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ABSTRACT. Let T = (V, A) be an oriented graph with n ver-
tices. T is completely strong path-connected if for each arc
(a,b) € Aand k (k= 2,...,n — 1), there is a path from b to
a of length k (denoted by Pi(a,b)) and a path from a to b of
length k (denotod by Pj(a,b)) in T In this paper, we prove
that a connected local tournament T is completely strong path-
connected iff for each arc (a,b) € A, there exist P2(a,b) and
Ps(a,b) in T, and T 9% Tp — Dg-type digraph and Ds.

1 Introduction

Let T = (V, A) be an oriented graph with n vertices. If an arc (z,y) € A4,
then we say that £ dominates y, denoted by z — y. If S; and S, are disjoint
subsets of V' such that there is a complete connection between them and all
arcs between them are directed toward S», we say that $; dominates Sy,
denoted by §; — Sa. We write z — S (resp., S; — z) instead of {z} — S,
(resp., S2 — {z}). For z € V, we define O(z) = {y | y € V,(z,y) € A},
I(z)={y |y €V, (y,2) € A}.
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T is arc-k-cyclic if each arc (a,b) € A, there is a path from b to a of
length k — 1 in T. T is arc-pancyclic (resp., arc-antipancyclic) if for each
arc (a,b) € A, there is a path from b to a (resp., from a to b) of length k
(k=2,3,...,n—1) in T, denoted by Pi(a,b), or briefly Pi (resp., P/(a,b),
P[). An oriented graph T is completely strong path-connected if T is arc-
pancyclic and arc-antipancyclic. Other notations and terminologies not
defined in this paper can be found in [3].

A local tournament T is an oriented graph such that T[O(z)] and T[I(z))
are tournaments for every vertex z in T. Local tournaments were first
introduced by J. Bang-Jensen [1], [2]. Clearly, tournaments is a special class
of local tournaments. In [1], [2], it was shown that every connected local
tournament has a Hamiltonian path, and every strong local tournament has
a Hamiltonian cycle. Many other results for tournaments are also shown
for local tournaments. In this paper, Zhang and Wu’s results in [5] and [6]
are extended. We get the following main result.

Theorem. Let T = (V, A) be a connected local tournament with n vertices
(n > 3). If for each arc (a,b) € A, there exist Pz(a,b) and Py(a,b) in T.
Then T is completely strong path-connected, except T ~ Ty- or Dg-type
digraph or Dg. (see Figures 1, 2 and 3).

Figure 1. Dg

Figure 2. Tp-type digraph.
(Here T3, Ty are tournaments)
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Figure 3. Dg-type digraph.
(Here T3 is a tournament)

Immediately we have,

Corollary. ([5], Theorem 1) A tournament T = (V, A) with n vertices
is completely strong path-connected if and only if for each arc (a,b) € A,
there exist Py(a,b), and Pj(a,b) in T, and T # Tp-type digraph.

2 The Proof of the Theorem
In order to prove the Theorem, we need the following lemmas.

Lemma 1. Let T = (V, A) be a connected local tournament. For each
arc (a,b) € A, there exist Py(a,b) and P3(a,b) in T, then there exists a
cycle in the induced subgraph T[O(zo)] (resp., T[I(zo)] for any zo € V.
Furthermore, |O(zo)| > 3, (resp., |I(zo)| = 3).

Lemma 2. Let T = (V, A) be a connected local tournament. For each arc
(a,b) € A, there exist Py(a,b) and P;(a,b) in T, then there always exists a
P{(a,b) in T for each arc (a,b) € A (k=2,3,...,6).

By the definition of a local tournament, the proof of Lemma 1 and Lemma
2 is an analogous to the proof of Lemma 1 and Lemma 3 in [7].

Lemma 3. ([4] Theorem 1) Except for Tg-, Ts-type digraphs and Dg
(see Figures 1 and 5), every arc-3-cyclic connected local tournament is arc-
pancyclic.

The proof of the Theorem.

Let T = (V, A) be a connected local tournament of order n (n > 3) such
that for each arc (a,b) € A, there exist Py(a,b) and P;(a,b) in T. For Te-
or Tg-type digraph, it is easy to find that there exists a vertex z such that

|O(z)| = 2. So T is not a Ts- or a Ts-type digraph by Lemma 1. Hence
by Lemma 3 T is an arc-panyclic local tournament except T is isomorphic
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to Dg. And by Lemma 2 there always exists a P/(a,b) in T for k < 6.
Therefore it is enough to prove the following.

Te-type digraph Ts-type digraph
(where Ti, T} are tournaments)
Figure 5.
The directions of the edges without arrow can be chosen arbitrary.

Proposition. Suppose T is not isomorphic to a Typ- or Dg-type digraph
or Dg. If for each arc (a,b) € A and k (7 < k < n — 1), there exists a
P{_,(a,b) in T. Then there exists a P{(a,b) in T.

From now on, we shall assume that there is a P|_,(a,b) in T, and denote
it by (1,2,...,k), where a =1 and b = k. The set of vertices {1,2,...,k}
of P/_,(a,b) is also denoted by P{_,. Let W =V — P{_,. Hence |[W| > 1.
For any w € W we define

O'(w)=0w)NP_,, I'(w)=Iw)nP_,.
When O’(w) # 0 and I'(w) # 0 for w € W, set
a(w) =max{i | i€ O'(w)}, b(w)=min{i|ie I'(w)}.
If the condition of the proposition were false, we should assume that
There does not exist any P{(a,b) in T (%)

By the assumption above, we may obtain the following claims.

(1) O'(w) = {1,2,...,a(w)} and a(w) < k as O'(w) # 0. Similarly,
I'(w) = {b(w),...,k} and b(w) > 1 as I’(w) # 0.

Suppose O(w) # 0. If there exists an i € O'(w) with i — 1 & O’(w),
by the definition of a local tournament and {w,z — 1} C I(z), then i — 1
and w are adjacent in T. Thus ¢ — 1 — w by the definition of i. Hence
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there is a Pi(a,b) = (1,...,%— 1,w,%,...,k) in T. This contradicts (x).
So O'(w) = {1,2,...,a(w)}. And if a(w) = k, then w — P[_;. Note
that there exists a P>(w,1) = (1,z,w). Clearly z & P,_,. Hence z € W.
Thus T contains a P/(a,b) = (1,z,w,3,...,k). This contradicts (x). So
a(w) < k.

(2) For any w € W, O'(w) # 0 if and only if I'(w) # 0.

If O'(w) # 0, there is a Py(w,1) = (1,z,w). If z € W, then 1 € I'(z)
and b(z) = 1. This contradicts b(w) > 1 by (1). Hence z € I’(w) and
I'(w) # 0. Similarly, if I’(w) # @, then O'(w) # 0.

(8) Let Wy = {w |w € W,0'(w) # 0} and Wy = W — W, then Wp = 0.
Furthermore, T[W] is a tournament and O’(w) # 0, I'(w) # @ for every
weW.

Since T is connected, W; # 0. Suppose W, # 0. Let w; € W and
wy € W3 such that w; and w, are adjacent. Without loss of generality,we
assume wp — wj. Since £k — w; by (1) and (2), w; and k are adjacent.
Then k — wp and O’(w2) # @ by (1) and (2). This is a contradiction.
Hence Wy = 0. ie. W =W,.

