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ABSTRACT. Let n4(k,d) and ds(n, k) denote the smallest value
of n and the largest value of d, respectively, for which there ex-
ists an [n, k, d] code over the Galois field GF(4). It is known (cf.
Boukliev [1] and Table B.2 in Hamada [6]) that (1) ns(5,179) =
240 or 241, n4(5,181) = 243 or 244, n4(5,182) = 244 or 245,
n4(5,185) = 248 or 249 and (2) d4(240,5) = 178 or 179 and
d4(244,5) = 181 or 182. The purpose of this paper is to prove
that (1) n4(5,179) = 241, ny(5,181) = 244, n4(5,182) = 245,
n4(5,185) = 249 and (2) d4(240, 5) = 178 and d4 (244, 5) = 181.

1 Introduction

Let V(n, q) be an n-dimensional vector space consisting of row vectors over
the Galois field GF(q), where » > 3 and ¢ is a prime power. If C is a
k-dimensional subspace in V'(rn, ¢) such that every nonzero vector in C has
a Hamming weight of at least d, then C is called an [r, k, d; g]-code (or a
g-ary linear code with length n, dimension k&, and minimum distance d). In
the special case ¢ = 4, an [n, k, d; 4]-code is also called a quaternary [n, k, d]
code (cf. MacWilliams and Sloane [19]).

Let n4(k,d) denote the smallest value of n for which there exists an
[n, k, d; g]-code. An [n4(k,d),k, d; g] code is therefore optimal in the sense
that no shorter code exists with the same k, d and q. In the case ¢ =4 and
k = 4, the value of n4(4, d) is known for all d < 43 (cf. Greenough and Hill
(3], Hamada [6] and Landgev, Maruta and Hill [18]). But in the case ¢ =4
and k = 5, the value of n4(5, d) is unknown for many integers d and a table
of the bounds for n4(5,d), 1 < d < 256, has been given by Hamada [6].
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It is known (cf. Table B.2 in Hamada [6]) that (1) n4(5,179) = 240 or
241, n4(5,181) = 243 or 244, ny(5,182) = 244 or 245, ny(5,185) = 248
or 249 and (2) d4(240,5) = 178 or 179 and d4(244,5) = 181 or 182. The
purpose of this paper is to prove that (1) n4(5,179) = 241, n4(5,181) =
244, n4(5,182) = 245, n4(5,185) = 249 and (2) d4(240,5) = 178 and
d4(244,5) = 181, i.e., to prove the following three theorems using the nonex-
istence of the corresponding minihypers.

Theorem 1.1. There is no quaternary [243,5,181] code and n4(5,181) =
244,

It is known that if there exists a quaternary [244,5,182] code, then there
exists a quaternary [243,5,181] code. Hence we have

Corollary 1.1. (1) There is no quaternary [244, 5,182] code.
(2) na(5,182) = 245 and ds(244,5) = 181.

Using a method similar to the proof of Theorem 1.1, we can easily prove
the following two theorems.

Theorem 1.2. There is no quaternary [248, 5,185] code and n4(5,185) =
249.

Theorem 1.3. There is no quaternary [240,5,179] code and n4(5,179) =
241.

Remark 1.1. It was shown by Boukliev [1] that there exist a [242,5,180;
4] code and a [247,5,184; 4]-code. Hence it follows that 74(5,179) = 240 or
241, n4(5,181) = 243 or 244 and n4(5,182) = 244 or 245.

Remark 1.2. Recently, it has been shown by Hamada [7] that in the
case k > 5 and 3*~! — (353 4+ 3%-2) < d < 3%t — 3%2 there exists
a ternary [n,k,d] code meeting the Griesmer bound if and only if d =
3%—1 _ 35=2 _ ¢ for some integer ¢ in {0,1,2}. In order to generalize this
result for the case ¢ > 4, it is necessary to show at first that there is no
quaternary [n,5,d] code meeting the Griesmer bound for any integer d in
{177,178,179,181, 182, 185}.

2 Connections between codes and minihypers

Let F be a set of f points in a finite projective geometry PG(t,q) of ¢
dimensions over GF(q), where f > 1 and ¢t > 2. If |[F N H| > m for every
hyperplane (i.e., (¢ — 1)-flat) H in PG(t,q) and |F N H| = m for some
hyperplane H in PG(t,q), then F is called an { f, m;t, ¢}-minihyper, where
m > 0 and |A| denotes the number of elements of the set A. It follows from
Theorem A.l in Appendix A that in order to prove Theorems 1.1 - 1.3, it
is sufficient to prove the following Theorems 2.1 - 2.3, respectively. In what
follows, let v; = (¢* —1)/(g — 1) for any integer i > 0. In the special case
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g=4,v; = (4°'—1)/(4—1) for any integer i > 0, i.e., v =0, v; = 1, vo = 5,
v3 = 21 and v4 = 85.

