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Abstract. Let T, denote any rooted tree with n nodes and let p =

?(Tn) and g = ¢(Ty) denote the number of nodes at even and odd dis-
tance, respectively, from the root. We investigate the limiting distribution,
expected value, and variance of the numbers D(Ty) = [p = q| when the
trees T belong to certain simply generated families of trees.

1. Introduction

Every non-trivial tree T), is a bipartite graph, that is, its nodes can be
partitioned into two subsets P and Q such that no two nodes of the same
subset are joined by an edge. If T, is a rooted tree, then we may take
P and Q to consist of the nodes at even and odd distance from the root.
We call p = |P| and ¢ = |Q| the bipartition numbers of T,, and we let
D = D(T,) = |p— q|. Since p + ¢ = n, the total number of nodes in the
tree Ty, it follows that D? = 2p® + 29 — n2. This relation was exploited in
[11] to show that the expected value of D?(Tj,) over all trees 7, in certain
simply generated families F of trees is asymptotic to An/4, where A is a
constant whose value depends on F.

Our main object here is to determine the limiting distribution of D
over trees T, in certain simply generated families F and, in particular,
to show that the expected value of D(T,) is asymptotic to (An/2m)!/2.
In §2 we derive an expression for the number of trees T}, in F with given
bipartition numbers in terms of coefficients of powers of a certain generating
function. In §3 we present some results on the asymptotic behaviour of such
coefficients. Then in §4 we apply these results to the expression found in
§2 to obtain our main results on the distribution of D.
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2. Simply Generated Trees with Given Bipartition Numbers

We recall that ordered trees are (finite) rooted trees with an ordering
specified for the branches incident with each node as one proceeds away
from the root (see [8; p. 306]). Given a sequence ' = {¢co = 1, ¢1,---} of
non-negative numbers, we define F = Fr to be the set of weighted ordered
trees such that each ordered tree T, is assigned the weight

‘I.U(Tn) = Hc’_ G(Tn)’

where N;(T,) denotes the number of nodes of T, that are incident with
i edges leading away from the root (see, e.g., [9] or [14]). We call such a
family F a simply generated family of trees.

Let y, = Y w(Tn) where the sum is over all trees T, in F with n nodes;
we refer to y, as the (weighted) number of trees T, of F. It is not difficult
to see that the generating function y = ) y»2" of the simply generated
family F satisfies the relation

(2.1) y=z2(y),

(=]
where ®(t) = 1+ ) cnt™. Two familiar examples of such families are the
1

ordinary ordered trees, for which ®(t) = (1 —t)~! and y, = n~1- (3*7),
and the rooted labelled trees, for which ®(f) = ¢* and y, = n""1 /n!. We
assume henceforth that F is some particular simply generated family whose
generating function satisfies relation (2.1).

Let y, p denote the sum of the weights of all trees T, of F such that T,
has p nodes at even distance from the root. In order to obtain a formula for

these numbers we shall obtain, more generally, a formula for the numbers

yﬂ.}’(k) = Z y”lrpl o -ynktp*’

where the sum is over all solutions in positive integers to the equations
ni+---+ngy=nandp; +---+px =p, for k=1,2,--- . Note that y, p(k)
is the (weighted) number of forests consisting of an ordered collection of &
trees from F such that there are n nodes altogether in these trees and p of
these nodes are at even distance from the root of the corresponding tree.

In what follows we let Cx{G(t)} or, more briefly, Cx{G} denote the
coefficient of ¢X in the power series G(t).
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Theorem 1. If1 <k < p< n, then

(2.2) np(B) = = Cur{8°7P}-Cooy{@?),

Proof. The proof will be by induction on n. If n = p then yn n(k) equals
1 or 0 according as k = n or k < n, and it is easy to see that formula
(2.2) holds in this case. So we may assume that 1 < k < p < n and that
formula (2.2) holds for all admissible values of the parameters when the
total number of nodes involved is less than n.

