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ABSTRACT. A graph is called K —free if it does not contain
K+ as an induced subgraph. In this paper we generalize a
theorem of Markus for Hamiltonicity of 2—-connected K ,—free
(r > 5) graphs and present a sufficient condition for 1-tough
K, ~free (r > 4) graphs to be Hamiltonian.

1 Introduction

We consider only finite undirected graphs without loops and multiple edges.
For notation and terminology not defined here we refer to [2]. We use »
to denote the order of a graph. A graph G is called K ,—free if it does
not contain K, as an induced subgraph. A graph G is called 1-tough if
t(G-S) < |S| for every subset S of V(G) with ¢(G —S) > 1, where t(G—S)
denotes the number of components of G — S. We use o4(G) to denote the
minimum value of the degree sum of any k pairwise nonadjacent vertices if
k < a;if k > a, we set gx(G) = k(n—1). Here a denotes the independence
number of G. Let A, B be two disjoint subsets of V(G), we define

E(A,B)={ab:a€ A,b € B;ab € E(G)}.
The following two theorems are due to Markus.

Theorem 1 [7] Let G be a 2-connected K, 4—free graph of order n with
§ > (n+2)/3. Then G is Hamiltonian.

Theorem 2 [7] Let G be a 2-connected K, .—free (r > 5) graph of order

n with § > (n+ 1 — 3)/3. Then G is Hamiltonian unless G — E(G —T) is
Kr_1r—2, where T is any largest independent set of G.
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The aim of this paper is to present the following results, the first of which
is a generalization of Theorem 2.

Theorem 3 Let G be a 2-connected Ky ,—free (r > 5) graph of order n
with 03 2> n+r — 3. Then G is Hamiltonian unless G — E(G - T) is
K, _1r_2, where T is any largest independent set of G.

Theorem 4 Let G be a 1-tough K, .—free (r > 5) graph of order n with
o3 > n+r—>5. Then G is Hamiltonian.

Notice that K 4—free graphs are also K s—free graphs, so we have the
following corollary.

Corollary 1 Let G be a 1-tough Ky 4—free graph of order n with o3 > n.
Then G is Hamiltonian.

Remark 1. Theorem 21 in [3] implies that every 2—connected K ,—free
graph of order n > 9r — 13 and o3 > n + 2 is Hamiltonian. So Theorem
21 in [3] is stronger than Theorem 3 if the order n of the graph is at least
9r — 13. Since any 1-tough graph is 2-connected, Theorem 21 in [3] is also
stronger than Theorem 4 if r > 7 and the order n of the graph is at least
9r — 13.

Remark 2. For n = 3s+1 > 10, construct the graph H from 3K, + K
by choosing one vertex from each copy of K}, say u, v and w, and adding
the edges uv, vw and wu. Then the graph H is a 1-tough K ,—free (where
r =4 and 5) graph of order n with o3(H) > n—1, but H is not Hamiltonian.
So Theorem 4 for » = 5 and Corollary 1 are best possible.

2 Lemmas

Lemma 1 (Theorem 10 in [1]) Let G be a 2-connected graph on n vertices
such that 03 > s > n+ 2. Then G contains a cycle of length at least
min{n,n +s/3 — a}.

Lemma 2 [6] Let G be a balanced bipartite graph of order n with § >
(n+2)/4. Then G is Hamiltonian.

Lemma 3 [5] Let G be a 1-tough graph of order n with 03 > s > n. Let
C be a longest cycle in G . Then |V(C)| 2 min {n,n+s/3 —a+1}.

Lemma 4 [{] Let G be graph of order at least 3 with o < k, where k is the
connectivity of G. Then G is Hamiltonian.
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3 Proofs

Proof of Theorem 3. Suppose G is a graph satisfying the conditions in
Theorem 3 and it is nonhamiltonian. By Lemma 4, we can assume that
a > 3. By Lemma 1, we have

n+(n+r-3)/3—a<n-1,so that
a>(n+r)/3.
Let T = { v1,v2, ...,va } be any largest independent set in G. Without

loss of generality, we assume that d{v;) < d(vp) < ... < d(v,). By assump-
tion, we have

d('u,-) + d('UH.l) + d(v.-+2) >n+r-3.
where 1 <1 < @, vo+1 = v1 and vaq2 = vo.
Since G is K ,—free, we can obtain the following inequality:

(*) aln +r —3) < 3(d(v1) + d(v2) + ... + d(va)) =
3|E(T,G-T)| < 3(r—1)(n—a),

Hence, using o > (n+1r)/3, we have 2r —3 <n < 2r.