From (1) and (2), we have W C I(1) and O'(w) # 0, I'(w) # 0 for every
w € W. Thus T[W] is a tournament by the definition of a local tournament.

(4) b(w) = b(w') and a(w) = a(w’) for any w,w’ € W.

Suppose there are w,w’ € W such that b(w) # b(w’). Set b(wp) =
min{b(w) | w € W}. Let W3 = {w | w € W,b(w) > b(wo)} and Wy =
W — W3. Then W3 # 0, Wy # 0 and b(wp) = b(w) — w for any w € Wy.
Case 1. There exist ws € W3 and wy € Wy such that w3 — wjy.

Since b(w4) = b(‘UJo) < b(w3) and b('ID3) -1- w4, W3 and b(‘lU3) -1
are adjacent by w3z — w4 and the definition of a local tournament. From
(1) we have w3 — b(ws) — 1. Thus a{ws) = b(ws) — 1. Similarly, since
b(ws) =1 < b(ws) — 1 = a(ws) and ws — wy, we have a(wy) = b(wy) — 1.

Now we need the following three Lemmas

Lemma 4. There are no u, v, n and m in P|_, such that u < n <

b(ws) — 1 < b(ws) <v < m and (u,v),(n,m) € A.

Proof: Otherwise, it will contradict (x). a
Now, (n,m), (u,v) € A are called cis-crosswise arcs with respect to the

Pj_, (briefly cis-crosswise arcs) if n, m, u and v are on P]_, such that

u<n<v<m.

Lemma 5. (a) For each i € {3,4,...,b(ws) — 1}, we have (i,1) € A. (b)

For each j € {b(ws),...,k — 2}, we have (k,j) € A.

Proof: (a) Since {1,2,...,b(ws)—1 = a(wy)} C O(wy), T[{3,4, ..., b(ws)—

1,1}] is a tournament. If there is an ip € {3,4,...,b(ws) — 1} such that

1 — 149, then w3 — ip — 1 by ip — 1 < a(ws). There is a Py(ws,ip — 1) =
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(io—1,u,ws). By the definition of b(ws ), we have u ¢ W. Hence u € I'(ws).
Thus there is a Pi(a,b) = (1,4,...,u — 1,24,2,...,%0 — L, 2,..., k). This
contradicts (x). So (a) is valid.

An analogous proof of (a), we have that (b) is true. (u]

Lemma 6. If (b(ws)—1,b(ws)) € A and (b(ws)—1, b(w3)) # (a,b) = (1, k),
then there is an arc (u,v) € A such that (u,v) and (b(wqg) — 1,b(w3)) are
cis-crosswise arcs.

Proof: By Lemmas 1, 4 and 5, using an analogous proof of Lemma 3 in
[5], Lemma 6 follows. m]

Now, let’s back to discuss case 1.

There are Pz(u)3,a(W4) = b(‘LD4)—1) = (b(’IIJ4)—l,m,W3) and Pz(‘ll)3,'ll)4) =
(wq, ws, w3), where m ¢ W and ws ¢ P|_,, by the choice of ws and
b(ws) > b(w,). Hence we have that b(w3) <m < k and ws € W.

If b(ws) — b(ws) > 4, then a(ws) > b(ws) + 3. There is a Pi(a,b) =
(1,...,b(ws), ws, ws, w3, b(ws) + 3, ...,a(ws),..., k). This contradicts (*).
Hence b(ws) — b(wy) < 3.

Subcase 1.1. (b(w4) — 1,b(w3)) & A.

First, we have m > b(ws). Let Pa(b(ws),ws) = (w4,y,b(w3)). If y €
W, then a(y) > b(ws). If a(y) > b(ws) + 2, then there is a Py(a,b) =
(1,...,b(ws), ws,y,b(ws) +2,...,a(y),..., k). This contradicts (x). Henee
a(y) < b(wg) + 1. Since a(y) > b(ws) > b(ws) + 1, we have a(y) = b(ws) =
b(ws) + 1. By Lemma 1 ,there exists an z € O(1) — {2,k}. Obviously,
zgW. And z ¢ {3,...,b(ws) — 1} by Lemma 5. So z > b(wy).

(a) = = b(wg). Sinee z > 3 and a(wg) = b(ws) — 1 > 2, there is a
Pl(a,b) = (1,z = b(ws),...,m — 1,w4,2,...,b(ws) — 1,m,..., k). This
contradicts (x).

(b) = = b(ws) + 1. Note that m —1 > b(ws) — 1 = b(wy) and a(y) =
b(wg) + 1 = a(wy) +2 > 3. If a(wy) > 1, then there is a Pi(a,b) = (1,z =
b(ws),...,m—1,w4,¥,2,...,a(ws) = b(ws)—1,m,..., k). This contradicts
(). Hence a(wg) = 1. Thus we have I(k) C {1,b(ws) —1 = 2,k —1} by
Lemma 5 (b). And then 2 — k by Lemma 1. Hence there is a P;(a,b) =
1,z = b(ws), ...,k — 1, ws, b(ws) = 2, k). This contradicts (x) too.

(c) = > b(ws) = b(ws) + 1. Since z < k and 1 — z, there is no jo €
{2,...,b(ws)—1} such that jo — k by Lemma 4. Then I(k) C {1, b(w4), k—
1} by Lemma 5 (b). Hence I(k) = {1,b(ws),k — 1} by Lemma 1. That is,
b(ws) — k. If k = 7, there is a Pi(a,b) = (1, z,wa,y, b(w3), ws, b(ws), k).
This contradicts (x). Hence k > 7. There are two distinct vertices 7,5 €
Pl_,—{1, a(ws), b(ws) = a(ws)+1, b(ws) = a(ws)+2,z, k}. Using two arcs
(1, ), (b(ws),k) and wa, wy, y, then there is always a P(a,b) in T. e.g.,
1 < i < a(wy) and b(ws) < j < «, then there is a P{(a,b) = (1,z,...,k -
1, wa, v, b(ws), ...,z — 2,ws,3,...,a{ws),b(ws), k). These contradict (x).
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Hence y ¢ W and 1 < y < a(wy) = b(ws) —1. Since (b(wy) — 1, b(ws)) € A,
we have y < b(ws)—1. Now, there are two arcs (y, b(w3)) and (b(w,4)—1, m)
in T with y < b(wy) — 1 < b(ws) < m. This contradicts (x) by Lemma 4.
Subcase 1.2 (b(w,) — 1, b(ws)) € A.

Since b(ws) — b(wg) < 3 and k > 7, we have (b(w,) — 1,b(ws3)) # (a,b).
There exists an arc (u,v) such that (u,v) and (b(wy) — 1, b(ws)) are cis-
crosswise arcs by Lemma 6.

Suppose u < b(wg) —1 < v < b(ws). For v = b(w,) or blwy) + 1
or b(ws) + 2, there exists a Pi(a,b) in T respectively. e.g., we assume
v = b(wy)+ 1. If b(ws) = b(w4) + 3, then there is a P/(a,b) =(1,...,u,v =
b(wa)+1, ws, ws, w3, u+1,...,b(ws) —1,b(ws),. .., k). If b(ws) = b(ws)+2,
then v = b(wz) — 1 = a(ws). Since wy — ws and wy — a(wy), ws and a(wy)
are adjacent. By the definition of b(ws) = b(wp), we have ws — a(w,).
Hence a(ws) > a(wg) > v and ws — u + 1. Thus there is a P(a,b) =
1,...,u,v = blws)+1,ws, ws, u+1,...,5ws)—1,b(ws) = b(wg)+2,...,k).
These contradict (x).