Theorem 2.1. There is no {3v; + 2v2 + v4, 2v; + v3;4,4}-minihyper.
Theorem 2.2. There is no {3v; + va2 + v4, v1 + v3; 4, 4}-minihyper.
Theorem 2.3. There is no {v; + 3vs + v4, 3v; + v3;4,4}-minihyper.

In order to prove Theorems 2.1, 2.2 and 2.3, we shall use the following
three theorems which play an important role in generalizing the result in
Remark 1.2 for the case ¢ > 4. The proof of Theorems 2.4, 2.5 and 2.6 will
be given in Sections 5, 6 and 7, respectively.

Theorem 2.4. Inthecase ¢ > 3,7 >3 and0 <e<q-1, K isan
{evy +v,,evp +v,_1; 7, q}-minihyper if and only if K is a disjoint union of
€ points and one (7 — 1)-flat in PG(, q).

Remark 2.1. It is obvious that the if part of Theorem 2.4 holds.
Remark 2.2. Theorem 2.4 is a generalization of the result in Hamada and
Deza [8].

Remark 2.3. It follows from Theorem 3.1 in Hamada [5] that Theorem
2.4 holds in the case e =0 or 1.

Theorem 2.5. Let t, g and €, be integers such that t > 4, 0 < e <
g—1land 0 < e < qg—1. Let G be a (t — 2)-flat in PG(t,q) and let
Ho, Hy,...,Hq_; and Hy be g+1 (t —1)-flats in PG(t, q) which contain G.
If there exists an {equ; +€1v2 +v¢, €191 +ve—1; ¢, g}-minihyper F such that
FnH;=AUS;,i=0,1,...,q, for some (t — 2)-flat A; in H; and some
subset S; of H;\ G such that (a) GNAg=GNA,=---=GNAg=B for
some (t — 3)-flat B in G and (b) 31_ |Si| = €0 + €1v2, then F contains a
(t —1)-flat in PG(t, q).

Theorem 2.6. Let t, ¢g and &, be integers such that t > 4, 0 < g9 < 3,
1<e; <3andeg+e; >4. Let G be a (t —2)-flat in PG(t,4) and let Hy,
H,, Hs, H3 and H, be five (t — 1)-flats in PG(t,4) which contain G. If
there exists an {egv, + €1v2 + vy, €191 + v¢—1;¢,4}-minihyper F' such that
(i) FNH; = A;US;,i=0,1,2,3, for some (t — 2)-flat A; in H; and some
subset S; of H;\ G and (ii) GN(FN Hy) = B and |[FNHy| = vy + 6 for
some integer § > 4, where GNAg=GNA; =GNAy; =GN A3 =B for
some (t — 3)-flat B in G and 2?=0 |Si| + 6 = €0 + €1v2, then there exists a
(t — 1)-fat I1 in PG(t,4) such that |[FNTI| = v, or v, — 1.

Remark 2.4. Let (w;), (w2), (¢1) and (¢2) be four linearly independent

points in PG(3,) and let F = ((w1) @ (¢1)) U ((w2) @ (62)) U {UI2 (w1 +
a*wr)® ((1+a*(2))}, where « is a primitive element of GF(q) and (w)® (¢)
denotes the 1-flat in PG(3,q) passing through two points (w) and (¢) in
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PG(3,q). Then it is easy to see that F is a {qu1 + v3,quo + v2;3,¢}-
minihyper such that |[FN H| = g+ 1 or 2g+ 1 for any 2-flat H in PG(3, q)
and (ng41,m29+1) = (¢® — ¢, + 29+ 1), where o =0, v1 =1, v =gq+1
and vz = g2 +q+1. Since F contains no 2-flat in PG(3, ¢), this shows that
Theorem 2.4 does not hold in the case ¢ > 3, 7 = 3 and € = ¢ (cf. Hamada
and Maekawa [13] in the case ¢ =3, 7 =3 and € = 3).

Remark 2.5. Let F be an {f, m;t,q}-minihyper and let H and G be a
(t —1)-flat in PG(t, q) and a (t — 2)-flat in H, respectively. Then

q
> IFnH;| =|F|-|FnH|+4glFNG], (2.1)

i=1

where Hy, Hs,..., Hy—; and H, denote q (¢t — 1)-flats in PG(t,q), except
for H, which contain G.