Let F denote any forest of the type counted by yn (k) where n > p. If
we remove the k root nodes of F and all their incident edges, we obtain
a forest F' consisting of an ordered collection of j trees from F for some
integer j such that 1 < j < n — p; we may regard the trees in F’ as being
rooted at the nodes originally joined to the k root nodes of F. There are
n — k nodes in F’/ and n — p of these nodes are at even distance from
the root of the corresponding tree of F’. Now there are yn—,n-p(j) such
forests F’, by definition; and it is not difficult to see that the number of
ways of attaching the k root nodes of F to the j root nodes of F', taking
the weight factors associated with the k root nodes of F into account, is
equal to C;{®*}. Consequently, when n > p the numbers Yn,p (k) satisfy the
recurrence relation

n-p
= Z CJ{Qk} . yn-k,n—P(j)‘
Jj=1

(2.3) Yn,p(F)

When we apply the induction hypothesis to the factor yn—k,n-p(j) in
relation (2.3) and simplify, using the relation mCp, {G} = Cpn—1{G'} twice,
we find that

Unp(k) = (7 = P)T1Cpoi {2777} D 5C;{B*} - Carpej{ 2P}
J
= (0= P) G {®" 7} 3 Cima (KBTI} Cop s {907}
J

= £Cpor {87} - (n — )" 1Casp1 {2710}
= kp~'Cpi {2"7P} - Ca—p{2°},

as required. This suffices to complete the proof of the theorem. (Expression
(2.2) can also be deduced from Lagrange’s inversion formula. The argument
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used above can be formulated so as to provide another combinatorial proof
of Lagrange’s formula.)

Since the numbers y, p introduced earlier are the same as the numbers
Yn (1), it follows from formula (2.2) that

(24) Ynp =P Cpor{®"7F} - Cop{PF}

In order to investigate the asymptotic behaviour of y, » we need informa-
tion on the behaviour of the coefficients of high powers of functions. Such
coefficients are closely related to the distribution of sums of suitably defined
independent, identically distributed random variables. There is an exten-
sive literature on such problems (cf. [6; Chap. 9] and [4; Chap. XVI]). To
make this paper fairly self-contained, we shall present versions of certain
results of this nature in the next section; these particular versions are useful
in treating various problems of asymptotic enumeration.

3. On the Coefficients of Powers of Functions

We assume from now on that the function
() =1+ icmt"’
1
satisfies the following conditions:
(3.1) em>0 for m>1 and ¢; >0 forsome j>1;
(3.2) ged{m: m>1 and cm>0}=1;

(3.3) ®(t) is analytic when |t|< R, where 0 < R< 0.
The functions g(t) and A(t) are defined as follows for 0 < ¢ < R;

(3.4) o(t) =t 3 log B(1) = 12/(1)/2(1);
(3-5) A(t) = tg'(t) = 22" (1)/2(t) + 9(t) — 9*(2)-
It is not difficult to see that A(t) > 0for 0 <t < R, so
(3.6) g(t) 1is strictly increasing for 0<t < R.

This implies that the inverse function g~!(s) exists for s € (0, S), where
S=sup {g(t): 0<t<R}.
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Theorem 2. Let [sy, s3] be any fized closed subinterval of (0,S); let K and
N be integers tending to infinity in such a way that

(3.7) s1<K/N<s,

for all sufficiently large values of N; and let r := g~Y(K/N). Then

(38)  Cx{®V}= (2mAN) V. eN (1)K {14+ O(N"Y)}

holds uniformly as K,N — oo and the constant implicit in the O-term

depends only on s; and s,.

This can be proved by applying the saddlepoint method. See, for exam-
ple, [3; p. 646], [7; p. 868], [1; p. 1115], [12; p. 290] or [5; p. 193] for results
that are either essentially equivalent or closely related to this; in particular,
refinements of the error term are given in [7] and [1].

We now impose more restrictive conditions on the relative sizes of K
and N, this permits us to obtain more explicit estimates for the individual
coefficients Cx {®"} and for certain sums involving these coefficients.

Theorem 3. Let « be a constant such that 0 < a < S and let := g~ ().
Suppose the integers K and N tend to infinity in such a way that

(3.9) A=K —aoN = O(N??3)
as N = co. Then

Ce{®N} = (2nA(m)N) 2. &N (g)g~K e~ 27/24N

(3.10) .
x {1+ O(1/N)+ O(A/N) + O(A%/N?)}

holds uniformly as N — oo. Furthermore,
(3.11) E "1C, &V} < QN(n)e_Azle(q)N {14+ 0(A3%/N?%)},

where the sum is over all v such that v > K if A > 0 and over all v such
that v< K if A< 0.

