# Permutation graphs and Petersen graph

John L. Goldwasser and Cun-Quan Zhang\*

Department of Mathematics

West Virginia University

Morgantown, West Virginia 26506-6310

email: jgoldwas@math.wvu.edu

email: cqzhang@math.wvu.edu

ABSTRACT. It was proved by Ellingham (1984) that every permutation graph either contains a subdivision of the Petersen graph or is edge-3-colorable. This theorem is an important partial result of Tutte's Edge-3-Coloring Conjecture and is also very useful in the study of the Cycle Double Cover Conjecture. The main result in this paper is that every permutation graph contains either a subdivision of the Petersen graph or two 4-circuits and therefore provides an alternative proof of the theorem of Ellingham. A corollary of the main result in this paper is that every uniquely edge-3-colorable permutation graph of order at least eight must contain a subdivision of the Petersen graph.

### 1 Introduction

A cubic graph is a 3-regular simple graph. A 2-factor of a graph G is a 2-regular spanning subgraph of G. The underlying graph of a graph G, denoted by  $\overline{G}$ , is the graph homeomorphic to G and containing no degree two vertex. A chord of a circuit G is an edge not in G with both endvertices in G0. A cubic graph G1 is called a permutation graph if G2 has a 2-factor G3 which is the union of two chordless circuits. All other graph-theoretic terms that are used in this paper can be found, for instance, in [6].

The following well-known conjecture due to Tutte is a generalization of the 4-color problem ([3, 4, 5, 11]).

<sup>\*</sup>Partial support provided by the National Science Foundation under Grant DMS-9306379

Conjecture 1 (The Edge-3-coloring Conjecture, Tutte [12]) Every 2-edge-connected cubic graph containing no subdivision of the Petersen graph is edge-3-colorable.

One of the more successful approaches to this conjecture is the following theorem due to Ellingham.

**Theorem 2** (Ellingham [7]) If G is a permutation graph containing no subdivision of the Petersen graph, then

- (i) G contains a 4-circuit,
- (ii) G contains a Hamilton circuit,
- (iii) G is edge-3-colorable.

Theorem 2 (iii) is useful in the study of cycle cover problems and is one of the key lemmas in the proof of the following result.

**Theorem 3** (Alspach, Goddyn and Zhang [1, 2]) A minimal counterexample to the Cycle Double Cover Conjecture must contain a subdivision of the Petersen graph.

The main result of this paper (Theorem 4) is a strengthening of the conclusion of Theorem 2 (i) to get information about the structure of permutation graphs with no subdivision of the Petersen graph. This stronger theorem is then used to obtain a result about uniquely edge-3-colorable permutation graphs.

Definition 1 Let G be permutation graph with at least four vertices and F be a 2-factor of G which is the union of two chordless circuits and  $M = G \setminus E(F)$ . A circuit of length four containing exactly two edges of M is called an  $M-C_4$ . A subdivision of the Petersen graph in G is called a  $P_{10}$ -subgraph. A  $P_{10}$ -subgraph which has a 2-factor consisting of all edges of F (so that it has a perfect matching consisting of five edges of M) is called an  $M-P_{10}$ -subgraph.

**Theorem 4** Let G be permutation graph with at least four vertices and F be a 2-factor of G which is the union of two chordless circuits and  $M = E(G) \setminus E(F)$ . If G contains no M- $P_{10}$  subgraph, then G contains at least two distinct M- $C_4$ 's.

A family of cubic graphs will be constructed later which indicates that Theorem 4 is the best possible. We note that if G in Theorem 4 has at least 8 vertices, then in fact G has two disjoint  $M-C_4$ 's. Otherwise, the underlying graph of the graph obtained by removing the common edge of the distinct  $M-C_4$ 's would have only one  $M-C_4$ , a contradiction. We also note that if G has at least 10 vertices then each 4-circuit of G is an  $M-C_4$ .

## 2 Proof of the main theorem

It is easy check that Theorem 4 holds for  $|V(G)| \leq 8$ . Let G be a counterexample to Theorem 4 with the least number of vertices and we will derive a contradiction. Let  $A = a_1 \cdots a_n a_1$ ,  $B = b_1 \cdots b_n b_1$  be two chordless circuits comprising the 2-factor F. Let  $M = E(G) \setminus [E(A) \cup E(B)]$ .