Using an analogous method, if b(ws) — 1 < u < b(ws) < v, then there is
also a P{(a,b) in T. This contradicts (x).

Therefore no vertex of W3 dominates any vertex of Wy. We have that
Wy — Wjs since T[W)] is a tournament.

Case 2. Wy — W3,

We choose w3 € Wa, wy € W, such that b(ws) = max{b(w) | w €
W3}. Thus wy — ws. Since b(ws) > b(ws), there exists a Pj(wy, w3) =
(w4, we, w3) with wg € W. Now, we have the following claims.

(4.1) b(ws) < a(ws) < b(ws) +1.

Let Py(ws,ws) = (ws,y,ws). Since Wy — W3, we have y € W and
y € P{_,. Thus b(w,) < y < a(ws). If a(ws) — 2 > b(w,), then there is a
P(a,b) = (1,2,...,a(ws) — 2, ws, w3, a(ws),..., k). This contradicts (x).
Hence a(ws) < b(wy) + 1.

(4.2) (a(ws), b(ws)) € A.

Let P2(b(‘ll)3),’ll}4) = (W4,u,b('(U3)) and P2(1U3,G(’U)4)) = (a(w4),m,w3).
By the choice of ws and w,, we have u,mm ¢ W. Then u < a(w,) and
b(ws) < m. If u < a(wy4) and b(ws) < m, then

(a) a(ws) > a(ws) + 2. Since b(ws) —1 > b(wy), there is a Pl(a,b) =
1,...,u,b(ws),...,m — 1,ws,a(ws) +2,...,a(ws),...,blws) — 1,ws,u +
1,...,0.(‘(1)4),77!.,. --:k);

(b) b(ws) < b(ws) — 2. There is a Pl(a,b) = (1,...,u,b(ws),...,m —
L,ws,a(wy) +1,...,b0(ws),...,b(ws) — 2,ws,u+1,...,a(ws),m,...,k);

(c) a(ws) < a(wy) + 1 and b(wy) > b(ws) — 1. Since a(ws) > b(ws) >
a(ws) + 1 and b(wyg) < b(ws) — 1, we have a(ws) = b(ws) = a(ws) +1 =
b(ws) — 1. Thus there is a P{(a,b) = (1,...,u,b(ws),...,m — 1, wy, w3, u+
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.,b(ws) — 2 = a(ws), m,. .., k).

These contradict (x). So u = a(w4) or m = b(ws). Thus (4. 2) is valid.

(4.8) a(ws) = b(ws) — 1 and a(ws) = b(ws) — 1.

If a(ws) < b(ws) —1, then i and wg are nonadjacent for each i € {a(ws)+
1,...,b(ws) —1}. Since {a(ws) +1,...,b(ws) — 1,k} C I(w4), k and j are
adjacent for each j € {a(w3) + 1,...,b(ws) — 1}. Since the definition of
local tournaments and k — ws, we have {a(ws) +1,...,b(w3) — 1} —
k. If b(ws) < k, then there is a P{(a,b) = (1,...,a(ws),b(ws),..., &k —
1, w3sa(w4) +1,..., b(w3) -1, k) by (4'2) and a(w4) +1s b(w4) < a.(w3).
This contradicts (x). So b(ws) = k. Since 1,k —1¢€ I(k),1and k-1 =
b(ws) — 1 are adjacent, and then 1 — b(ws) — 1 by w3 — 1. Now, we
consider the following two subcases:

(a) a(ws) < b(ws) —2=k-2.

If a(ws) > 3, then there is a P{(a,b) = (1,b(ws)—1,w4, w3, 3, ..., b(ws)—
2,k). This contradicts (x). Hence a(ws) < 2. Since a(ws) > b(w4) >
a(w4) > 1, we have a(ws) = 2. Then b(ws) — 3 > a(ws) by k > 7. Hence
b(ws)—3 — k and there is a P(a,b) = (1,b(wz) =1 = k—1, w4, w3, a(ws) =

.,k — 3 = b(ws) — 3, k). This also contradicts (x).

(b) a(ws) =b(ws) —2=k —2.

Since k > 7, we have a(ws) > 5 and b(ws) > a(ws) — 1 > b(ws) —1 > 4
by (4.1). If b(ws) = a(ws) + 1, then a(wg) > 3. When a(wa) = b(wy) +
1, there is a P{(a,b) = (1,b(w3) — 1 = k — 1,ws, we,w3,2,...,k—4 =
a(wyg),b(ws) = k) by (4.2). When a(ws) = b(wy), there is a Pk(a b) =
1,b(w3) — 1 = k — 1,wy,ws,2,...,k — 3 = a(wy),b(ws) = k). These
contradict (*). So b(ws) > a.(w.;) + 2. Since a(ws) — b(ws) = k and
a(wy) — a(ws) + 1,k and a{w,) + 1 are adjacent, and then a(wy) +1 — k
by k — w4 and wg and a(ws) + 1 are nonadjacent. Similarly, we can get
that {a(ws)+1,...,b(ws)—1} — kand 1 — {a(ws)+1,...,b(ws)—1} since
{1,a(wq) +1,...,b(ws) —1} C O'(w3). If b(ws) —2 > a('w4) +1, then there
is a P(a,b) = (1,b(ws) — 1,...,a(w3) = k —2,wq,ws,2,...,b(ws) — 2,k)
by (4.1) and b(w,) = 4. If b(w4) = a(wy) + 2, then there is a P{(a,b) =
(1,a(wq) +1,...,k—1,ws4,2,...,a{ws), b(ws) = k) by (4.2) and a(wy) > 2.
These contradict (x). So a(ws) = b(ws) — 1.

Similarly, we can prove that a(ws) = b(ws) — 1. (4.3) is valid.

Now, by (4.1), (4.2) and (4.3), we have that b(w3) — b(w4) < 2, a(ws) =
b(wz) —1, a(wy) = b(ws) —1 and (b(ws)—1,b(ws)) € A. Using an analogous
proof of subcase 1.2, there is a Py(a,b) in T. This contradicts (x).

Up to now, we prove that b(w) = b(w’) for any w,w’ € W. Similarly, we
can prove that a(w) = a{w’) for any w,w’ € W. So (4) is valid.

We denote ap = a{w) and by = b(w) for any w € W. Then O'(w) =
{1,2,...,a0} and I'(w) = {bo, ..., k} forany w € W, and then T[{1,...,a0}]
and T[{bo, %0 + 1,...,k}] both are tournaments. Clearly for any i € {ao +
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1,...,b0 — 1} and any w € W, i and w are nonadjacent.

Now, we shall use the following lemmas and symbols.

For1<t<apand by <j <k, let Rt)= {i| (t,i) € A, bp <i <k}
and L(j) = {i | (i,5) € A,1 < i < ap}. Since there exist Pz(w,t), P2(j, w)
forany we W and 1 <t < ag, bp < j <k, it is easy to check R(t) # 0,
L(j) # 0. Hence we can define,

¥(t) = max{R(t)}, ¥1(t) = min{R(t)}, 1(j) = max{L(j)} and ¢(j) =
min{L(j)}.

