and zy of T with
d(u) = d(z) = 1 are close if either vy is an edge of T or v and y have a
common neighbor in T. We say that T is linear if we can reduce T to a
path on two vertices by successively deleting the vertices of a pendent edge
at each stage in such a way that every two successive pendent edges in the
series of deleted pendent edges are close.

Theorem 8
Every linear spiketree is (strongly) graceful.

Proof It is easy to prove this result by induction on the number of ver-
tices, using Lemma 6 and 7. We leave the details to the reader. [ ]

A caterpillar is a tree for which the deletion of all vertices of degree one
results in a path.
The following result is also easy to prove. We omit the proof.

Lemma 9
(a) The contree of a linear spiketree is a caterpillar.

(b) The spiketree of a caterpillar is linear.
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Corollary 10 ([6],{12])
All caterpillars are graceful.

Proof The result is a direct consequence of Lemma 9 (b), Theorem 8, and
the construction used in the second part of the proof of Theorem 3. [ ]

Corollary 11
Every tree containing a perfect matching and having a caterpillar as its
contree Is (strongly) graceful.

Proof The result is a direct consequence of Lemma 5, Lemma 9(b),
Theorem 8, and the transformation method of Lemma 4 (resulting in a
spiketree of a caterpillar). |

Note that we can use the trees satisfying the hypothesis of Corollary 11
again to generate new (strongly) graceful trees with the former trees as
their contrees, and so on, by spiking. This procedure generates (strongly)
graceful “long-legged caterpillars”.

As an example we consider the tree T} of Figure 1.a, in which a perfect

matching is indicated by the heavy lines, its contree T2 in Figure 1.bh to-
gether with a perfect matching, and the contree T3 of 73 in Figure l.c. A
graceful labeling of the caterpillar T} is indicated in Figure 1.c; the strongly
graceful labelings of T> and T} obtained from this labeling are indicated in
Figures 1.b and 1.a, respectively.
The spiking procedure can be generalized. Instead of putting a pendent
edge at every vertex, we may put a K , at every vertex for some integer p.
By doing this the number of vertices is multiplied by p + 1. We illustrate
how to adjust the labeling by the following example. Suppose we start with
a path P3 = uvw with graceful labeling f given by f(u) = 0, f(v) = 2,
and f(w) = 1. Suppose we carry out a generalized spiking by putting a
K 3 at every vertex. We obtain a tree with 12 vertices, in which u has
new neighbors u;,ug,us, v has new neighbors vy, v2,vs, and w has new
neighbors wy, ws, w3. We replace the labels at u,v,w by four times their
value, and label the other vertices in such a way with the remaining labels
from 0,1,...,11 that in all copies of the added K)3’s the sums of the
labels of the three adjacent pairs are 9, 10, and 11. This leads to a graceful
labeling g of the new tree given by g(u) = 0, g(u;) = 9, g(uz) = 10, g(us) =
11,9(v) = 8:9(”1) = 1)9(”2) = 2,9(v3) = 3,9(w) = 4,9(un) = 5, g(ws) =
6,g9(ws) = 7. We leave it to the reader to check the generality of this
procedure.
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Qo

Figure 1: The trees Ty (1.a), T3 (1.b), and T3 (1.c)

As our final application we refer to the interesting problem posed in
CAHIT [4] to prove Conjecture 1 for trees with a fixed diameter, with di-
ameter 5 as the first open case. We cannot prove this special case by our
techniques, but we can generate a large infinite class of graceful trees with
diameter 5. Take as a starting point any tree with diameter 3. This tree
is a caterpillar and hence admits a graceful labeling. Now carry out a gen-
eralized spiking by putting a K, , at every vertex for some integer p. The
new tree is graceful and has diameter 5.
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