A Note on Hamiltonian Cycles in $K_{1,r}$ -Free Graphs

Rao Li

Dept. of Mathematical Sciences
University of Memphis
Memphis, TN38152
U.S.A.

ABSTRACT. A graph is called $K_{1,r}$ -free if it does not contain $K_{1,r}$ as an induced subgraph. In this paper we generalize a theorem of Markus for Hamiltonicity of 2-connected $K_{1,r}$ -free $(r \geq 5)$ graphs and present a sufficient condition for 1-tough $K_{1,r}$ -free $(r \geq 4)$ graphs to be Hamiltonian.

1 Introduction

We consider only finite undirected graphs without loops and multiple edges. For notation and terminology not defined here we refer to [2]. We use n to denote the order of a graph. A graph G is called $K_{1,r}$ -free if it does not contain $K_{1,r}$ as an induced subgraph. A graph G is called 1-tough if $t(G-S) \leq |S|$ for every subset S of V(G) with t(G-S) > 1, where t(G-S) denotes the number of components of G-S. We use $\sigma_k(G)$ to denote the minimum value of the degree sum of any k pairwise nonadjacent vertices if $k \leq \alpha$; if $k > \alpha$, we set $\sigma_k(G) = k(n-1)$. Here α denotes the independence number of G. Let A, B be two disjoint subsets of V(G), we define

$$E(A,B) = \{ab : a \in A, b \in B; ab \in E(G)\}.$$

The following two theorems are due to Markus.

Theorem 1 [7] Let G be a 2-connected $K_{1,4}$ -free graph of order n with $\delta \geq (n+2)/3$. Then G is Hamiltonian.

Theorem 2 [7] Let G be a 2-connected $K_{1,r}$ -free $(r \geq 5)$ graph of order n with $\delta \geq (n+r-3)/3$. Then G is Hamiltonian unless G-E(G-T) is $K_{r-1,r-2}$, where T is any largest independent set of G.

The aim of this paper is to present the following results, the first of which is a generalization of Theorem 2.

Theorem 3 Let G be a 2-connected $K_{1,r}$ -free $(r \geq 5)$ graph of order n with $\sigma_3 \geq n+r-3$. Then G is Hamiltonian unless G-E(G-T) is $K_{r-1,r-2}$, where T is any largest independent set of G.

Theorem 4 Let G be a 1-tough $K_{1,r}$ -free $(r \ge 5)$ graph of order n with $\sigma_3 \ge n + r - 5$. Then G is Hamiltonian.

Notice that $K_{1,4}$ -free graphs are also $K_{1,5}$ -free graphs, so we have the following corollary.

Corollary 1 Let G be a 1-tough $K_{1,4}$ -free graph of order n with $\sigma_3 \geq n$. Then G is Hamiltonian.

Remark 1. Theorem 21 in [3] implies that every 2-connected $K_{1,r}$ -free graph of order $n \geq 9r-13$ and $\sigma_3 \geq n+2$ is Hamiltonian. So Theorem 21 in [3] is stronger than Theorem 3 if the order n of the graph is at least 9r-13. Since any 1-tough graph is 2-connected, Theorem 21 in [3] is also stronger than Theorem 4 if $r \geq 7$ and the order n of the graph is at least 9r-13.

Remark 2. For $n=3s+1\geq 10$, construct the graph H from $3K_s+K_1$ by choosing one vertex from each copy of K_s , say u, v and w, and adding the edges uv, vw and wu. Then the graph H is a 1-tough $K_{1,r}$ -free (where r=4 and 5) graph of order n with $\sigma_3(H)\geq n-1$, but H is not Hamiltonian. So Theorem 4 for r=5 and Corollary 1 are best possible.

2 Lemmas

Lemma 1 (Theorem 10 in [1]) Let G be a 2-connected graph on n vertices such that $\sigma_3 \geq s \geq n+2$. Then G contains a cycle of length at least $\min\{n, n+s/3-\alpha\}$.

Lemma 2 [6] Let G be a balanced bipartite graph of order n with $\delta \geq (n+2)/4$. Then G is Hamiltonian.

Lemma 3 [5] Let G be a 1-tough graph of order n with $\sigma_3 \geq s \geq n$. Let C be a longest cycle in G. Then $|V(C)| \geq \min\{n, n+s/3-\alpha+1\}$.

Lemma 4 [4] Let G be graph of order at least 3 with $\alpha \leq k$, where k is the connectivity of G. Then G is Hamiltonian.

3 Proofs

Proof of Theorem 3. Suppose G is a graph satisfying the conditions in Theorem 3 and it is nonhamiltonian. By Lemma 4, we can assume that $\alpha \geq 3$. By Lemma 1, we have

$$n+(n+r-3)/3-\alpha \leq n-1$$
, so that

$$\alpha \geq (n+r)/3$$
.

Let $T = \{v_1, v_2, ..., v_{\alpha}\}$ be any largest independent set in G. Without loss of generality, we assume that $d(v_1) \leq d(v_2) \leq ... \leq d(v_{\alpha})$. By assumption, we have

$$d(v_i) + d(v_{i+1}) + d(v_{i+2}) \ge n + r - 3.$$

where $1 \leq i \leq \alpha$, $v_{\alpha+1} = v_1$ and $v_{\alpha+2} = v_2$.