Since G contains at most one M- $C_4$  and  $|V(G)| \ge 10$ , some edge of M is not contained in any M- $C_4$  of G. Without loss of generality, let  $a_1b_1 \in M$  be an edge not contained in any M- $C_4$  of G. Since G is a smallest counterexample, the underlying cubic graph  $\overline{G} \setminus \{a_1b_1\}$  of  $G \setminus \{a_1b_1\}$  contains at least two M- $C_4$ 's. One of these M- $C_4$ 's of  $\overline{G} \setminus \{a_1b_1\}$  is not an M- $C_4$  of G and must contain either the subdivided edge  $a_na_2$  or the subdivided edge  $b_nb_2$  but not both. Without loss of generality, let  $a_na_2b_hb_{h+1}a_n$  be an M- $C_4$  of  $\overline{G} \setminus \{a_1b_1\}$  containing the subdivided edge  $a_na_2$ . That is,

$$a_2b_h, a_nb_{h+1} \in E(G)$$
.

Since  $a_1b_1$  is not contained in any  $M-C_4$  of G, we have that

$$h > 2 \text{ and } h + 1 < n. \tag{1}$$

Let  $\sigma$  be a permutation on  $\{1, \dots, n\}$  so that  $M = \{a_i b_{\sigma(i)} : i = 1, \dots, n\}$ . We claim that for each pair of integers i, j with  $i \in \{3, \dots, h\}$  and  $j \in \{h+1, \dots, n-1\}$ , it is impossible that  $\sigma(i) \in \{h+2, \dots, n\}$  and  $\sigma(j) \in \{2, \dots, h-1\}$ . For otherwise, the subgraph of G induced by

$$E(F) \cup \{a_1b_1, a_2b_h, a_nb_{h+1}, a_ib_{\sigma(i)}, a_jb_{\sigma(j)}\}$$

is an  $M-P_{10}$  subgraph (see figure 1).



Figure 1. A subdivision of the Petersen graph

Thus,

$$\begin{cases} \sigma(\{3,\cdots,h\}) = \{2,\cdots,h-1\} \text{ and } \\ \sigma(\{h+1,\cdots,n-1\}) = \{h+2,\cdots,n\}. \end{cases}$$

Furthermore, we also see that the edge subsets

$$\{a_1a_2, b_1b_2, a_ha_{h+1}, b_hb_{h+1}\}\$$
and  $\{a_1a_n, b_1b_n, a_ha_{h+1}, b_hb_{h+1}\}$ 

are edge-cuts of G. Denote

$$H_1 = G \setminus \{a_i b_{\sigma(i)} : i = h + 1, \dots, n\},$$
 $H'_1 = H_1 \setminus \{a_1 b_1\},$ 
 $H_2 = G \setminus \{a_i b_{\sigma(i)} : i = 2, \dots, h\},$ 
 $H'_2 = H_2 \setminus \{a_1 b_1\}.$ 

By (1), the underlying graph of each of  $\{H_1, H'_1, H_2, H'_2\}$  has at least four vertices. We claim that each of  $\{\overline{H_1}, \overline{H_2}\}$  contains an M- $C_4$  which is also an M- $C_4$  of G. Since G is a smallest counterexample, the underlying cubic graph  $\overline{H_1}$  of  $H_1$  contains at least two M- $C_4$ 's. If each of these M- $C_4$ 's of  $\overline{H_1}$  is not an M- $C_4$  of G, then each must contain at least one of the subdivided edges in  $\{a_1a_h,b_1b_h\}$ . Since  $a_1b_1,a_2b_h \in E(G)$ , these M- $C_4$ 's of  $\overline{H_1}$  must be  $a_1b_1b_2a_1$  and  $a_1b_1b_2a_ha_1$ . Hence we have that

$$a_hb_2\in E(G)$$
.

Furthermore, in  $\overline{H'_1}$ , the 4-circuit  $a_2b_hb_2a_ha_2$  is an  $M-C_4$  and contains both subdivided edges  $\{a_2a_h,b_2b_h\}$ . Thus, all  $M-C_4$ 's of  $\overline{H'_1}$  other than  $a_2b_hb_2a_ha_2$  do not contain either of the subdivided edges  $\{a_2b_h,a_hb_2\}$ . Note that  $\overline{H'_1}$  has at least two  $M-C_4$ 's. Therefore  $H'_1$  must contain an  $M-C_4$  of G and  $H_1$ . Similarly,  $H_2$  also contains an  $M-C_4$  which is also an  $M-C_4$  of G. Thus, G contains two distinct  $M-C_4$ 's, a contradiction.

## 3 Graphs with two 4-circuits

Theorem 4 is the best possible. Here we construct a family  $\mathcal C$  of cubic graphs satisfying the conditions described in Theorem 4, each member of  $\mathcal C$  having exactly two 4-circuits.

