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Let D be a 2-(v, k,1) design, and consider an automorphism g of D. For
any natural number n, we define p, and b, to be the number of cycles of
length n of the permutations induced on the points and blocks, respectively.
We call the points permuted in n-cycles by g n-points, and the blocks in
n~cycles n-blocks.

If g is an automorphism of a projective plane, then the permutations
induced on the points and blocks are similar [1]. Therefore b, = pn, for
all n. We can see that p, < b,, whenever n > 1, for any automorphism g
of an affine plane. In [4] it was shown that p, < b, whenever n > k, for
any automorphism g of a 2-(v, k, 1) design. In this note we show that this
inequality is also true for many values of n with » < k. Our main result is
the following.

Theorem 1 Let g be an automorphism of a 2-(v,k,1) design D. Let n
be a natural number. Suppose that every block containing two n-points is
either an n-block or is fized, and that there are at least two such blocks. Then
Pn < bn.

In general, a block containing two n-points is permuted by g in a cycle
of length dividing n. However, if n is a prime, any block containing two
n-points is fixed or permuted in an n-cycle, proving the following corollary.

Corollary 1 Let g be an automorphism of a 2-(v,k,1) design and let n be

a prime. Suppose that not all n-points are contained in one block. Then
Pn < bn.
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The condition that not all the n-points are collinear is necessary as there
exist examples of Steiner triple systems [4] with automorphisms satisfying
bp =0and p, =1 forn=1,2 or 3, or b; € {1,2} and p; = 3. In these
examples, the n-points are collinear. One example with b3 =0 and p3 =1
is the 2-(15,3,1) design with point-set {z,y,z} U Z;2 and automorphism
of the points, 7 = (z,¥,2)(0,1,...,11). This automorphism acts on the
blocks with one fixed block, one 4-cycle, one 6-cycle and two 12-cycles given
by the following starter blocks: {z,y,z2}; {0,4,8}; {z,0,6}; {=,1,8} and
{0,1,3}. We do not know any example of a design satisfying p,, < b, for
some integer n and such that the n-points are not collinear. In the following
corollary we summerize the results of this paper and [4].

Corollary 2 Let g be an automorphism of a 2-(v,k, 1) designD. Ifn isa
posttive integer, then p, < b, whenever one of the following conditions is
satisfied.

(a) Puvery n-cycle of points contains three non-collinear points.

(b) Each n-cycle consists of collinear points, and furthermore np,, > k.

(c) n is a prime.

Proof of Theorem 1. We define £y to be the substructure of D whose
points are the n-points of D with respect to g and whose blocks are the
blocks of D incident with two or more of the n-points. By the hypotheses
of the theorem, £y has more than one block and so is a linear space. Let
vp = n- Py be the number of points of £y and let by be the number of blocks
of L£o. We call the blocks of Lo lines.

If n = 1, then all points of Lo are fixed and so all lines of £y are fixed.
Since, by a result of de Bruijn and Erdés [2], every linear space has at least
as many points as lines, we have by > vp and thus b, = by > vo = pn.

Now consider the case n > 2. Then the fixed lines of £g are disjoint. We
add a point g to Lo to form a new linear space £. We do this in such a way
that q lies on each of the fixed lines of £ and for each point = that is not
on a fixed line, we add the new line {g,z} of length two, joining ¢ with z.
Then g extends uniquely to an automorphism of £, which we also denote
by g. It fixes ¢ and maps each new line {g,z} to the line {q,z9}. We define
v and b to be the number of points and lines of £. Then v = vg + 1.

Assume that p, > b,. We shall derive a contradiction. Let r denote the
number of linesof Lon g. Thenb=0b, -n+7r. Thus b < (pp ~ 1)+ 7r=
vo—n+r=v+r—n-—1. Sincen > 2, it follows that b < v +7r — 2. We
can use the following result, which is a special case of Theorem 1 of [3]. In
order to state the result, we need some terminology.

A set D consisting of some points of £ is a subspace, if it contains the
line joining any pair of its points. We call D non-trivial, if D contains three
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non-collinear points but does not contain all the points of £. Given a non-
trivial subspace D of a linear space £, one can construct a new linear space
L' by smoothing D, that is by removing all lines in D and by adjoining the
set D itself as a new line.

Result 1 Let £ be a finite linear space with v points and b lines. Suppose
that L has a point q such that b < v+ 1 — 2, where r is the number of lines
on q. Then one of the following cases occurs.

(1) £ is a near-pencil.

