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ABSTRACT. In this paper, the k-exponent and the kth upper
multiexponent of primitive nearly reducible matrices are ob-
tained and bound on the kth lower multiexponent of this kind
of matrices is given.

1 Introduction

A square nonnegative matrix A is primitive if A* > 0 for some positive
integer k. The smallest such k for a given matrix A is called the ezponent
of primitivity (sometimes called indez of primitivity). A is reducible if there
exists a permutation matrix P such that

e _ A1 O
PAP -[X Ay

where A; the A; are square (nonvacuous) matrices. The matrix A is irre-
ducible if it is not reducible. A is nearly reducible if A is irreducible but each
matrix obtained from A by replacing a nonzero entry by zero is reducible.
It is known that the combinatorial properties of A depend only upon the
pattern of A. So the exponent of nonnegative matrices can be conveniently
described by the study of the corresponding Boolean matrices.

With an n x7n matrix A = (a; ;), there is an associated digraph D(A).The
vertices of D(A) are 1,2,...,n with an arc from i to j if and only if a; ; # 0
(3,4 =1,...,n). The digraph D(A) is termed primitive, if A is primitive.
It is well known that D(A) is primitive if and only if D(A) is strongly
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connected and the greatest common divisor of the lengths of its (simple)
cycles is 1. It is clear that a matrix A is nearly reducible if and only if
D(A) is a minimally strong digraph. The properties of minimally strong
digraphs can be found in [1].

The problem of characterizing the set of exponents for primitive matrices
has recently been completely settled ([2] [3] [4]). The study of exponents
for primitive nearly reducible matrices has had great progress ([1] [6] {5]).
From the background of a memoryless communication system, R.A. Brualdi
and B.L. Liu recently generalized the concept of exponent for a primitive
digraph (primitive matrix) and introduced some new parameters related to
the exponent as follows ([7]).

Let T denote a digraph with n vertices 1,2,...,n. Let

expr(i, j) := the smallest integer p such that
there is a walk of length ¢ from ¢ to j for
each integer t > p (1 < 4,5 < n).

The digraph T is called primitive provided all of the numbers expr(%, 5)
are finite, and the number

exp(l') := MAX; ;{expr(i, )}
is called the exponent of . As in [7] let
exp(n) .= MAXr{exp(I')},

where the maximum is taken over all the primitive digraphs I"' with n ver-
tices. It is well known (see e.g. [1])

exp(n) = n? —2n+2,
Let the exponent of vertex i be defined by
eXPr'(") = MAX{epr(i, .7)} (7' =1..., n)

Thus expr(i) is the smallest integer p such that there is a walk of length p
from i to each vertex j of I. It follows also that

exp(T') = MAX;{expr(i)}.
We choose to order the vertices of I' in such a way that
expr(1) < expp(2) < -+ < expr(n).
Hence exp(T’) = expp(n). We define
exp(n, k) := MAXr{expp(k)}, (k=1,...,n),
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where the maximum is taken over all primitive digraphs with n vertices.
The number exp(n, k) is called k-exponent of primitive digraphs (primitive
matrices). It follows that exp(n,n) = exp(n).

In [7] we introduced the exponent for a subset X of k vertices of I', where
1<k<n.

expp(X) = the smallest integer p such that for each
vertex ¢ of I" there exists a walk of length p
from at least one vertex in X to 2.

The number
f(T, k) := MINx {exp(X)},

where the minimum is taken over all subsets X of k of the vertices of T, is
called the kth lower multiexponent of I'. The number

F(T, k) := MAX x{expp(X)}.

where the maximum is taken over all subset X of k of the vertices of T, is
called the kth upper multiexponent of I. It follows that F(I", 1) = expp(n)
and f(I',1) = expp(1). We let

f(nv k) = MAXl"f(P’ k): (k =1,... :n)’
F(n, k) :== MAXpF(T, k), (k=1,...,n),

where the maximum is taken over all primitive digraphs with n vertices.
We observe that f(n,n) =0, f(n,1) = exp(n,1) and F(n,1) = exp(n).

Applying the adjacency matrix of a digraph, we can understand the in-
terpretation for the above parameters in terms of a matrix (see [7]). In
[7], we have obtained bounds for the numbers introduced above and evalu-
ate all of the corresponding number for primitive symmetric digraphs. In
this paper, For primitive, nearly reducible matrices, we evaluate exp(n, k),
F(n, k) and estimate f(n, k).

In the following, unless special statement, all digraphs I" concerned in
this paper are associated digraphs for primitive, nearly reducible matrices
— primitive minimally strong digraphs and exp(n, k), f(n,k), F(n,k) rep-
resent corresponding parameters for primitive, minimally strong digraph.