Remark. Relation (3.10) is, in effect, a version of the classical local limit
theorem for sums of suitably defined independent, identically distributed
random variables (cf. [6; p. 243], [4; p. 533], or [13; p. 208]). The error terms
in the right-hand sides of relations (3.10) and (3.11) appear as multiplicative
factors of the leading terms; and there are no isolated additional error
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terms. This fact will be useful in estimating sums involving the coefficients
Cx{®"V}.

Proof of (3.10). Since K/N = a + A/N = a+o0(1) as N — oo and
0 < a < S, hypothesis (3.7) of Theorem 2 will be satisfied with suitably
chosen s; and s, for all sufficiently large values of N. We let r = g~1(X/N),
as before.

It follows from Taylor’s theorem that

A/N = K/N —a=g(r) — g(n) = ¢'(n)(r —n) + O((r - 1)*)
= A(r/n—1) +O((r/n - 1)),
where we write A for A(n) = ng’(n). This implies that
(3.12) r/n—1= AJAN + O(A2/N?).

Next we expand the function Q(t) = N log®(t) — K logt about ¢ = n. We
find, taking (3.4) and (3.5) into account, that

Q) ={Na-K)y! and Q"(n)=(NA-Na+K)n™?
and, since K — Na = A, that
(3.13) Q(r) = Q(n)—A(r/n=1)+} (AN+A)(r/n—1)*+O(N(r/n-1)).
Relations (3.12) and (3.13) imply that
Q(r) = Q(n) — A*/2AN + O(A%/N?)
or, equivalently, that

(3.14) BN (r)r=K = &N (n)g X - ~472AN (1.4 O(A%/N?)}.
Finally,
(3.15) A(r) = An) + O(r — n) = A+ O(A/N),

appealing to (3.12) again. Conclusion (3.10) now follows from relations
(3.8), (3.14), and (3.15).

Proof of (3.11). IfA < 0,then K/N < aandr =g~} (K/N) < g~ (a) =19,
provided that N is sufficiently large to ensure that (3.7) is satisfied. But
then

Z ',vcv{q,N} < E 77K . TU_KCV{QN}

(3.16) vsK vsK

< (/)% - 2% (r),
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and the required conclusion now follows from relation (3.14). An analogous
argument applies when A > 0.

Remark. Inequality (3.16) and its derivation are similar in spirit to the
statement and derivation of Chernoff’s inequality (cf. [2] or [1]). For ex-
amples of stronger and more complicated results on large deviations, see,
e.g. [1; p. 1117], [12; p. 290), or [4; p. 552].

4. Main Results
We recall that F denotes some simply generated family of trees whose
generating function y = ) y,z" satisfies the relation y = z®(y) where
=

®(t) = 1+ ) _cmt™. We shall assume henceforth that the function ®(t) not
1

only satisfies conditions (3.1) - (3.3) but that, in addition, there exists a
number 7, where 0 < 7 < R, such that

(4.1) 7' (1) = &(7).

This implies that we may apply Theorem 3 with @ = 1 and 5 = 7 in this
case. Moreover, A(r) = r2®"(7)/®(7), in view of (4.1) and definitions (3.4)
and (3.5). From now on we write A for A(t). We remark that

(4.2) 4o = T(2mAR®) 2 (B(r) /)" - {1 + O(n~1)}

as n — oo (cf. [9; p. 1000] or [14; p. 32]). More generally, it follows from
Lagrange’s inversion formula and (3.10) that if k = O(n?/3), then

k
Cn{?f} = n Cn—k{Qn—k}
= (211'An3)'1/2k<1>" (1')1""“6""2/2‘4"

x {1+ 0(1/n) + O(k/n) + O(k*/n?)}.

Other versions of this last relation, valid for more restricted values of k,
have been given in [10, p. 581] and [14; p. 41].

We now use the results of the preceding sections to determine the limiting
behaviour of the fraction Yn,p/yn of trees T, in F that have bipartition
numbers p and n — p when |2p — n| is relatively small; and we give a
simple upper bound for this fraction when |2p — n| is larger. We then use
these results to determine the limiting behaviour of the expected value, the
variance, and the distribution of D(T},).

27



Theorem 4. Let n and p be integers such that 1 < p < n —1; and for any
fized positive constant h, let H(n) = [(2Ahnlogn)!/?]. If

12p — n| < H(n),

then
(4.3)
Unp/Un = 4(2mAn)~1/2¢=28%/40 (1 L O(1/n) + O(A/n) + O(A%/n?)}

holds uniformly as n — oo where A = 2p —n. If

12p - n| > H(n),
then
(4.4) Yoo/t = O(n¥/271)
as n — co.