Since G is $K_{1,r}$ -free, we can obtain the following inequality:

$$(\star) \qquad \alpha(n+r-3) \leq 3(d(v_1)+d(v_2)+...+d(v_{\alpha})) = 3|E(T,G-T)| \leq 3(r-1)(n-\alpha),$$

Hence, using $\alpha \ge (n+r)/3$, we have $2r-3 \le n \le 2r$.

If n = 2r - 1 or 2r - 2, then by $\alpha \ge (n + r)/3$, we have $\alpha \ge r$. Using inequality (\star) , we can easily derive a contradition. So we may assume that n = 2r or 2r - 3.

If
$$n = 2r$$
, then $\alpha \ge (n+r)/3 = r$ and

$$r(3r-3) \le \alpha(n+r-3) \le 3(d(v_1)+d(v_2)+...+d(v_{\alpha})) = 3|E(T,G-T)| \le 3(r-1)(n-\alpha) \le r(3r-3)$$

Hence $\alpha = r$; $d(v_i) = r - 1$, $1 \le i \le \alpha$; $d_T(u) = r - 1$, for each $u \in G - T$. Let H be the graph G - E(G - T). Then H is a balanced bipartite graph with $\delta = r - 1 \ge (n + 2)/4$. So by Lemma 2, H is Hamiltonian and so is G, a contradiction.

If
$$n = 2r - 3$$
, then $\alpha \ge (n + r)/3 = r - 1$ and

$$3(r-1)(r-2) \le \alpha(n+r-3) \le 3(d(v_1)+d(v_2)+...+d(v_\alpha)) = 3|E(T,G-T)|$$

$$\le 3(r-1)(n-\alpha) \le 3(r-1)(r-2).$$

Hence $\alpha=r-1$; $d(v_i)=r-2$, $1\leq i\leq \alpha$; $d_T(u)=r-1$ for each $u\in G-T$. Thus G-E(G-T) is isomorphic to $K_{r-1,r-2}$.

Proof of Theorem 4. Suppose G is a graph satisfying the conditions in Theorem 4 and it is nonhamiltonian. Since any 1-tough graph is 2-connected, by Lemma 4, we can assume that $\alpha \geq 3$. By Lemma 3, we have

$$n + (n+r-5)/3 - \alpha + 1 \le n-1$$
, so that

$$\alpha \geq (n+r+1)/3$$
.

Let $T = \{v_1, v_2, ..., v_{\alpha}\}$ be any largest independent set in G. Without loss of generality, we can assume that $d(v_1) \leq d(v_2) \leq ... \leq d(v_{\alpha})$. Then by assumption, we have

$$d(v_i) + d(v_{i+1}) + d(v_{i+2}) \ge n + r - 5.$$

where $1 \leq i \leq \alpha$, $v_{\alpha+1} = v_1$ and $v_{\alpha+2} = v_2$.

Since G is $K_{1,r}$ -free, we can obtain the following inequality:

$$\alpha(n+r-5) \le 3(d(v_1)+d(v_2)+...+d(v_{\alpha})) = 3|E(T,G-T)| \le 3(n-\alpha)(r-1),$$

Hence, using $\alpha \ge (n+r+1)/3$, we have $2r-4 \le n \le 2r+2$.

Since G is 1-tough, $\alpha \leq \lfloor n/2 \rfloor$. By $\alpha \geq (n+r+1)/3$, we have n=2r+2. Thus $\alpha \geq (n+r+1)/3 = r+1$ and

$$3(r-1)(r+1) \leq \alpha(n+r-5) \leq 3(d(v_1)+d(v_2)+...+d(v_{\alpha})) = 3|E(T,G-T)| \leq 3(n-\alpha)(r-1) \leq 3(r-1)(r+1).$$

Hence $\alpha = r+1$; $d(v_i) = (n+r-5)/3 = r-1$, $1 \le i \le \alpha$; $d_T(u) = r-1$ for each $u \in G-T$. Let H be the graph G-E(G-T). Then H is a balanced bipartite graph with $\delta = r-1 \ge (n+2)/4$. Thus by Lemma 2, H is Hamiltonian and so is G, a contradiction.

4 Acknowledgment

The author thanks Dr. Schelp, Dr. Markus for their help and is grateful to the referees for valuable suggestions.

References

- [1] D.Bauer, H.J.Veldman, A.Morgana, E.F.Schmeichel. Long cycles in graphs with large degree sums. *Dis. Math.* **79** (1989/90), 59-70.
- [2] J.A.Bondy and U.S.R.Murty. Graph Theory with Applications. Macmillan, London and Elsevier, New York (1976).
- [3] G.Chen and R.Schelp. Hamiltonicity for $K_{1,r}$ -free graphs. J.G.T. 4 (1995), 423-439.
- [4] V.Chvátal and P.Erdős. A note on hamiltonian cycles. Dis. Math. 2 (1972), 111-113.
- [5] V.D.Hoa. A sharp lower bound for the circumference of 1-tough graphs with large degree sums. J.G.T. 2 (1995), 137-140.
- [6] B.Jackson. Long cycles in bipartite graphs. J.C.T.(B) 38 (1985), 118– 131.
- [7] L.Markus. Hamiltonian results in $K_{1,r}$ -free graphs. Congressus Numerantium 98 (1993), 143-149.