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ABSTRACT. Minimum degree two implies the existance of a cy-
cle. Minimum degree 3 implies the existence of a cycle with a
chord. We investigate minimum degree conditions to force the
existence of a cycle with k chords.

1 Introduction

The first theorem of nearly every graph theory course is the statement that
the sum of the degrees is twice the number of edges. In many of those
courses the second theorem is the extremal theorem for cycles:

Theorem 1. If G is a graph with n > 2 vertices and G has either
i) minimum degree > 2 or
ii) at least n edges

then G contains a cycle.

Posa [4] proposed, and Czipszer [3] published a solution of, a variation
of this problem as an exercise in a Hungarian journal.

Theorem 2. If G is a graph with n > 4 vertices and G has either
i) minimum degree > 3 or
ii) at least 2n — 3 edges

then G contains a cycle with a chord.

Our purpose here is to investigate the extremal question for cycles with k
chords. For fixed k we find best possible minimum degree conditions which
forces the existence of a cycle with k chords. Additionally, we consider
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the edge version of the extremal question for cycles with chords, and we
investigate the effect of connectivity assumptions.

Theorem 3. Let G be a graph with minimum degree § > 2. Then
a) G has a cycle with at least [f-;—”-l chords.

b) If G contains no 3-cycle and no 5-cycle, then G has a cycle with at
least 6% — 26 chords.

Proof: If P: V},V,,..., Vg is a longest path in G, note that all neighbors
of V3, are vertices of P. Denote by £(P) the largest index of a neighbor
of Vi and assume that among all longest paths, P has been chosen so that
¢ = ¢(P) is maximum. The vertices Vi, Va,...,V, form a cycle C, and it will
be shown that C has the required number of chords. To see this, let V; be a
neighbor of V; and note that the path Q: V;_1,Vi_s,... V1, Vi, Vi1, ... Vi
is a longest path since it contains all vertices of P. Hence £(Q) < ¢ and
it follows that all neighbors of V;_; are among Vi, Vs,...,V,, that is, all
neighbors of V;_; are on C. Since V; has at least § neighbors, there are at
least & vertices on C with all their neighbors on C. Each of these § vertices
is incident with 2 edges of C, and the remaining § — 2 edges must be chords
of C. Allowing for the possibility that these chords will now be counted

twice, once at each end, we conclude that C has at least [52—;”] chords.

If G contains no 3-cycle and no 5-cycle, the above scheme for counting
chords encounters no duplications. For if V; and Vj; are neighbors of V;
with ¢ < 4, then the lack of triangles means j — 1 # ¢ and ¢ # 3. Hence, if
Vi—1 were adjacent to V;_y, the vertices V1, V;, V;_1, V;_1, and V; would
be distinct and would induce a 5-cycle. It follows that the cycle C has at
least §(8 — 2) chords. 0

Part a) of Theorem 3 is best possible in the loose sense that a complete
graph on § vertices has minimum degree 6 — 1 and contains no cycle with as

many as [Lf‘s] chords. Part b) is sharp in a stronger sense. The complete

bipartite graph Kjs, has minimum degree 6 and has no cycle with more
than 62 — 26 chords.

Note that when 6§ = 3, Theorem 3 improves Theorem 2 since it guarantees
a cycle with 2 chords. A graph in which every block is K4 shows that this
is best possible. Later we will see that a connectivity assumption changes
the situation.

In order to focus on the desired number of chords, we reformulate Theo-
rem 3, expressing the necessary minimum degree in terms of the guaranteed
number of chords.

Corollary 4. If k is a nonnegative integer and G is a graph with minimum
degree 6, then
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a)
b)

If 6§ >1++/2k+1 then G has a cycle with at least k chords.

If G contains no 3-cycle and no 5-cycle and 6§ > 1+ vk +1, then G
has a cycle with at least k chords.

Proof: a) £528 > kb) 62 - 26 > k
We now add a connectivity assumption to the interesting case of § = 3.

Theorem 5. Let G be 2-connected with n > 5 vertices and § > 3. Then
G has a cycle with at least 3 chords.

Proof: As in the proof of Theorem 1, we let P: V4, V3, ..., Vi be a longest
path maximizing €. Consider these cases:

a)

b)

If £ = 4, then V; must be adjacent to all of V5, Vs, and V4. Hence,
since Va3 and Vj are neighbors of Vi, both V2 and V3 have all their
neighbors on C. Hence V;, V3, V3, and Vj; induce Kj and, since n > 5,
V, is a cut vertex, ruled out by hypothesis.

