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ABSTRACT. It was proved by Ellingham (1984) that every per-
mutation graph either contains a subdivision of the Petersen
graph or is edge-3-colorable. This theorem is an important
partial result of Tutte’s Edge-3-Coloring Conjecture and is also
very useful in the study of the Cycle Double Cover Conjec-
ture. The main result in this paper is that every permutation
graph contains either a subdivision of the Petersen graph or two
4-circuits and therefore provides an alternative proof of the the-
orem of Ellingham. A corollary of the main result in this paper
is that every uniquely edge-3-colorable permutation graph of
order at least eight must contain a subdivision of the Petersen

graph.

1 Imtroduction

A cubic graph is a 3-regular simple graph. A 2-factor of a graph G is a
2-regular spanning subgraph of G. The underlying graph of a graph G,
denoted by G, is the graph homeomorphic to G and containing no degree
two vertex. A chord of a circuit C is an edge not in C with both endvertices
in V(C). A cubic graph G is called a permutation graph if G has a 2-factor
F which is the union of two chordless circuits. All other graph-theoretic
terms that are used in this paper can be found, for instance, in [6].

The following well-known conjecture due to Tutte is a generalization of
the 4-color problem ({3, 4, 5, 11]).
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Conjecture 1 (The Edge-3-coloring Conjecture, Tutte [12]) Every 2-edge-
connected cubic graph containing no subdivision of the Petersen graph is
edge-3-colorable.

One of the more successful approaches to this conjecture is the following
theorem due to Ellingham.

Theorem 2 (Ellingham [7]) If G is a permutation graph containing no
subdivision of the Petersen graph, then

(i) G contains a 4-circuit,
(ii) G contains a Hamilton circuit,
(iii) G is edge-3-colorable.

Theorem 2 (iii) is useful in the study of cycle cover problems and is one
of the key lemmas in the proof of the following result.

Theorem 3 (Alspach, Goddyn and Zhang (1, 2]) A minimal counterezam-
ple to the Cycle Double Cover Conjecture must contain a subdivision of the
Petersen graph.

The main result of this paper (Theorem 4) is a strengthening of the
conclusion of Theorem 2 (i) to get information about the structure of per-
mutation graphs with no subdivision of the Petersen graph. This stronger
theorem is then used to obtain a result about uniquely edge-3-colorable
permutation graphs.

Definition 1 Let G be permutation graph with at least four vertices and
F be a 2-factor of G which is the union of two chordless circuits and M =
G\ E(F). A circuit of length four containing ezactly two edges of M is
called an M-C4. A subdivision of the Petersen graph in G is called a Pyo-
subgraph. A P)g-subgraph which has a 2-factor consisting of all edges of F
(so that it has a perfect matching consisting of five edges of M) is called an
M-Pyg-subgraph.

Theorem 4 Let G be permutation graph with at least four vertices and F
be a 2-factor of G which is the union of two chordless circuits and M =
E(G)\ E(F). If G contains no M-Pyg subgraph, then G contains at least
two distinct M-Cy’s.

A family of cubic graphs will be constructed later which indicates that
Theorem 4 is the best possible. We note that if G in Theorem 4 has at
least 8 wvertices, then in fact G has two disjoint M-Cy’s. Otherwise, the
underlying graph of the graph obtained by removing the common edge of
the distinct M-Cy’s would have only one M-Cj, a contradiction. We also
note that if G has at least 10 vertices then each 4-circuit of G is an M-Cj.
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2 Proof of the main theorem

It is easy check that Theorem 4 holds for |V(G)| < 8. Let G be a counterex-
ample to Theorem 4 with the least number of vertices and we will derive a
contradiction. Let A = a; - --apay, B = by - - - byb; be two chordless circuits
comprising the 2-factor F. Let M = E(G) \ [E(A) U E(B)].

Since G contains at most one M-Cy4 and |V (G)| > 10, some edge of M is
not contained in any M-C; of G. Without loss of generality, let a;b; € M
be an edge not contained in any M-C, of G. Since G is a smallest coun-
terexample, the underlying cubic graph G\ {a;b1} of G \ {a1b;} contains
at least two M-C,’s. One of these M-Cy’s of G\ {a1b1} is not an M-Cy
of G and must contain either the subdivided edge anaz or the subdivided
edge b, ba but not both. Without loss of generality, let apaz2bpbh+1an be an
M-Cy4 of G\ {a1b,} containing the subdivided edge a,a3. That is,

azbn, anbrt1 € E(G).
Since a;b; is not contained in any M-Cy of G, we have that

h>2and h+1<n. (1)

Let o be a permutation on {1,---,n} so that M = {aib,(;) : ¢ =
1,--- ,n}. We claim that for each pair of integers i, with ¢ € {3,--- ,h}
and j € {h+1,---,n—1}, it is impossible that o(i) € {h+2,--- ,n} and
o(4) € {2,---,h —1}. For otherwise, the subgraph of G induced by

E(F) U {a1b1, azbn, @nbrt1, aibos), aibs(5)}

is an M-P)o subgraph (see figure 1).
a a a
1

Figure 1. A subdivision of the Petersen graph
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Thus,

o({3,--- ,h})={2,--- ,h—1} and
{ o({h+1,---,n-1})={k+2,--- ,n}.