(2) £ can be obtained from a projective plane of order m by removing at
most m — 2 points.

(3) £ has s > 1 non-trivial subspaces Dy,...,D; that pairwise meet in

g. If one smoothes each subspace D;, then the resulting linear space can
be obtained from a projective plane of some order m by removing at most

m — 2 points.

Notice that Theorem 1 of [3] also covers the situation when b = v+r—2.
This is the reason that Theorem 1 of [3] has two more cases, and that it
states that m —1 instead of m — 2 points can be removed from a projective
plane in the above cases (2) and (3).

It is obvious that £ cannot be a near-pencil. Consider now the case that
L can be obtained from a projective plane P of order m by removing a
set T of at most m — 2 points. Thenr =m+1, b=m?2 +m+1, and
v>b+2—r=m2+2. Since |T| < m—2, all lines have at least three
points in £. This implies that all lines of £ on q are fixed by g.

The automorphism g of £ can be extended to an automorphism of P.
This can be seen as follows. Consider a point p € T. Since [T'| £ m — 2,
there exists a line L that meets T only in p. Then L? meets T in a unique
point p’. If H is a line other than L, then p € H iff H and L are disjoint
in £ iff H9 and L9 are disjoint in £ iff p’ € HY9. Putting p9 := p’ for
all points p € T gives the desired extension. The extended automorphism
fixes the m + 1 lines through q. Since ¢ is the only point of £ fixed by g,
the extension has at most 1+ |T| < m — 1 fixed points. This provides a
contradiction as every automorphism of a projective plane fixes an equal
number of points and lines.

Finally we assume that £ satisfies (3) of the above result. Let Dy,..., D,
be the non-trivial subspaces according to (3). Smoothing each D;, we
obtain a linear space £’ that can be obtained from a projective plane P by
removing a set T of at most m — 2 points, but no line. This implies that
L' has m? + m + 1 lines. Therefore £’ has exactly m? lines that do not
contain q. Each subspace D; of £ contains at least one line that does not
contain ¢g. Thus £ has at least m? + s lines that do not contain ¢. Since ¢
lies on r lines of L, it follows that m2 + s+r < b.
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Put |D;|=m+1—d;, and d:=Y;_, di. The point gliesson m+1—s
lines Ly, ..., Ly +1—5 that do not belong to any of the subspaces D;. Let
m + 1 —; be the number of points of £ on L;, and put ! := )", l;. Then
Lhasv=m2+m+1—d—1 points. Since b < v+ r — 3, we obtain
m2+s+r<b<m?+m-2—-d—-l+randthusd+I+s<m—-2.

Let D be the set consisting of the lines of £ that are in one of the
subspaces D;. Each line Ly of Longhas m+1~-L, >m+1—-12>3
points and is therefore fixed by the action of g. Consider a line L of £ that
does not contain q and that is not in D. In P, the line L meets each line
Ly, ...,Lyny1—5. Since |l < m —2 — s (so that at most m — 2 — s lines L;
have less than m + 1 points), it follows that L meets at least three of the
lines L; in a point of £. Since the lines L; are fixed, it follows that the
image L? contains at least three points that are not in any of the subspaces
D;. Hence L? ¢ D. Hence g maps any line that is not in D to a line that
is also not in D. Therefore g fixes D.

Now consider a subspace D; and a point p € D; with p # ¢. Since the
lines L; are fixed by g, the point p? lies in some subspace D;. Consider
a second point z € D; with = # p,q. Then the line X := pz is a line of
D, and hence the image X9 = p9z9 is a line of D, that is, X9 lies in some
of the subspaces Dy,...,Ds. As p € Dj, this implies that X9 is a line of
D; and hence that z9 is a point of D;. Hence g maps every point of D;
to a point of Dj. Since this holds for every subspace D, it follows that g
permutes the subspaces D;.

Since L’ is the linear space obtained from £ by smoothing the subspaces
D;, this implies that g induces an automorphism ¢’ of £’. This automor-
phism fixes the lines L; and thus g’ fixes at least m + 1 — s lines of L', so
that the number of non-fixed lines of £’ under the action of g’ is at most
m? + 5. The number of points of £’ permuted by ¢’ in cycles of length = is
v-l=m?4+m—-d-I>m?+m—(m—1-35)=m?+s+41. Thus g has
more n~cycles on points than on lines. Since £’ satisfies the conclusion in
(2) of the above result, we obtain a contradiction in the same way as before
(that is, we extend g’ to an automorphism of the projective plane P, where
it then has more fixed points than fixed lines).
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