We shall first investigate exp(n, k).

2 k-exponent of primitive, nearly reducible matrices
The following lemmas are readily established.

Lemma 1. ([3]). Let T be a primitive digraph and L = {ry,r;} be the
set of the lengths of its (simple) cycles, where g.c.d. (r1,72) = 1. d(%,7)
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denotes the length of the shortest walk from i to j which meets at least one
circuit of each length v, for k =1,2. Then

expr(3, j) <di(3,5) + (r1 —1)(r2 = 1).

Lemma 2. ([1]). For primitive, nearly reducible n x n matrices,

exp(n) =n? —4n + 6.

Lemma 3. ([5]). There exist gaps in the exponent set of primitive, min-
imally strong digraphs on n vertices (primitive, nearly reducible n x n
matrices) (n? — 6n 4+ 12,n% — 5n+ 9) and (n® — 5n + 9,72 — 4n + 6).

Lemma 4. ([1], [5]). Let D, be a primitive, minimally strong digraph on
n vertices with the shortest cycle of length s. D,_2 is the unique digraph

as Figure 1 and expp,_,(n) = n? — 4n + 6. There are exactly two D, _3
as D,(ll_)3, Df‘z):,, in Figure 2 and exp p®, = n? —6n + 12, exppm (n) =
n— n—-3

n? —5n49.

n-t

Figure 1. D,_»,

Df,l_)3 Df;‘?s n=0 (mod 2)
Figure 2.
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Lemma 5. ([7]). Let T’ be a primitive digraph on n vertices. Then
expr(k) < expp(k—1)+1 (2 < k < n). Hence exp(n, k) < exp(n, k—1)+1.

Lemma 6. ([7]). Let ' be a primitive digraph on n vertices with the
shorter cycle of length s. Then

s(n—1) ifk < s,

<
expr(k) < {s(n_l-i-k—s) if k> s.

Lemma 7. Let T’ be a primitive, minimally strong digraph on n vertices.
Then
expp(1) < n® —5n+ 8.

Proof: Let the length of the shortest cycle of I be s. Then 2 < s <n-—2.
(1) If 2 < s £ n — 4, according to lemma 6

expr(1) < (n—4)(n—-1)=n? —5n+4 <n? -5n+8.

(2) If s = n — 3, by lemma 4, there are exactly two digraphs DSBE, and
D@, asin Figure 2.

n—3

Case 1. T = D,(,‘l_)s, L={n-3,n—2},n>1. By lemma 1
expr(1) < (n~4)(n — 3) +max dg(1, )

= (n—-4)(n—3)+d.(1,2)
=(n-4)(n-3)+n-4
=n2—6n+8<n®—5n+8.

For other vertices i # 1, it is easy to see that
expr(i) 2 expr(1).
Thus when I’ = D,(,l_)s

expp(1) £n?—6n+9 <n? —-5n+8.

Case 2. I'= Df,z)sn =0 (mod 2), L ={n—3,n —1}. By lemma 1

expr(1) < (n — 4)(n — 2) + max di(1, )

=Mm-4)(n—-2)+4d.(1,2)
=Mn—-4)(n-2)+n—-4
=n?2-5n+4<n®—5n+8.
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For other vertices 7 # 1,
expr (i) = expp(1).
Thus when ' = D®,,
expp(1) < n? —5n 45 <n? —5n+8.

(3) If s = n — 2, by lemma 4, there is the only digraph D,,_» (see Figure
1), L = {n —2,n —1}. Similarly, we have

expp(1) < (n—2)(n—3)+2=n% -5n+8.
According to (1) (2) (3), the lemma holds. o
Lemma 8. If I' = D,,_s, then
n?—5n+T7+k ifl<k<n-2
expr(k) = {n®>—4n+5 ifk=n-1,
n?—4n+6 ifk=mn.
Proof: Observing digraph I' = D,,—o (Figure 1), we can verify
expp(l) < --- < expp(2) < -+ < expp(n — 2) < expp(n — 1) < expp(n).
By lemma 1
expp(k)=n-2)(n=3)+2+(k-1)=n®’-5n+7+k1<k<n-2,
expp(n—1)=(n—2)(n —3)+ 2+ (n —3)=n?% —4n +5,
expp(n)=n? — 4n + 6.