Define a function (a bijection)  $f: Z \mapsto Z$  as follows:

$$f(i) = \left\{ \begin{array}{ll} i & \text{if } i \text{ is even} \\ -i & \text{if } i \text{ is odd.} \end{array} \right.$$

Let n be a positive integer and construct a cubic graph  $H_n$  as follows. Let  $A = a_{-n} \cdots a_0 \cdots a_n a_{-n}$  and  $B = b_{-n} \cdots b_0 \cdots b_n b_{-n}$  be two disjoint circuits, let  $M = E(H_n) \setminus [E(A) \cup E(B)] = \{a_i b_{f(i)} : -n \le i \le n\}$ , let  $V(H_n) = V(A) \cup V(B)$  and let  $E(H_n) = M \cup E(A) \cup E(B)$  (See figure 2).



Figure 2.  $H_n$ 

For each  $m \geq 4$ , we now construct a graph  $G \in \mathcal{C}$  of order 2m. If m = 2k is even, then  $G = \overline{H_k \setminus \{a_0b_0\}}$ ; if m = 2k - 1 is odd, then  $G = \overline{H_k \setminus \{a_0b_0, a_2b_2\}}$ . Obviously,  $a_1b_{-1}b_1a_{-1}a_1$  and  $a_nb_nb_{-n}a_{-n}a_n$  (when n is even) or  $a_nb_{-n}b_na_{-n}a_n$  (when n is odd) are the only 4-circuits of G (not just M-G4's).

We also can prove that the graph  $G \in \mathcal{C}$  constructed above contains no M- $P_{10}$  subgraph. Denote the underlying graph of  $H_i \setminus \{a_0b_0\}$  by  $L_i$  for each positive integer i. Note that the underlying graph of the graph obtained from  $L_k$  by deleting the edges  $\{a_{-1}b_1, a_1b_{-1}\}$  is isomorphic to  $L_{k-1}$ .

It is sufficient to show that  $L_k$  contains no  $M\text{-}P_{10}$  subgraph. We assume inductively that  $L_{k-1}$  contains no  $M\text{-}P_{10}$  subgraph. If  $L_k \setminus \{a_1b_{-1}\}$  contains an  $M\text{-}P_{10}$  subgraph P, then the subgraph P must contain the edge  $a_{-1}b_{1}$ . But P cannot contain the edge  $a_{2}b_{2}$  since  $a_{-1}b_{1}$ ,  $a_{2}b_{2}$  are contained in a 4-circuit in the underlying cubic graph of  $L_k \setminus \{a_1b_{-1}\}$  whereas P contains no 4-circuit. Thus we obtain an  $M\text{-}P_{10}$  subgraph  $[P \cup \{a_{2}b_{2}\}] \setminus \{a_{-1}b_{1}\}$  in  $L_{k-1}$ . This is a contradiction. Similarly, we can prove that  $L_k$  contains no  $M\text{-}P_{10}$  subgraph since  $L_k \setminus \{a_1b_{-1}\}$  contains no  $M\text{-}P_{10}$  subgraph and  $\{a_1b_{-1}, a_{-1}b_{1}\}$  are contained in a 4-circuit of  $L_k$ .

In [9], we show two further properties about the  $L_k$ 's:

- Each L<sub>k</sub> contains no subdivision of the Petersen graph (not just M-P<sub>10</sub> subgraph).
- (2) Every permutation graph containing no M-P<sub>10</sub> and containing precisely two 4-circuits must be homeomorphic to a subgraph of some member of C.

## 4 Unique edge-3-coloring

The following is a well-known open problem regarding uniquely edge-3-colorable cubic graphs.

Conjecture 5 (Fiorini and Wilson 1978 [8]) Let G be a planar cubic graph with at least 4 vertices. If G is a uniquely edge-3-colorable cubic graph, then G has a triangle.

The planarity condition is required in Conjecture 5 since Tutte found that the generalized Petersen graph P(9,2) is uniquely edge-3-colorable and triangle-free ([13], see Figure 3). The following is a refinement of Conjecture 5.



Figure 3. P(9,2)

Conjecture 6 ([14]) Every uniquely edge-3-colorable, triangle-free, cubic graph of order at least four must contain a subdivision of the Petersen graph.

Note that P(9,2) is a permutation graph and contains a subdivision of the Petersen graph. Using Theorem 4, we obtain a partial result for Conjecture 6.

**Theorem 7** Every uniquely edge-3-colorable permutation graph of order at least eight must contain a subdivision of the Petersen graph.