Now, if £ = 5, then, if n = 5, G has at least 8 edges, so C has
at least 3 chords. If » > 5 and V; has degree larger than 3, then
every vertex of C has all its neighbors on C, and so C has at least 3
chords. If V; has degree exactly 3, then Vi is adjacent to V3, V5, and
either V3, or V3. If V; is adjacent to Vj, then V3 has all neighbors
on C, so V3 is adjacent to Vs and Vo, Vq,Vy, V3, V5, V5,...,Vk is a
longest path. It follows that V, has all its neighbors on C. Since V;
is adjacent to Vs, V4, and Vs, it follows that V;, Va, and V4 have all
neighbors on C. Hence Vs is a cut vertex. If the neighbors of V; are
V3, Va, and Vs, then immediately we know that V;, V3, and V; have
all neighbors on C. But this forces V4 to be adjacent to V2, and the
path V3, V;, Vo, Vy, V5, Vg, ..., Vi is a longest path. Hence V3 has all
its neighbors on C and again V5 is a cut vertex.

Finally if ¢ > 6, we will show C has at least 3 chords. Suppose
V1 is adjacent to V; in addition to V3 and V. If j # £ — 1 then,
since both V;_; and Vj;_1 have all neighbors on C, the chord V; —V;
along with the chords incident with Vz_; and V;_; total 3 unless
Ve—1 is adjacent to Vj_;1. If V;_; is adjacent to V;_;, then the path
Ve—2,Ve—-3,...V;,V1,Va,...Vj_1,Ve—1, V4, ... Vi is a longest path and
it follows that V;_» has all neighbors on C. This produces a third
chord. If j = ¢ — 1, we have the chord V; — V; and another chord
incident with V;_i, say V;_1 — Vi with ¢ < 7 — 1. In this case
Vit1,--. V; 1,%, i—1y.+- V1, V;, Vi, ... Vi is a longest path and there
is a third chord mcndent with V4. If in this case j = £ — 1 we have
V;—1 incident with V;, then the path V;_3,V;_a,... V1, V;,V;_1,V,,...
Vi is a longest path and again there must be a third chord. O
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The graph K353 shows that the hypotheses of Theorem 5 do not force
more than 3 chords.

Theorem 6. If G has n vertices, n > 4 and at least 2n — 2 edges, then G
contains a cycle with at least 2 chords.

Proof: For n = 4 the assertion is true, the only such graph being Kj.
Assume the assertion for graphs with fewer than n vertices and consider
G with n vertices and at least 2n — 2 edges. If G has minimum degree at
least 3, G has a cycle with at least 2 chords by Theorem 5. If not, deletion
of a vertex V of degree 2 or less leaves a subgraph to which the induction
assumption applies. That subgraph, and hence G, has a cycle with at least
2 chords. o

Theorem 7. If G is 2-connected with n vertices, n > 5, and at least 2n —2
edges, then G contains a cycle with at least 3 chords.

Proof: If n =5, G is missing at most 2 edges from Kj, and it is easily ver-
tified that G has a 5-cycle with 3 chords. Making the appropriate induction
assumption, we consider the two cases. If G has minimum degree at least
3, the result follows from Theorem 5. If not, we delete a vertex V of degree
less than 3. If G — V is 2-connected, then the induction assumption can
be invoked. If not, then there is a vertex W such that G — {V, W} is not
connected. Say C; is a component and Cjs is the union of the remaining
components of G — {V, W}. Note that V' must have a neighbor V; in C and
a neighbor V; in Cs or else W would be a cut vertex of G. Now consider the
graph H obtained from G by removing V' and introducing an edge joining
Vi and V5. G has n — 1 vertices, at least 2n — 3 edges, and is 2-connected,
so, by the induction hypothesis, H has a cycle C with at least 3 chords.
The edge V1 V2 is not a chord of that cycle since the removal of edge Vi V>
leaves a subgraph of H in which V; and V; are in distinct blocks. If C does
not contain the edge V;V,, then C is a cycle of G with 3 chords. If V1V is
an edge of C, replace it by the path V; V' V5 to obtain a cycle of G with at
least 3 chords. O

Some further questions we find interesting are discussed in [1] and [2].
Among these we mention especially the following, due to Peter Hamburger.
What minimum degree forces the existence of a cycle with as many chords
as vertices?
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