Remark 2.6. If there exists an {f,m;4,4}-minihyper F, then

i"ﬂ' =5, is:"”i = fvs and f: (;)n. = ({;)vs, (2.2)

i=m i=m i=m

where n; denotes the number of 3-flats H in PG(4,4) such that |FNH| = 1.

3 The proof of Theorems 2.1 and 2.2

Lemma 3.1. If there exists a {3v; + 2vy + vy, 2v; + v3;4,4}-minihyper
F, then (1) 23 < |[FNH| <26 or 30 < |[FN H| < 85 for any 3-flat H in
PG(4,4) and (2) there exists a 3-flat I in PG(4,4) such that |[F NII| = 85
or 84.

Proof: Let F be a {3v; + 2v2 + v4,2v; + v3; 4, 4}-minihyper.

(1) Let H be any 3-flat in PG(4,4) such that |[FNH| < v4 = 85. It follows
from Theorem A.2 (6 = 6) in Appendix A that |FNH| = {ov1 + (1v2+ (ovs
for some ordered set ((o,(1,¢2,0) in E(4,4) such that { + ¢ + (2 < 6,
where E(t,q) denotes the set defined in Definition A.1. Since there is no
quaternary [r, 4, d] code meeting the Griesmer bound for d = 41,42,43 (cf.
Table B.1 in Hamada [6]), it follows from Theorems A.1, A.2 and Remark
A.1 that there is no 3-flat H in PG(4,4) such that |F N H| = {ov1 + {1v2 +
Covs for any ordered set ({o,(1,¢3) in {(1,1,1),(2,1,1),(3,1,1)}. Since
v = 1, Vg = 5, v3 = 21, V4 = 85 and |Fﬂ Hl < IHI = V4, this implies that
(1) holds.

(2) It follows from the definition of a minihyper and Theorem A.2 (¢ = 6,
g =4, B = 0) that there exists a 3-flat Hp in PG(4,4) such that |FN Hp| =
2v; +wv3 and FNHy is a {2vy +v3, 2vp +v2; 4, 4}-minihyper in Hy. Since Hp
is a 3-flat in PG(4, 4), it follows from Remark A.1 and Theorem 2.4 (¢ = 4,
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T =3, e = 2) that FN Hy = Ao N {FPo1, Po2} for some 2-flat Ag and some
points Py;, Poe in Hy.

Let G be a 2-flat in Hp such that G N {Py;, Pyo} = D and GN Ap is a
1-flat (denoted by B) in G. Then FNG = (FNHy)NG = AoNG =B
and |[FNG| = |B| =v; = 5. Let Hy, Hp, H3, Hy and Hj be five 3-fiats in
PG(4,4) which contain G, where |[FNH;| < |[FNH,| < |FNHs| < |[FNHy|.
Since |F| = 3v; + 2vp +v4 = 98, IFnHol = 2u; +v3 =23 and |FﬂG| =35,
it follows from (2.1) and Lemma 3.1-(1) that

4
> IFNHy| =|F| - |FNHo| +4|FNG| =95 (3.1)

i=1

and (|[Fn H,|, |Fn Hy|, |F N Hs|, |FNHy)) = (23, 24, 24,24), (23, 23, 24, 25)
or (23,23,23,26).

Case 1. (|F N Hy|,|Fn Hy|,|F N Hs|,|F N Hy|) = (23,24,24,24). Since
2v; +v3 = 23 and 3v; +v3 = 24, it follows from Theorem A.2, Remark A.1
and Theorem 2.4 (q = 4, T = 3, € = 2,3) that FF'n Hl = Al U {Pu,Plz}
for some 2-flat A; in H; and some points Py, P2 in H;\ G and FNH; =
A; U {P;1, Py, Pi3}, i = 2,3,4, for some 2-fiat A; in H; and some points
P;1, Pi3, P3 in H.-\G, where GNA; =GNA;=GNA3=GNA; = B.
Hence it follows from Theorem 2.5 that F contains a 3-flat (denoted by IT)
in PG(4,4). Since |II| = v4 = 85, this implies that |F NII| = |[I| = 85.
Case 2. (|FnNH,|,|FnN Hy|,|FnH;|,|Fn Hy|) = (23,23,24,25). Since
4vy +vg = 25, it follows from Theorem A.2, Remark A.1, Theorems 2.4 and
2.6 that there exists a 3-flat IT in PG(4, 4) such that |F NII| = 85 or 84.
Case 3. (|F N Hy|,|Fn Hy|,|F N Hs|,|F N Hy|) = (23,23,23,26). Since
5 4 v3 = 26, it follows from Theorems A.2, 2.4 and 2.6 that there exists a
3-fiat IT in PG(4,4) such that |[FNII| = 85 or 84. This completes the proof.