Furthermore, we also see that the edge subsets
{a1a2,b1b2, anah 1, babry1} and {a1a5,b1bs, @nant1, brbrir}
are edge-cuts of G. Denote
=G\ {aiboi) :i=h+1,---,n},
Hi = H1\ {a1b1},
Hy =G\ {aiby(s) :i=2,--- ,h},

Hj = Ha \ {a1b1}.

By (1), the underlying graph of each of {Hi, Hj, Hz, H}} has at least four
vertices. We claim that each of {Hy, Hz} contams an M-C4 which is also
an M-C, of G. Since G is a smallest counterexample, the underlying cubic
graph H; of H; contains at least two M-Cy’s. If each of these M-Cy’s of Hy
is not an M-Cy of G, then each must contain at least one of the subdivided
edges in {ajan,b1bs}. Since a1by,a2bs € E(G), these M-Cy’s of ‘H; must
be a1bybraza; and ai1bibrana;. Hence we have that

apby € E(G)

Furthermore, in Hj, the 4-circuit asbrbzanas is an M-C4 and contains
both subdivided edges {azan,b2br}. Thus, all M-Cy’s of H other than
agbpbeanaz do not contain either of the subdivided edges {a2bn, anb2}. Note
that Hl has at least two M-Cj,’s. Therefore H{ must contain an M-C4 of
G and H,. Similarly, H, also contains an M-C4 which is also an M-Cy of
G. Thus, G contains two distinct M-Cy’s, a contradiction. |

3 Graphs with two 4-circuits

Theorem 4 is the best possible. Here we construct a family C of cubic
graphs satisfying the conditions described in Theorem 4, each member of
C having exactly two 4-circuits.

Define a function (a bijection) f : Z + Z as follows:
, 1 ifiiseven
f(‘)-{ —i ifiisodd.
Let n be a positive integer and construct a cubic graph H, as follows.

Let A=a_p--@p: " Gna@_y and B = b_p, ---bp---bpb_yn be two disjoint

243



circuits, let M = E(H,) \ [E(A) U E(B)] = {aibsu) : —n < i < n}, let
V(H,) =V(A)UV(B) and let E(H,,) = M U E(A)U E(B) (See figure 2).

Figure 2. H,

For each m > 4, we now construct a graph G € C of order 2m. If
m = 2k is even, then G = Hj \ {apbo}; if m = 2k — 1 is odd, then G =
H; \ {aobo, azbz}. Obviously, a1b_1bia_1a; and apbpb_na_na, (when n is
even) Or a,b_nbna_nan (When n is odd) are the only 4-circuits of G (not
just M -C4’S).

We also can prove that the graph G € C constructed above contains no
M- Pyo subgraph. Denote the underlying graph of H;\ {agbo} by L; for each
positive integer i. Note that the underlying graph of the graph obtained from
Ly by deleting the edges {a—1by,a1b_,} i3 isomorphic to Ly_,.

It is sufficient to show that L, contains no M-P;g subgraph. We assume
inductively that Lx_; contains no M-P;q subgraph. If L\ {a,b_,} contains
an M-Pyo subgraph P, then the subgraph P must contain the edge a_1b;.
But P cannot contain the edge ab; since a_1b;,azbs are contained in a
4-circuit in the underlying cubic graph of L \ {a1b—1} whereas P contains
no 4-circuit. Thus we obtain an M-Pyo subgraph [P U {a2b2}] \ {a-1b:1}
in Lg_;. This is a contradiction. Similarly, we can prove that L; contains
no M-Pyo subgraph since Ly \ {a1b-1} contains no M-Pjy subgraph and
{a1b—1,a-1b1} are contained in a 4-circuit of Ly.

In [9], we show two further properties about the Ly’s:

(1) Each Ly contains no subdivision of the Petersen graph (not just M-
Pyg subgraph).

(2) Every permutation graph containing no M-Pjy and containing pre-
cisely two 4-circuits must be homeomorphic to a subgraph of some
member of C.

4 Unique edge-3-coloring

The following is a well-known open problem regarding uniquely edge-3-
colorable cubic graphs.
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Conjecture 5 (Fiorini and Wilson 1978 [8]) Let G be a planar cubic graph
with at least 4 vertices. If G is a uniquely edge-3-colorable cubic graph, then
G has a triangle.

The planarity condition is required in Conjecture 5 since Tutte found
that the generalized Petersen graph P(9,2) is uniquely edge-3-colorable
and triangle-free ([13], see Figure 3). The following is a refinement of
Conjecture 5.

Figure 3. P(9,2)

Conjecture 6 ([14]) Bvery uniquely edge-S-colorable, iriangle-free, cubic
graph of order at least four must contain o subdivision of the Pelersen
graph.