Then by < ¥1(t) < ¥(t) < k, 1 < () < w1(4§) < a0, and (¢, %(¢)),
(&, 91(2)), (9(5),9), (1(5),5) € Afor any 1 <t < ap and bp <j < k.

Lemma 7. If there are o < v < § in P{_, such that 1 < a < a9 — 1,

a+1<7,bp+1<6and (a,7),(y—1,6) € A, then T contains a P;(a,b)

inT.

Proof: Let o, v and § satisfy the condition of Lemma 7. Then there is a
w(a,b)=(1,...,0,7,..., 6 = lw,a+1,...,v-1,6,...,k). o

Lemma 8. ([2], Corollary 3.13) Let P, = (z1,...,%Zm) and P2 = (y1,...,¥t)
with m > 2 and t > 3 be paths in a connected local tournament T. If
there exist i, with 1 < i < j < m such that z; = y1, £; = Yy, and
V(PN (v(P2) — {y1,}) = 0. Then T has an (z1,zm)-path P such that
V(P) = V(P,)UV(R,).

(5) bo=ao+1

Suppose bp > ag + 1. If by = k, then ¥(¢) = k for each ¢ € {1,2,...,a0}.
That is, {1,2,...,a0} — k. Let Py(ao,a0 + 1) = (ap + 1, z, ap). Obviously,
z g W. If z € {1,2,...,a0 — 1}, then a9 + 1 and w are adjacent by
w — z. This is a contradiction. So = ¢ {1,2,...,a0 — 1}. Similarly,
z @ {ao+1,....,00—1}. Thusz = by = k. ie, k = z — ag. This
contradicts ag — k. Hence bp < k — 1. Similarly, we have ap > 2.

Let Py(ao,a0 + 1) = (ao + 1,¢,a0). Using an analogous proof as above,
we have t € WU {1,2,...,a0 —l,a0+1,...,bp — 1}. That is, bp <t < k.
If ¢ = bo, then we have by — ag, w(bo) < ag and 1(ap) > bo. (bo) and
bo — 1 are adjacent by ¢(bp) — by and bp —1 — byp. Since bp — 1 and w
are nonadjacent and w — (by), we have p(bg) — by — 1. Similarly, we
can obtain ¢(bp) — {ao +1,...,b0 — 1}. Let a = p(by), ¥ = a0 + 1 and
8 = 9(ap). Then there is a P/(a,b) in T by Lemma 7. This contradicts
(x). Hence t > bp. Similarly, letting P2(bo = 1, bo) = (bo, %, bo — 1), we have
1<y <ap.

If o > ap + 2, then ¢t and ap + 2 are adjacent by ap +1 — ¢ and
ao+1—ap+2. If t = ap+ 2, then it will deduce that ap + 2 and w are
adjacent by ¢ — w, a contradiction. Hence ag + 2 — ¢. Similarly, we have
{ao+1,...,b0—1} = t. Let a = y(< ap), v =bp—1 and § = (> bg). There
is a P{(a,b) in T by Lemma 7. This contradicts (x). Hence by = aop + 2.
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a0+ 1 and t — 1 are adjacent since ap+1 - tand t —1 — ¢t. Thus
a+1—t—1byt—1— wand w and a9 + 1 are nonadjacent. Similarly,
we have

ap+1—-{bp+1,...,t —1,t} (k)

Now, we consider the following four cases.
Case 1. ag > 2 and k > by + 2.

If p(bo) < ao, letting a = p(bp), ¥ = by and § = ¢, then there is a P (a,b)
in T by Lemma 7 and (bo — 1,t) = (ap + 1,t) € A. This contradicts (x).
Hence ¢(bp) = agp. That is, ag — bp. Since 1,a9 € O(w), 1 and ag are
adjacent. Suppose (1,a9) € A. If ¥(ag — 1) > by, letting a =1, vy = ap and
6 = t(ao — 1), then there is a F(a,b) in T by Lemma 7. This contradicts
(*). So ¥(ap — 1) = by. ie, ao—1 — t(ap — 1) = bp. Now, letting
a=ap—1,v="by and § = ¢, there is a P{(a,b) in T by (x*) and Lemma
7. This contradicts (%) too. Hence in the following we always assume that
(a0,1) € A.

(5.1) {1,2,...,a0—1} s ap+1landag+1— k.

1 — ap + 1 since ap + 1 and w are nonadjacent and 1,a0 + 1 € O(ao).
Furthermore, 2 — ag + 1 by 1 — 2. Similarly, we have that {1,2,...,a9 —
1} ap+landagy+1—kbyl oa+1and1—k.

(5.2) bp —» 1 and {bo+2,...,k} — bo.

Since ag — 1 and ag — b, 1 and by are adjacent. If 1 — by, then, letting
a =1,y ="boand § = ¢, there is a P{(e,b) in T by (3x) and Lemma 7.
This contradicts (x). Hence by — 1.

If there exists a j € {bp +2,...,k} such that by — 37, then T contains a
Pl(a,b)=(1,...,a0—1,a0+1=bp—1,bo+1,...,7 —1,w,a0,b0,5,...,k}
by (5.1) and (#x). This contradicts (x). Hence {bp +2,...,k} — by.

(5.3) ap =3, bg =5 and (ap — 1,bp) & A.

If ¥(ap — 1) = by, then there is a P{(a,b) = (1,...,a0 — 1,9(ap — 1) =
bo,...,k—1,w,a0,a0+1,k) by (5.1) . This contradicts (x) . So ¥(ap—1) >
bo and (ao - l,bo) ¢ A.

By ap—1 — t(ap—1) > bp, Lemma 7 and (%), we have ag — 2. If ag > 4,
then there is a P/(a,b) = (1,a0 + 1,...,%(a0 — 1) — 1,w,a9,2,...,a0 —
1,%(ap —1),...,k) by (5.1). This contradicts (x). Hence ag < 3, and then
ap =3 by ap > 2. Thus bg = ap +2 =5.

(54) k=b+2=7

Suppose k > bp + 2. When ¢(by + 1) € {1,2}, there is a P/(e,b) =
(1,...,0bo +1), bo+1,....k — 1,bp,w,o(bo + 1) + 1,...,a0 + 1,k) by
(5.1) and (5.2). When @(bo+1) =ag = 3, lettinga =1, y =ag+1 and
6 = bp+1, there is a P{(a,b) in T by Lemma 7 and (5.1). These contradict
(*). Hence k=by+2=7by k > bo + 2.
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(5.5) k—ao

ao and k are adjacent since ap — bp and k — bp by (5.2). If ap — k&,
letting & = 1, ¥ = ag+1 and § = k, then there is a P/(a,b) in T by Lemma
7. This contradicts (x). So k — aq.

Now, 1 and by +1 are adjacent since 1,b9+1 = k—1 € I(k). We consider
the following two cases.

(@) bp+1—1.

ao and by + 1 are adjacent by ag — 1. If ag — b + 1, then there is a
Pi(a,b) = (1, a0 + 1, b, w, 2,a0 = 3,bp + 1, k). This contradicts (). Hence
bo+1 — agp.