O
Lemma 9. If T' = DS‘Z_)s, n =0 (mod 2), then
expp(n —1) <n? —5n48.
Proof: The following relation is straightforward to verify
expp(1) < --- < expp(2) < -+ < expr(n — 2) < expr(n — 1) < expr(n).
By lemma 1, expp(n —1) < (n —4)(n — 2) + n =n? —5n + 8. m]

Theorem 1. For primitive, nearly reducible n x n matrices

n2-5n+7 f1<k<n-2
exp(n, k) ={n? —4n+5 ifk=n-1,
n?—4n+6 ifk=n.
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Proof: By lemma 5 and lemma 7, for all the primitive minimally strong
digraphs I with n vertices

expr(k) <expp(1) +k—1<n? —6n+8+k—1=n?—5n+7+k.

By lemma 8, there exists a primitive minimally strong digraph D,_2 such
that
expp, ,(k)=n®-5n+T7+k1<k<n-2

So exp(n, k) = MAXr{expp(k)} =n? —5n+7+k, 1 < k < n — 2, where
the maximum is taken over all the primitive minimally strong digraph I
with n vertices. In addition by lemma 2, exp(n,n) = n2 —4n + 6.

We now consider exp(n,n — 1). By lemma 3 there are no such primitive,
nearly minimally strong digraphs I' that

n? — 6n+ 12 < expp(n) <n? —5n+9,
n? —5n+ 9 < expp(n) < n? —4n +6.
Since expr(n — 1) < expp(n), by lemma 4, there is the unique primitive
minimally strong digraph D,,_5 such that expp,__,(n) = n2—4n+6 and the
unique D,:‘?s such that expD'(‘:)’(n) =n? —5n + 9, where n = 0 (mod 2).
Hence for all primitive minimally strong digraphs I" with n vertices except
D,_» and DS‘!_):; we have

expp(n — 1) < expp(n) < n? — 6n 4 12.

By lemma 8, expp__,(n—1) =n? —4n +5.
By lemma 9, exp,a (n—1) < n? —5n+8.
n-3
So exp,m (n—1)<expp, _,(n—1)=n?—4n+5.
n—3

Hence exp(n,n — 1) = MAXr{expp(n — 1)} = expp,_,(n — 1) = n? —
4n 4 5. O

3 On the lower and upper multiexponent of primitive, nearly
reducible matrices

The problem to evaluate the kth lower and upper multiexponent for prim-
itive matrices seems to be rather difficult. In [7], we have given its bounds
as follows.
Lemma 10. Let " be a primitive digraph with n vertices having a cycle
of length s. Then

n—k ifs<k<n

k) < -
4 )—{1+s(n—k—1) ifk<s
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Thus we can estimate the f(T', k) for all primitive minimally strong di-
graphs I as follow.

Theorem 2. For all primitive nearly reducible matrices,

fin,k)<n?®—(B3+kn+2k+3, 1<k<n-1.

Proof: By lemma 10, when1 <k <n-1
fn,k) <max(n—k,1+s(n—k—-1)=1+s(n—k—-1).

Since I' is primitive minimally strong digraph, I" must contain a cycle of
length s where 2 < s <n —2. Thus

fk) <14+ (n—-2)mn—k-1)=n—-3+k)n+2k+3.

Corollary 2.1. For all nearly reducible matrices

fln,n—-1)=1.

Proof: By theorem 2, f(n,n—1) < 1. It is easy to see that when T = D,_,,
fC,n-1)=1. (]

For the k-upper multiexponent, from [7] we have

Lemma 11. Let I’ be a primitive minimally strong digraph with n vertices
having a cycle of length s. Then

F(T,k) < s(n—1) ifk>n~—s
U7 |s(2n—s—k) ifk<n-—s

where2 <s<n-—2.

The bounds for f(n,k) and F(n, k) given in theorem 2 and lemma 11 are
not perfect. It is well known (see [1]) that the digraph D,_» is the unique
primitive minimally strong digraph with n vertices for which exp(Dp_2) =
exp(n) = n? —4n+6. According to above results in this paper, for all prim-
itive minimally strong digraph, expp__,(k) = exp(n,k). We believe that
D,,_» is also the unique digraph with n vertices for which f(D,_2,k) =
f(n,k) and F(Dp_2,k) = F(n,k) for all primitive minimally strong di-
graphsand 1 <k <n.

We note that the proof of theorem 2.4 in [7] can be easily modified to
give the following result.
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Lemma 12.

f(Dn-2 k)= {2+ (2n — 4 — K)|(n—2)/k| - |(n—2)/K|%k, 1<k<n—2
n? —4n+6 k=1
F(D"-2'k)={(n_1)2—-k(n—2) 2<k<n’

Hence in view of lemma 12 we make the following conjecture.
Conjecture. For all primitive nearly reducible n x n matrices

F(n,k) = F(Dn—2,k), (Conjecture 1)
f(n,k) = f(Dn-2,k), (Conjecture 2)

We will show that conjecture 1 is true.