**Proof.** Let G be a permutation graph containing no subdivision of the Petersen graph. By Theorem 4, the graph G contains two distinct M- $C_4$ 's and hence, G contains two distinct Hamilton circuits. It is easy to see that G has two distinct 1-factorizations and therefore G is not uniquely edge-3-colorable.

In the proofs of Theorem 2 (ii) and Theorem 7, the 4-circuits play a central role. The following result was proved by Hind ([10]).

**Theorem 8** (Hind [10]) If there exists a uniquely edge-3-colorable, triangle-free, (planar) cubic graph, then there exists a uniquely edge-3-colorable, triangle-free and 4-circuit-free (planar) cubic graph.

The authors believe the following.

Conjecture 9 The girth of every uniquely edge-3-colorable, triangle-free, cubic graph of order at least four is at least five.

#### 5 Remarks

By considering a minimal counterexample G to Conjecture 1, one may easily see that G has a 2-factor which consists of only two odd-circuits and all others are even-circuits. A permutation graph with 2k vertices (k odd) is a special case of this kind of cubic graph. The following refinement of Theorem 2 has been considered by a few mathematicians,

Conjecture 10 Let G be a bridgeless cubic graph such that G has a 2-factor F consisting of two odd circuits. Then either G contains a subdivision of the Petersen graph or G is edge-3-colorable.

If this conjecture were proved, it is possible that the lengthy proof of a theorem by Alspach, Goddyn and Zhang ([2]) could be simplified (with a similar argument as that of [1]). The family  $\mathcal{C}$  of permutation graphs constructed in Section 3 indicates that the approach of finding M- $C_4$ 's might be very difficult, since an additional chord can eliminate all (only two) 4-circuits in the graphs. It is surprising that even with the additional condition of planarity, there is as yet no proof of Conjecture 10 without using the 4-color theorem. Here we propose two problems (they are certainly true because of the 4-color theorem) that were posted on GraphNet in 1994 by one of the authors.

**Problem 11** Let G be a bridgeless cubic planar graph such that G has a 2-factor F consisting of two odd circuits. Prove that G is edge-3-colorable without applying the 4-color theorem.

If one component of the 2-factor is a 3-circuit, then this circuit can be contracted to a vertex. Thus, we have the following extremal case of Problem 11.

**Problem 12** Let G be a bridgeless cubic planar graph of order n such that G has a circuit of length n-1. Prove that G is edge-3-colorable without applying the 4-color theorem.

Acknowledgment. The authors would like to thank Mark Ellingham and the referee for their helpful suggestions.

### References

- [1] B. Alspach and C.-Q. Zhang, Cycle coverings of cubic multigraphs, *Discrete Math.* 111 (1993), 11-17.
- [2] B. Alspach, L.A. Goddyn, and C.-Q. Zhang, Graphs with the circuit cover property, Transaction of the American Mathematics Society, 344, No. 1, (1994), 131-154.
- [3] K. Appel and W. Haken, Every map is four colorable, Part I: Discharging, Illinois J. Math., 21 (1977), 429-490.
- [4] K. Appel, W. Haken and J. Koch, Every map is four colorable, Part II: Reducibility, *Illinois J. Math.*, 21 (1977), 491-567.
- [5] K. Appel and W. Haken, Every map is four colorable, AMS Contemporary Math., 98 (1989).
- [6] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- [7] M.N. Ellingham, Petersen subdivisions in some regular graphs, Congressus Numerantium, 44 (1984), 33-40.
- [8] S. Fiorini and R.J. Wilson, Edge colorings of graphs. In Selected Topics in Graph Theory (eds. Beineke and Wilson) Academic Press (1978), 103-126.
- [9] J.L. Goldwasser and C.-Q. Zhang, Edge-3-colorability of a family of cubic graphs. J. Combi. Math. Combi. Comput. (to appear).
- [10] H.R. Hind, Chapter 5 in Restricted edge-colourings, Ph.D. thesis, Cambridge University, 1988.
- [11] N. Robertson, D. Sanders, P.D. Seymour and R. Thomas, The 4-color theorem, preprint.

- [12] W.T. Tutte, A geometrical version of the four color problem, Combinatorial Mathematics and its Applications, (eds. R. C. Bose and T. A. Dowling), University of North Carolina Press, Chapel Hill, 1967.
- [13] W.T. Tutte, Hamiltonian circuits, Colloquio Internazional sulle Teorie Combinatorics, Atti dei Convegni Lincei 17, Accad. Naz. Lincei, Roma I (1976) 193-199.
- [14] C.-Q. Zhang, Hamiltonian weights and unique edge-3-colorings of cubic graphs, J. Graph Theory 20, No. 1 (1995), 91-99.