Ifn=2r—1or 2r —2, then by a > (n+r)/3, we have a > r. Using
inequality (%), we can easily derive a contradition. So we may assume that
n=2ror2r-3.

Ifn=2r, thena > (n+r)/3=r and

7(3r—3) < a(n+r—3) < 3(d(v1) +d(v2) +...+ d(va)) = 3| E(T,G —-T)|
<3(r-1)(n—a) <r(3r-23)

Hencea=r;d(v)=r—1,1<i<a;dp(u)=r—1,foreachue G-T.
Let H be the graph G — E(G —T). Then H is a balanced bipartite graph
with 6§ =r—1 > (n+2)/4. So by Lemma 2, H is Hamiltonian and so is
G, a contradiction.

Ifn=2r—-3,thena>(n+r)/3=7r-1and
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3(r—1)(r—2) < a(n+r-3) < 3(d(v1)+d(v2)+...4+d(va)) = 3| E(T, G-T)|
<S3(r—-1)(n-a)<3(r-1)(r-2).

Hence a =r—1;d(v»;) =7-2,1 <17 < a; dr(u) = r—1 for each
v € G —T. Thus G — E(G - T) is isomorphic to K,_y r_g.

Proof of Theorem 4. Suppose G is a graph satisfying the conditions
in Theorem 4 and it is nonhamiltonian. Since any 1-tough graph is 2-
connected, by Lemma 4, we can assume that a > 3. By Lemma 3, we have

n+(n+r-5)/3—a+1<n-1,sothat

a>(n+r+1)/3.

Let T = {vy,v9,...,94} be any largest independent set in G. Without

loss of generality, we can assume that d(v;) < d(v2) < ... < d(va). Then by
assumption, we have

d(v;) + d(vit1) + d(vig2) > n+r —5.
where 1 < i < @, Vo1 =v; and vg42 = V2.
Since G is K —free, we can obtain the following inequality:

a(n+r—5) < 3(d(v1) + d(v2) + ... + d(va)) = 3|E(T,G - T)| < 3(n —
a)(r - 1):

Hence, using a > (n+r+1)/3, we have 2r —4 <n < 2r +2.

Since G is 1-tough, a < |n/2]. By a > (n+r+1)/3, we have n = 2r4 2.
Thusa > (n+r+1)/3=r+1and

(r—1)(r+1) < aln+r—5) < 3(d(v1) + d(v2) + ... + d(va)) =-
3|E(T,G-T)| <3(n—a)(r—1) < 3(r-1)(r+1).

Hence a=r+1;d(v;) =(n+r-5)/3=r-1,1<i<a;dr(u)=r—-1
for each u € G —T. Let H be the graph G — E(G —T). Then H is a
balanced bipartite graph with § =r —1 > (rn + 2)/4. Thus by Lemma 2,
H is Hamiltonian and so is G, a contradiction.

202



4 Acknowledgment

The author thanks Dr. Schelp, Dr. Markus for their help and is grateful
to the referees for valuable suggestions.

References

[1] D.Bauer, H.J.Veldman, A.Morgana, E.F.Schmeichel. Long cycles in
graphs with large degree sums. Dis. Math. 79 (1989/90), 59-70.

[2] J.ABondy and U.S.R.Murty. Graph Theory with Applications.
Macmillan, London and Elsevier, New York (1976).

[3] G.Chen and R.Schelp. Hamiltonicity for K, ,—free graphs. J.G.T. 4
(1995), 423-439.

[4] V.Chvital and P.Erdds. A note on hamiltonian cycles. Dis. Math. 2
(1972), 111-113.

[5] V.D.Hoa. A sharp lower bound for the circumference of 1-tough graphs
with large degree sums. J.G.T. 2 (1995), 137-140.

[6] B.Jackson. Long cycles in bipartite graphs. J.C.T.(B) 38 (1985), 118~
131.

[7] L.Markus. Hamiltonian results in Kj,—free graphs. Congressus Nu-
merantium 98 (1993), 143-149.

203