We first establish the following lemma.
Lemma 13. F(n,k) = F(Dyn_2,k) fork=n,n—1.
Proof: It is obvious by definition that F(n,n) = 1. By lemma 12 F(Dy,—2,n)
= (n—1)2 —n(n —2) = 1. Hence F(n,n) = F(D,_2,n).

In [7], we had the following conclusion (Lemma 5.2, [7]): Let T be a

primitive digraph with n vertices and let s and ¢ be, respectively, the lengths
of the shortest and longest cycles of I', Then F(I',n — 1) < max{n — s, t}.

Now T is a primitive minimally strong digraph, 2 < s < n—-2,t <
n—1. So F(I',n — 1) < max{n — 2,n — 1} = n — 1. And by lemma 12
F(Dp_3,n—1)=(n=12=(n-1)(n—2) =n -1, then F(n,n—-1) =
F(Dp_2,n—1)=n-1. O

In [8] we have shown the following lemma.

Lemma 14. ([8]). For any primitive digraph " with the shortest cycle of
length s, F(I'k) <n—s+sn—k),1<k<n-1.

We now show conjecture 1 as follows.

Theorem 3. For all primitive nearly reducible n x n matrices

n?2—4n+6 k=1
F(n,k) = F(Dy,_2,k) = .
(n, k) = F(Dn—2, k) {(n-1)2—k(n-2) 2<k<n
Proof: F(n,1) = exp(n) = n2 —4n + 6. By lemma 12 F(D,_»,1) =
n? — 4n + 6. Hence F(n,1) = F(Dp—2,1) =n? —4n 4 6.
By lemma 13 F(n,k) = F(Dp—2,k) for k = n, n — 1. Thus we consider
only the case that 2 < k<n-2.
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Let T be a primitive minimally strong digraph with the shortest cycle of
length s. Clearly, s <n —2.

If s <n — 3, by lemma 14

F{I,k)<n-s+s(n—k)
=n+s(n—k-1)
<n+(n-3)(n-k-1)
=3+(n-3)(n-k)
<14+(n-2)(n—k)
=(n-1)2-k(n-2)

for2<k<n-2.
If s = n—2, there is the only minimally strong digraph D,,_2 (Figure 1).
Thus
F(T,k)=F(Dp_o,k) for2<k<n-2.

To sum up, we complete the proof of theorem 3. O

Next we will show that conjecture 2 is true for k=1,n,n—-1,n— 2.

k=1
It has been known (theorem 1) that f(n,1) = exp(n,1) = n? —5n + 8. By
lemma 12, f(Dp—2,1) = 24 (2n—5)(n—2) — (n—2)? = n? — 5n+8. Hence
f(n,1) = f(Dn-2,1).

(2) k=n.

By definition f(n,n) = 1. By lemma 12 f(D,_2,7) = 1. Hence f(n,n) =
f(Dn—2: TI«).

B)k=n-1.

By corollary 2.1 f(n,n —1) = 1. By lemma 12 f(Dn_2,n —1) = 1. Thus
f(n,n—1)= f(Dp—2,n—1).

@ k=n-2
By lemma 12 we know that f(D,—2,n—2) = 2. We now show that f(n,n—
2) = 2.

Proof: Let I" be a primitive minimally strong digraph. Then I' contains
at least one subgraph containing two cycles whose lengths are different as
Figure 3.

The two paths from C to D are denoted by P; and P, respectively. Their
lengths are denoted by L(P;) and L{P) respectively. Since L(P;) # L(P),
say L(P;) > L(P,) > 0. We denote by R;(X) the set of vertices of I' which
can be reached by a walk of length ¢ which begins at every vertex of X.
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(1) If L(P;) = 0, it means that C and D coincide. In this case, we
knew ([1]) that n > 4; Without loss of generality, let the length of a cycle
containing P2 be not less than 3. And let X = V(I') \ {4, B} where
|X| =n—2. Clearly Ry(X) =V(I).

(2) If L(P,) > 0, according to the properties of the minimally strong
digraph (see [1]), L(P2) > 2, L(P1) = 3. Let vy, vz be two vertices nearest
to vertex D on path P;. And let X = V(T')\ {v1,v2}, then |X| =n—2and
Ry(X) =V(T). Hence f(n,n—2)=2and f(n,n—2) = f(Dp—2,n—2).

According to (1), (2), (3), (4), it follows that conjecture 2 is true for
k=1,nn-1n-2
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