Let P}(bo,bo + 1) = (bou, bo + 1). Obviously, u € W. Since bo+1 — 1,
ag — bg ag+1 — bp and bp+1 — k, wehaveu = 2. ie., bp = u =2 — bo+1.
Let P§(1,2) = (1,2,2). Obviously, z ¢ W. Since ap — 1,2 = ao +1 by
(5.1), bo = 1 by (5.2) and bp+1 — 1, we have z = k. ie,, k=2 — 2.
Suppose |W| > 1. Clearly T contains a Pi(a,b). This contradicts ().
Hence |W|=1.

Now, by ag +1 — by + 1, ag — bp, ap — 1, (5.1)~(5.5) and (a), we have
that T~ Dj. This contradicts the assumption of the Theorem.

(b) 1 = by+1.

Since 1 — 2 and 1 — by + 1, we have 2 and by + 1 are adjacent. If
2 — by +1, then 2 and by are adjacent and by — 2 = ag — 1 by (5.3). Thus
there is a P}(a,b) = (1,bo + 1,w, a0,b0,2 = ao — 1,00 + 1, k) by (5.1) and
(5.2) . This contradicts (). So bp +1 — 2.

Let P§(bo+1,k) = (bo+1,3, k). Obviously, y € W. Note that 1 — bo+1,
k — ap by (5.5), ap +1 — bp + 1 by () and bp — bo + 1. We have y = 2.
ie,2—k.

We easily check that |W| =1 and 3 and 6, 2 and 5 are nonadjacent.
Otherwise, T contains a Pj(a,b). e.g., (3,6) € A, there is a P{(a,b) =
(1, a0+ 1,b9,%,2,3,6 = by + 1, k) by (5.1). These contradict (x).

Now, by ag+1 — bo + 1, ap — bo, ap — 1, (5.1)~(5.5) and (b), we have
that T' ~ Dg. This contradicts the assumption of the Theorem.

Case 2. qg >2and k=by+ 1.

Since bp <t < k,wehavet =k =bp+1. ie,bp—1=ap+1—ot=k.
Since k = bg +1 = ag + 3 > 7, we have g9 > 4. If there exists a jo €
{1,2,...,a0 — 1} such that jo — by, letting a = jo, ¥ = bp and § = k, then
there is a P/(a,b) by Lemma 7. This contradicts (x). Hence (4, bo) ¢ A4 for
each j € {1,2,...,a0 — 1}. Then I(bo) C {ao,a0+1=1bo —1} by bp —» W.
This contradicts Lemma 1.

Case 3. ap =2 and k > b + 2.

Consider the converse 5‘_ of T, thus we change case 3 in T for case 2 in
T. So this case is impossible.
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Case 4. ap=2and k=bp+ 1.

In this case k = by + 1 = ap +2 + 1 = 5, this contradicts k > 7.

Up to now, we have proved that by = ao + 1. (5) is valid.

(6) Under the condition by = ap + 1, we can obtain the following claims.

For convenience, let s =ap+1 =bp. Thenap=s—-1,1 < s < k and
T[{1,2,...,s—1}] and T[{s, ..., k}] both are tournaments.

(61)3<s<k-1

T is a To-type digraph when s = 2 or k. e.g.,s = 2, then O'(w) = {1}
and I'(w) = {s = 2,...,k} for any w € W. Hence (i) = 1 for each
i€ I'(W). ie.,, 1 = {2,...,k}. Let T§ = T[{2,...,k}], T = T[W] and
vo = 1. Thus Ty — Ty’ — vp — T3. Since Tj and T§' both are tournaments,
T ~ Tp-type digraph. This contradicts the assumption of the Theorem. So
3<s<k-1.

(6.2) ¢(s) < s—1, ¥(s —1) > s can not hold simultaneously.

Suppose ¢(s) < s—1, ¥(s—1) > s. We may choose a = ¢(s), ¥ = s and
6 = (s — 1). Then there is a P/(a,b) in T by Lemma 7. This contradicts
(*). Hence we have ¢(s) = s —1 or ¥(s— 1) = s. We may assume, without

loss of generality, ¥(s — 1) = s. Otherwise, we consider the converse T of
T. Then

1< () < p1i) S5 -2 (x4 %)

for each j € {s+1,...,k} by the definition of (s — 1). We may define
7 =max{p1(j) | s+1<j <k}, m=min{j | p1(j) = 72,5 +1 < j < k}.
Then 72 < s - 2,3 < W, (R, W) = (p1(7),m) € A and (B,7m) # (1,k).
In fact, if (#2,72) = (1,k) then every vertex in {1,2,...,s — 2} does not
dominate every vertex in {s+1,..., k} except for an arc (1,k). If k > s+1,
then (s +1) < s —2 by (xx ). i.e., ¢(s+1) — s+ 1, a contradiction.
So k = s+ 1. Since k > 7, we have s > 6. Since (i,k) ¢ A for each
i€{2,...,5s—2} and ¥(s — 1) = s, we have I(k) C {1,k — 1 = s}. This
contradicts Lemma 1. Hence (7, %) # (1,k) = (a, b).

(6.3) (1°) Foreach j € {fi+1,...,s—1} andi € {s+1,...,k}, we have
(7,9) € 4;

(2°) {i+1,...,s—1} - s;

(3°)Aa+1>{1,2,...,Ai—1} as i >2.

By the definition of 7 and ¥(s—1) = s, we easily check that (1°) and (2°)
are valid. By 72 — 7, Lemma 7 and (%), we have A +1 — {1,2,...,72—1}.

64)k—{s—1,s,....,.k—2}ask>s+2.

If there exists a jo € {s,...,k—2} such that jo — k, letting a = @(jo+1),
v = jo+ 1 and 6§ = k, then there is a P/(a,b) in T by Lemma 7 and
©(jo + 1) < s — 2. This contradicts (x). Hence k — {s,...,k —2}. Since
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k — sand s—1 — s, we have k and s — 1 are adjacent and k — s —1 by
(6.3).

(65) {s+2,....k—1,k} » {f+1,...,8}ifk > 54+2;, s+1 =
{n+1,...,s—1}ifk>s+3.

k and s — 2 are adjacent since k — s —1by (64). If s—2>7+1,
then k — s — 2 by (6.3) (1°). Similarly, we have k - s—3,...,k > @+ 1.
Thus k — {#+1,...,s—1,s,...,k—2} by (6.4). Hence T[{Rn +1,...,5—
1,s,...,k — 2,k}] is a tournament. Then by (6.3) we have {s+2,...,k —
2,k} »{n+1,...,s—1} whenk >s+2,and s+1 - {fai+1,...,s—-1}
when k > s+ 3. Since p(s+1) < s—2, we have {s+2,...,k—1,k} = s
by Lemma 7 and (). Since s—1 —+sandk—1 — s, wehavek—1 —s—1
by (6.3). Similarly, k-1 — {fa+1,...,5 — 1, s}. Hence (6.5) is valid.

(6.6) 1< (k)<

Note that I(k) C {1,2,...,7,k — 1} by (6.3) and (6.4). Then there
exists an 49 € I(k) — {1,k — 1} with 1 < i3 < 72 by Lemma 1. Hence
1 <ip < pu(k) <A

In the following we consider two cases.

Case 1. O(1)N{s,s+1,...,k—1} #0.

Let p =max{j |O(1)N{s,5+1,...,k—1}}. Thens<p<k-1.
Subcase 1.1 |W| > 2. (let w,w’ € W and w # w').

(6.7) p=s. Thatis, 1 — sand (1,5) € A foreach j € {s+1,...,k-1}.