Note that P(9,2) is a permutation graph and contains a subdivision
of the Petersen graph. Using Theorem 4, we obtain a partial result for
Conjecture 6.

Theorem 7 Euvery uniguely edge-3-colorable permutation graph of order at
least eight must contain a subdivision of the Petersen graph.
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Proof. Let G be a permutation graph containing no subdivision of the
Petersen graph. By Theorem 4, the graph G contains two distinct M-Cy’s
and hence, G contains two distinct Hamilton circuits. It is easy to see
that G has two distinct 1-factorizations and therefore G is not uniquely
edge-3-colorable. |

In the proofs of Theorem 2 (ii) and Theorem 7, the 4-circuits play a
central role. The following result was proved by Hind ([10]).

Theorem 8 (Hind [10]) If there ezists a uniquely edge-3-colorable, triangle-
free, (planar) cubic graph, then there exists a uniquely edge-3-colorable,
triangle-free and 4-circuit-free (planar) cubic graph.

The authors believe the following.

Conjecture 9 The girth of every uniquely edge-3-colorable, triangle-free,
cubic graph of order at least four is at least five.

5 Remarks

By considering 2 minimal counterexample G to Conjecture 1, one may
easily see that G has a 2-factor which consists of only two odd-circuits and
all others are even-circuits. A permutation graph with 2k vertices (k odd)
is a special case of this kind of cubic graph. The following refinement of
Theorem 2 has been considered by a few mathematicians,

Conjecture 10 Let G be a bridgeless cubic graph such that G has a 2-
factor F consisting of two odd circuits. Then either G contains a subdivision
of the Petersen graph or G is edge-3-colorable.

If this conjecture were proved, it is possible that the lengthy proof of a
theorem by Alspach, Goddyn and Zhang ([2]) could be simplified (with a
similar argument as that of [1]). The family C of permutation graphs con-
structed in Section 3 indicates that the approach of finding M-Cy4’s might
be very difficult, since an additional chord can eliminate all (only two)
4-circuits in the graphs. It is surprising that even with the additional con-
dition of planarity, there is as yet no proof of Conjecture 10 without using
the 4-color theorem. Here we propose two problems (they are certainly true
because of the 4-color theorem) that were posted on GraphNet in 1994 by
one of the authors.

Problem 11 Let G be a bridgeless cubic planar graph such that G haes a
2-factor F consisting of two odd circuits. Prove that G is edge-3-colorable
without applying the 4-color theorem.
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If one component of the 2-factor is a 3-circuit, then this circuit can be
contracted to a vertex. Thus, we have the following extremal case of Prob-
lem 11.

Problem 12 Let G be a bridgeless cubic planar graph of order n such that
G has a circuil of length n — 1. Prove that G is edge-3-colorable without
applying the 4-color theorem.

Acknowledgment. The authors would like to thank Mark Ellingham and
the referee for their helpful suggestions.

References

[1] B. Alspach and C.-Q. Zhang, Cycle coverings of cubic multigraphs,
Discrete Math. 111 (1993), 11-17.

[2] B. Alspach, L.A. Goddyn, and C.-Q. Zhang, Graphs with the cir-
cuit cover property, Transaction of the American Mathematics Society,
344, No. 1, (1994), 131-154.

[3] K. Appel and W. Haken, Every map is four colorable, Part I: Discharg-
ing, Nllinois J. Math., 21 (1977), 429-490.

[4] K. Appel, W. Haken and J. Koch, Every map is four colorable, Part
II: Reducibility, llinois J. Math., 21 (1977), 491-567.

[5] K. Appel and W. Haken, Every map is four colorable, AMS Contem-
porary Math., 98 (1989).

[6] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications,
Macmillan, London, 1976.

[7] M.N. Ellingham, Petersen subdivisions in some regular graphs, Con-
gressus Numerantium, 44 (1984), 33-40.

[8] S. Fiorini and R.J. Wilson, Edge colorings of graphs. In Selected Topics
in Graph Theory (eds. Beineke and Wilson) Academic Press (1978),
103-126.

[9] J.L. Goldwasser and C.-Q. Zhang, Edge-3-colorability of a family of
cubic graphs. J. Combi. Math. Combi. Comput. (to appear).

[10] H.R. Hind, Chapter 5 in Restricted edge-colourings, Ph.D. thesis,
Cambridge University, 1988.

[11] N. Robertson, D. Sanders, P.D. Seymour and R. Thomas, The 4-color
theorem, preprint.

247



[12] W.T. Tutte, A geometrical version of the four color problem, Combi-
natorial Mathematics and its Applications, (eds. R. C. Bose and T. A.
Dowling), University of North Carolina Press, Chapel Hill, 1967.

[13] W.T. Tutte, Hamiltonian circuits, Colloquio Internazional sulle Teorie
Combinatorics, Atti dei Convegni Lincei 17, Accad. Naz. Lincei, Roma
I (1976) 193-199.

[14] C.-Q. Zhang, Hamiltonian weights and unique edge-3-colorings of cubic
graphs, J. Graph Theory 20, No. 1 (1995), 91-99.

248