Proof of (4.8). We showed earlier that
(4.5) Ynp =P Cp1{®" 7P} Cnp{2F}.

It is not difficult to see that the relation (p— 1) — (n — p) = O((n — p)*/?)
certainly holds here, so we may apply (3.10) with K =p—1, N=n-—
p, a =1, and 7 = 7 to estimate the factor C,_;{®"?}; and then, since
(n—p)—p = O(p*3), we may apply (3.10) with K =n—p, N=p, a=
1, and 5 = 7 to estimate the other factor C,,_, {®”}. When we combine these
estimates in (4.5) and take into account that p~! = 2n=1. (1+ O(A/n)),
we find that

Ynp = (2r/7rAn2)(<I>(r)/-r)"-e'm’/""-{1+O(1/n)+0(A/n)+0(A3/n2)}.

This and relation (4.2) imply conclusion (4.3). We remark that (4.3) re-
mains valid when [2p — n| = O(n?/3).

Proof of (4.4). We shall carry out the proof when 2p —n > H = H(n).
In this case n —p < p— H and H = O(p*3). If we appeal to (3.11) with
K=p—-H, N=p, a=1,and n=r, we find that

T PCa{@P} < D 0, {97)
v<p—-H

= O(®P(r)n~4/P) = O (&P (r)n~h),
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(4.6) Ca—p{®} = O(F° ()P "n~h).
And, clearly,

(4.7 Co—1{®"P} < 7~ P-Ng" P (7).

Hence,
Ynp = O(27(r)r7"n™h) = O(n®2Py,),

as required, by relations (4.5), (4.6), (4.7), and (4.2). The proof when
2p— n < —H is similar except that now the argument involving (3.11) is
applied to Cpy {®"P}.

Theorem 5. Let E(n) and V(n) denote the expected value and the variance
of D(T,) over all trees Ty, in F. Then

E(n) = (An/2x)2 + O(1) and V(n) = A(x — 2)n/4r + O(n'/?)
as n — o0.

Proof. Let H = [(7An logn)'/?]. Then

n-1

E(n) = Z 12p—n|-(yn,p/n) =1+ Z2
p=1

where ¥; and ¥, denote the contributions from the terms for which
|2p—n| < H and |2p—n| > H, respectively. It follows from inequality (4.4)
with h = 7/2 that

T, <n?.0(n"%) =0(1),

so it remains to estimate I;.
If we let z, := (2p — n) - 2(An)~!/2 and appeal to relation (4.3), we find
that
1= (2/m)M? Y |mple 52 {14 O(n?) + O((Jzp + |2, ) - n=32) }

where the sum, as before, is over p such that [2p — n| < H. Now let

f(=z) = (2/1r)1/2:¢:e"‘°/2 {1+0(n"Y) + o((=z + xa)n“l/z)}.
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Then the expression for £; can be rewritten as

1 =2) flzp)

where now the sum is over p such that 0 < 2p—n < H, i.e., over p such
that a := [n/2] < p < |(n + H)/2] =: b. We observe that 4(An)~1/2%,
equals a Riemann sum, with uniform subdivision size 4(An)=*/2, of the
function 2f(z) over the interval [zq, 2], Where z, equals 0 or 2(An)~1/?
according as n is even or odd, and zp = 2(7logn)}/? + O(n~1/?). Hence,
by the Trapezoidal Rule,

4(An)~Y%z, = 2/2& f(z)dz + 4(An)~Y/?

x {f(za) + f(z0)} + O((logn)*/? - n7Y)

T
= 2(2/#)1/2f ze~" 12dz + O(n~1/?)

= 2(2/11')1/2 + O(n"llz),
S0
T = (An/27)'2 + O(1).

This suffices to prove the formula for E(n).

Similarly, it can be shown that the expected value of D?(T;) equals
An/4+O(n'/?); this and the formula for E(n) imply the formula for V (n).

Our final result follows readily by the same type of argument as was just
used to estimate X;.

Theorem 6. Let A be any positive constant. Then
A 3
Pr{D(T,) < M(An/4)}/?} = (2/=)}/? / e=*"12dz + O(n=12),
0
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