Suppose p > s. Since k > 7, there exists an ¢ € P{_; — {1,¢1(k),s —
1,s,p,k}. If 1 < i < (k) then there is a P/(e,b) = (1,p,...,k —
1,w,¢,(k)+1,...,p—1,9/,3,...,¢1(k), k). Similarly, T contains a Pj(a,b)
when ¢;(k) <i<s—lors<i<porp<i< k. These contradict (x).
Hence (6.7) is valid.

(6.8) T[V1] is a strong tournament, where Vi = {fn +1,...,s —1}.

Since Vi C O(w), T[V4] is a tournament. If T[V;] is not strong, then
Vil 2 2and a4+1 — s—1. Let P(R+1,s-1) = (s —1,q,a + 1)
in T. Obviously, ¢ ¢ W. Since T[V}] is not strong, we have ¢ € ;.
q & {s,s+1,...,k} and ¢ & {1,2,...,72 — 1} by (6.3). Hence ¢ = #
and s—1—>g¢g=#. Let P, = (1,s,...,a — 1,w,2,...,A,M,...,k) and
Py = (w,i+1,...,8—1,7). Then by Lemma 8 there is a P/(a,b) in T.
This contradicts (*). So T'[V;] is a strong tournament.

(6.9) i=2and 2 — k.

If 2 > 2, then 7i+1 — 2 by (6.3). We may assume that (7i+1,h,...,7s+
1) is a Hamiltonian cycle in T'[V;] by (6.8). Thus there is a P/(a,b) =
1Q,s,...,m—1wh,...,n+1,2,...,7,7,...,k). This contradicts (x). So
7 < 2. Thus 72 = 2 and (k) = 2 by (6.6). So 2 — k.

(6.10) k=s+1.
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Suppose k —1 > s+ 1. If there exists a jo € {s,...,k — 3} such that
jo — k —1, then, letting & = p(jo+1), y=jo+1land 6 =k -1, T
contains a P (a,b) in T by (6.2) and Lemma 7. This contradicts (x). Hence
k—1—{s,...,k—3}. By (6.3), (6.7) and (6.9), I(k—1) C {=2,k—-2}.
This contradicts Lemma 1. So k = s+ 1.

(6.11) O(1) = {2,s =k -1,k}

Otherwise, there exists a y € O(1) — {2,s = k — 1,k}. Then y € Vj. Let
(y,..-,h,y) be a Hamiltonian cycle in T[V;]. Then there is a P(a,b) =
(1,9,...,h,s,w,2 =p1(k), k) by (6.3). This contradicts (x). Hence O(1) =
{2,s=k—-1,k}.

(8.12) 2 — s.

Let Pj(1,s) = (1,2,s8), then z € O(1) = {2,s = k — 1,k}. Since s =
k—1—>k, wehave z=2. Hence 2=2 — s.

So far, since O(1) = {2,s =k — 1,k}, 2 — s and 2 — k by (6.9), there
exists no P;(1,2) in T. This contradicts the assumption of the Theorem.
Subcase 1.2 |[W|=1.

Using an analogous method of subcase 1.1, we can get p # s. Hence we
may assume that s+1<p<k-1.

(6.13) k=s+2and p=s+1.

Ifk>s+3 thenk—-1— {fi+1,...,8—2,s—1,s} by (6.5). Since
7t + 2 < s by the definition of 2, we have k —1 - 7+ 2. If =# > 3,
then #+1 — 2 by (6.3). Thus there is a P{(e,b) = (1,p,...,k - 1,2+
2,...,p=1wpi(k)+1,...,72+1,2,...,p01(k), k). This contradicts (x).
Hence 7+ = 2. And then 2 = (k) — k since 2 < (k) < #. Thus there
is a P{(a,b) =(1,p,...,k—1,2+1=3,...,p—1,w,2 = ¢1(k), k). This
contradicts (x). Sok=s+2andp=s+1sinces+1<p<k-—1.

(6.14) 2> sand i — s —1as# > 3.

Since i +1 — sand A+ 1 — 2 by (6.3), 2 and s are adjacent. If s — 2,
then there is a P{(a,b) = (1,p = s+ 1, w,p1(k) +1,...,5,2,...,01(k), k).
This contradicts (x). So 2 — s.

If s—1— 7, letting P, = (1,2,s,...,m — 1,w,3,...,#,m,...,k) (Note
that s+1<Mm<k=s+2)and P, = (w,fa+1,...,8 — 1,7), than by
Lemma 8 there is a P/(a,b) in T. This contradicts (x). Hence z — s — 1.

(6.15) T'[V] is a strong tournament, where V; = {fz +1,...,s — 1} and
n>3

If not, then |V}| > 2 and fi+1 — s—1. Let Py(f+1,s—1) = (s—1, g, a+1).
Obviously, ¢ ¢ W. By (6.3), ¢ & {1,2,...,i—1}U{s,s+ 1,5+ 2 = k}.
Since T'[V}1] is not strong, we have ¢ € V3. Theng=1. ie.,,s-1—g=1.
This contradicts (6.14).

(6.16) Vi - {1,2} and s » 1 as 72 > 3.
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Let (y,...,h,y) be a Hamiltonian cycle in T{V;]. If there exists a y €
V; such that 1 — y, then there is a P{(a,b) = (1,y,...,h,s,...,m —
1,w,2,...,7,M,...,k) by (6.3). This contradicts (x). SoV; — 1. Similarly,
we have V; — 2.

Sincel1 - p=s+1and s = s+1, 1 and s are adjacent. If 1 — s, then
there is a Pi(a,b) =(1,s,...,m—1,w,fi+ 1,...,s—-1,2,...,7,Mm,...,k).
This contradicts (x). So s — 1.

(6.17) 72 =3.

In fact, if & > 4, then 241 — 3 by (6.3). Let (h,...,7+1, k) be a Hamil-
tonian cycle in T'[V;). There is a Pi(a,b) = (1,2,s,...,7—1,w,h,..., "+
1,8,...,#,m,...,k) by (6.14). This contradicts (x).

If 4 = 2, then (k) = 2 and 2 = (k) — k. Since 2,s+1=p € O(1),
2 and s+ 1 are adjacent. If2 —» s+ 1, thenby a+1=3, s+ 1 € O(2),
fi+1 and s+ 1 are adjacent. By (6.3) we have s+ 1 — 72+ 1. There is a
Pl(a,b)=(QQ,p=s+1,72+1,...,5,w,2 = (k), k). This contradicts (x).
Hence s+ 1 — 2. By (6.3) we have that I(s+1) C {1, s}. This contradicts
Lemma 1. So 72 = 3.

(6.18) 3 - V.

Suppose there exists a y € V; such that y — 3. Let (h,...,z,k) be a
Hamiltonian cycle in T'[V;]. Then there is a Pi(a,b) = (1,2,s,...,m —
1,w,h,...,y,3=#,m,..., k) by (6.14). This contradicts (x). So 3 — V3.

For 2 < ¢1(k) < n =3, we consider the following two cases

(a) p1(k) =3. (thatis3 =7 — k)

Since #,s+1 = k-1 € I(k), 7t and s+1 are adjacent. If 7 — s+1, then,
by s+ 1,72+ 1 € O(#), s+ 1 and 7 + 1 are adjacent. By (6. 3) we have
s+1 — fa+1. Thereis a P[(a,b) = (1,p =s+1,7+1,...,5w,2,3 =7,k).
This contradicts (x). So s + 1 — 7.

By (6.3) and Lemma 1, we have I(s+ 1) = {1,2,s}. Then 2 - s+ 1.

Since 5,72 = 3 € O(2) by (6.14), s and © are adjacent. If s — 7, then
there is a P(a,b) = (1,2,s+ 1,w,72 + 1,...,s,7, k). This contradicts (x).
So3=n—>s.

By (x) and 2 — s+ 1, we have 3 — 1.

Since 2,k € O(1), 2 and k are adjacent. If 2 — k, then there is a
P{(a,b)=(1,s+1,#,...,5,w,2,k). This contradicts (x). So k — 2.

If there exists a y € V; such that s+ 1 and y are adjacent, then s+1 — y
by (6.3). Let (y,...,h,y) be a Hamiltonian cycle in T[V;]. There is a
P/(a,b)=(1,2,5+1,y,...,h,s,w,3 =i, k) by (6.3). This contradicts (x).
Hence y and s+ 1 are nonadjacent for each y € V3.

So far, by (6.3)~(6.5), (6.13)~(6.18) and (a), we have that T' ~ Dg-type
digraph. This contradicts the assumption of the Theorem.

(b) p1(k) < 72 =3, then 2 = (k) — k.
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By the definition of ¢, (k) and 7, we have /2 = s+1. Hence A — m = s+1.
Since 3 = i,k € O(2), k and 7 are adjacent. By the definition of ¢, (k), we
have k — 7. Let P3(2,k) = (2,2,k). By k> #=3,1— 2 and (6.5), we
have z=s+1. i, 2 —> s+1. By (6.16),2 5 s+1,2 - kand 2 — 3.
Hence there is no P4(1,2) in T, a contradiction.

Case 2. O(1)N{s,s+1,...,k=1)=0.

(6.19) s+1 - f+1ifk=s5+2.

Since s+1 =k —1,1€ I(k), 1 and s+ 1 are adjacent. Then it must be
s+1—1. By (6.3) we have 7i+1 — 1. Hence s+ 1 and 72+ 1 are adjacent.
Thus s +1 — 72+ 1 by (6.3).

(6.20) m=s+1

If n > s + 2, then we have (s + 1) < 7 by the definition of .

(@) If k > s+ 3, then /o — 1 — #i+1 by (6.5). There is a P{(a,b) =
1,...,0(s+1), 541, ..., -1, 7+1,...,5,w, (s +1)+1,...,%,mM,..., k).
This contradicts (x).

(b) If k =s+2, then it = s+2=k. Thereis a P{(a,b) =(1,...,(s+
1),s+1,7+1,...,5,w,(s+1)+1,...,7,7n = k = s+ 2) by (6.19). This
contrdicts ().

So (6.20) is valid.

(6.21) There exists an arc (v’,v’) in A such that v’ < & < v’ < 7.

If there does not exist any arc (v, v’) as mentioned above, then (1,:) & A
for each i € {i+1,...,8s = 7 — 1} and ¥(j) > " = s+ 1 for each
j€{2,...,7i—1}. By j — ¥(j) > s+1 and (x), we have (1,5 +1) ¢ A
for each 7 € {2,...,72 — 1}. That is, {3,...,A} — 1. Thus we have that
O(1) = {2,k} by the assumption of case 2. This contradicts Lemma 1.
Hence (6.21) is valid.

Let A’ = {(v/,v') € A | v < 7t <v' < m}. Let = min{o’ | («/,v') €
A’} and & = max{v' | (v/,% € A’}. Obviously, (4,7) € A’ C A and
4 <7t <% < 7. By (6.3) we have 4 > i+ 1.

(6.22) {A+1,...,5 -1} = {1,2,...,7—1).

By the definiton of 4 and {1,2,...,7 - 1,7,...,5 — 1} C O'(w), (6.22)
is valid.

(6.23) = —1.

Ifda <”—1, thend —1 — @+ 1 by (6.22). There is a P/(a,b) =
Q,...,4,9...,sw,a+1,...,5-1,4+1,...,f,m =s+1,...,k). This
contradicts ().

(621) 5 g {a+1,...,s—2}.

We assume that ¢ € {fi + 1,7+ 2,...,5 — 2,5 — 1} = V5. Note that
T[W1] is a tournament. Suppose T'[V}] is strong. Let (h,%,...,h) be a
Hamiltonian cycle in T'[Vj]. Then there is a Pi(e,b) = (1,...,7—1 =
@,9,...,h, s,w, A, = s+1,...,k) by (6.3). This contradicts (x). So T[Vi]
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is not strong. Let T; be a condensation of T[Vi]. Then T} is a transitive
tournament (see [3]. 10.1.9). Let © denote the dicomponent including % in
T[Vi] and denote it in Ty too. And let L (resp., R) be the set of vertices
corresponding to Ip (%) (resp. Op (3)) in T. Obviously, L, R and % have
Hamiltonian paths, denoted by g4, 2 and p respectively. Since @ is strong,
we may assume that ¥ is a initial vertex of p. For L, R, and p, we have

(6.24.1) L » Rand L — % — R. That is, 1 — p2 and py — p — po.

(6.24.2) For any i € L, we have i < %. Also for any j € R, we have
v <j.

If there exists an ¢ € L such that i > &, then we have (3,%,..., (i — 1),1)
and ¢ € 4. This is a contradiction. Similarly, for any 5 € R, we have ¥ < j.

(6.24.3) L # 0.

If L = 0, then thereisa P{(a,b) = (1,...,7—1 = @, u, 2, 8,w, R, M, ..., k)
by (6.3). This contradicts (x).

(6.24.4) R=0.

In fact, if R # @, we have L — R. By (6.3) and (6.22), Py(L, R) must
be R —» # — L, i.e., (p1,p2,7) is a path. Hence there is a Pi(a,b) =
Q,...,A—1=1,pu,sw,p,m,...,k) by (6.3) and (6.20). This contradicts
(%).

(6.24.5) ¥ = {v}.

Suppose ¥ # {#}. Let x’ be a Hamiltonian path in 4 — {#}. By (6.3),
(6.22) and (6.24.1), Py(L, v) must be & —» & — L, i.e., (ul,p 'Fz) is a path.
There is a Pi(a,b) = (1,...,7 — 1 = @,%,s,w, iy, ', R, M,...,k). This
contradicts (x).

So far, by (6.24.2), (6.24.4) and (6.24.5), we have & = s — 1. So (6.24) is
valid.

(6.25) v ¢ {s—1,s}.

If 5 € {s — 1, s}, then T has the following properties

(6.25.1) 5 — {1,2,...,~—2}and s —> {1,2,...,7—-3}as v =s—1.

Since 1—1 — ¥ and —1 — {1,2,...,7—1} by (6.22). % and 7 are adjacent
forany i e {1,2,...,7a—1}. If there exists an ip € {1,2, ...,7—2} such that
i0 — 7, then there is a P{(a,b)=(1,...,%0,%,...,8,w,7i+1,...,9—1,%0+
1,...,7,Mm =s+1,..., k). This contradicts (x). So v — {1,2,...,% —2}.
When & = s — 1, bys—l =% - {,2,...,A-2}and s -1 — s, we
have that s and j are adjacent for any j € {1,2,...,72 — 2}. If there
exists a j € {1,2,...,7 — 3} such that j — s, then there is a P/(a,b) =
a...,j,s,w,a+1,...,8—1=19,57+1,...,/2,7m = s+ 1,...,k). This
contradicts (). Hences s — {1,2,...,7# -3} ast=s—1.

(6.25.2) Foreach i,j € {1,2,...,i—1} and i > j+1, we have (,j) € A,
except the case of 1 =5 —1,(f —2,8) € A and (4,5) = (- — 1,7 — 3).
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Suppose j+1<i<fi—1land j —i. Byi—1<#—3and (6.25.1), we
have s - ¢—1and ¢(i—1) > s. Let a =4, y=1 and § = ¢(i — 1). There
is a P[(a,b) in T by Lemma 7. This contradicts (x). Hence (3, j) € A.

Suppose j+1<i=fi—land j —i. (a)Ifd=s,thens=7 >R -2=
i—1. Hence (¢ — 1) > s. Using an analogous proof as above, T contains a

w(a,b). (D) Ift=s—1and (R—2,8) € A, then (i —1) =9 —2) > s
and T contains a P{(a,b). (c) f1=s-1,("’i—2,s) € Aand j < 2 — 3,
then (i — 2) = ¥(A2 — 3) > s by (6.25.1). Furthermore T contains a
Pl(a,b)=(,...,5,i=0-1,...,8-1=98,-2,s,...,9(R-3)~1,w,j+
1,...,7—3,9(f — 3),...,k) by (6.25.1). These contradict (x). So (6.25.2)
is valid.

(6.25.3) For each i,5 € {s,s+1,...,k} and i > 7 + 1, we have i — j.

If there exist i,7 € {s,s+1,...,k} and i > j + 1 such that j — i. By
(x*xx), p(j+1)<s—1. Leta=p(j+1),y=35+1and 6§ =1i. Thereisa
P{(a,b) in T by Lemma 7. This contradicts (x).

(6.25.4) If s< k—1, then k — 7.

Since 4 — i+ 1 and k — 72 + 1 by (6.5), k and 7 are adjacent. Suppose
i = k. If (3,k—1) € Afor each i € {1,2,...,7s — 1}, then there is a
P{(a,b) = (1,...,5,k=1,2+1,...,k - 2,w,i+1,...,7,k) by (6.5) and
(6.19). This contradicts (x). Hence (¢,k — 1) ¢ A. So far, by (6.3), (6.25.3)
and k—1 — W, we have I(k —1) C {k —2,#}. This contradicts Lemma 1.
So k — 7.

(6.25.5) 72 =4.

By (6.6) we have #i > 2. Thus it is enough to consider the following three
cases.

(a) i=2.
2=%—1=1Dby (6.23). If # = s, then 1 =& — ¥ = s. This contradicts
the assumption of case 2. So#=s—1. Hence L={f+1,...,9 -1} -2 %

by the proof of (6.24). Thus O(%) C {s,# = 2} by (6.3). This contradicts
Lemma 1.

(b) 2 =3.

By the assumption of case 2, (6.22) and (6.25.1), we have O(1) C {2,3 =
i, k}. Thus O(1) = {2,3 =7, k} by Lemma 1. We have k — 2 by Lemma
7 and (%). Hence ¢1(k) =3. ie.,,i=3=¢1(k) > k. Andthenk=s5+1
by (6.25.4). O(2) C {3 = #,9,s} by s+1 =k — 2 and (6.22). Then
0O(2) = {3=1,7,s} and ¥ = s — 1 by Lemma 1. There exists a P;(&,%) =
P§(2,%) = (2,2,%) in T, then z € O(2) = {3,%,3}. So 2=3 and 3 — %.

Sincet =s—1,wehave L={fi+1=4,...,5—1=5—2} — ¥ by the
proof of (6.24). Then O(%) C {1, s} by (6.3). This contradicts Lemma 1.

(c) > 4.

We have, by (6.22), (6.25.1), (6.25.2) and the assumption of the case
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2, that O(1) C {2,7,k} and O(1) = {2,#,k} by Lemma 1. Thus 1 — #.
Furthermore, by #—3 > 1 and (6.25.1) we have s — fi—3. So ¥(72—3) > s.
There is a P{(e,b) = (1,R,..., 1 -1,i—-2,"—1= i,3,...,9({H — 3) —
1,w,2,...,7—3,9(R —3),...,k) by (6.22). This contradicts (x).

By (a), (b) and (c), (6.25.5) is valid.

(6.25.6) 1 — #.

If i — 1, we have, by the assumption of case 2, (6.22), (6.25.1) and
Lemma 1, that O(1) = {2,3,k}. Thus by 1 — 3, (x) and Lemma 7, we
have k — 2 and (2,7) ¢ A foreach i € {s+1,...,k —1}. Hence Py(1,k)
must be (1,3,k). And then we have 3 — k. We also have 4 = 1 — 2
by Lemma 7 and (*). Thus O(2) C {3,s} by (6.22) and (6.25.1). This
contradicts Lemma 1. So 1 — fi.

(6.25.7) k — 2 and (3,k) & A.

If 2 — k, there is a Pl(a,b) = (1,7,...,5 — 1,3 =5 —1=1,5,...,k —
1,w,2,k) by (6.22) and (6.25.6). This contradicts (x). So k — 2. By
1 — # =4, (x) and Lemma 7, we have (3,k) € A. So (6.25.7) is valid.

(6.25.8) s# k—1.

If s = k—1, then # = s+ 1 = k by (6.20). we consider the following two
cases.

(a) ¥ = s. Since k — 2, we have ¥(2) = s. i.e,, 2 > s=k —1. Thereis
a Pl(a,b)=(1,2,s=k-1,wfi+1,...,5-1,7a—1 =3,n=4,m=k) by
(6.22). This contradicts (x).

(b) ¥ = s — 1. We have, by k — 2, (6.22), (6.25.1) and Lemma 1, that
O(2) = {8,4 = #1,s = k—1}. Then P;(2,3) must be (2,s,3). So s — 3 and
¥(3) >s. Thus 9(3) =k. Let a =1, y=4 =7 and § = (3). T contains
a P/(a,b) by (6.25.6) and Lemma 7. This contradicts (x).

By (a) and (b), (6.25.8) is valid.

(6.25.9) k—1<s.

If k —1 > s, then we have, by (6.4), (6.5), (6.25.4) and (6.25.7), that
I(k) = {1,k — 1}. This contradicts Lemma 1. So (6.25.9) is valid.

Since (6.25.8) and (6.25.9) contradict (6.1), we have (6.25) is valid.

Finally, we have % ¢ {fe + 1,...,5 — 1, s} by (6.24) and (6. 25) But

it contradicts (6.20) and (6.21). On the other hand, note that Ds_ D;.
Hence, under the condition of (6) by = ap + 1, except T' =~ Tp- or Ds-type
digraph, there always exists a P{(a,b) in T'.

Up to now, under the condition of the Theorem, we have exhausted all
possible cases of T' and deduced that there always exists a P/(a,b) in T.
Therefore the proof of the Theorem is completed. (m]
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3 Remark

Using the definition to check whether a local tournament of order n is com-
pletely strong path-connected needs O(n!) steps. But using the Theorem of
this paper it only needs O(n3) steps. Therefore from the complexity point
of view, it can make a polynomial-time good algorithm.
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