Remark 3.1. Let F be a {3v; + 2v2 + v4, 2v; + v3; 4, 4}-minihyper and let
H be a 3-flat in PG(4,4) such that [F N H| = 26. Since vy + v3 = 26, it
follows from Theorem A.2 (@ =6,g=4,8=1)and # —2q < 2 < § —q that
either (a) FN H is a {vy +v3,v1 +v2;4,4}-minihyper in H or (b) FNH is
a {va + v3,v2;4, 4}-minihyper in H. Since there exists a {vy + vs3, v2; 3,4}-
minihyper, it does not follow from the proof of Lemma 3.1 that there is no
3-flat H in PG(4,4) such that |[Fn H| = 26.

Lemma 3.2. There is no {3v; + 2v; + v4, 2v; + v3; 4,4}-minihyper F such
that |F N H| = 85 for some 3-flat H in PG(4,4).

Proof: Suppose there exists a {3v; + 2v2 + v4, 2v; + v3;4,4}-minihyper F
such that |[FN H| = 85 for some 3-flat H in PG(4,4). Since |H| = v4 = 85,
this implies that H C F. Let G;,1=1,2,...,85, be vy 2-flats in H and
let Hu, H,‘2, His, Hiq and H be five 3-flats in PG(4, 4) which contain Gi,
where IFn Hill < 'Fﬂ Hp| < |FnH.-3| < |FﬂH,'4|. Since IFI = 98,
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|F N H| = 85 and |F NG| = |Gi| = 21, it follows from (2.1) and Lemma
3.1-(1) that

4
Y IFn Hy|=|F| - |[FNH|+4|FNG;| =97 (3.2)
Jj=1

and (|FNH;; |, |FNH;s|, |FNH 3|, IFﬂHMI) = (23, 23, 25, 26), (23,24, 24, 26),
(23,24, 25,25) or (24,24, 24, 25).

Let z, y and z denote the number of integers i in {1,2,...,85} such that
(anHu', IFnHiQI, |FNH;s|, anH,»4|) = (23,23, 25, 26), (23,24,24, 26) and
(23,24, 25, 25), respectively. Since H and H;;’s are vs 3-flats in PG(4,4), it
follows that ng3 = 2x+y+2, nog = 2y+2+3(85—z—y—2z) = 255—-3z—y—2z,
ngs = T+22+ (85 —x —y—2z) = 85 —y+2, ngg = z+y and ngs = 1, where
ny denotes the number of 3-flats IT in {H;; | i = 1,2,...,85,5 =1,2,3,4}
such that |[FNII| = k for k = 23, 24, 25, 26. Hence it follows from (2.2) that

(223)(2:1:+y+z)+ (2;)(255_3”_y—2z)+ (225)(85—y+z)

+ 26($+)+ 85\ _ 98v

2 Yr\2 )= \2)™
This implies that 3z 4 2y + z ='363. On the other hand, it follows from
z+y+2 < 85 that 3z+4+2y+2 < 3(z+y+2) < 255. This is a contradiction.

Lemma 3.3. There is no {3v; + 2v3 + v4, 2vy + v3; 4, 4}-minihyper F such
that |F N H| = 84 for some 3-flat H in PG(4,4).

Proof: Suppose there exists a {98, 23;4,4}-minihyper F such that |F N
H| = 84 for some 3-fiat H in PG(4,4). Since |H| = 85, there exists a point
Q in H such that FN H = H\ {Q}.

Let G;, i = 1,2,...,21, be v3 2-flats in H such that @ € G; and let
G;, i=22,23,...,85, be vy — v3 2-flats in H such that Q ¢ G;. Let H;,,
H;s, Hy;3, Hyy and H be five 3-flats in PG(4,4) which contain G;, where
|FNH; | < |FNHp| < |[FNHgz| < |F N Hyy|. Since |F| = 98, |FnH| =84
and |F N G;| =20 or 21, it follows from (2.1) that

4
S IFNHy| = |F| - |[FNH|+4|F N G;| = 94 or 98 (3.3)
Jj=1

according as 1 < i < 21 or 22 < i < 85. Hence (|F N Hyy|, |F N Hig|, |[F N
His|, |F N Hig)) = (23,23,23,25) or (23,23,24,24) for i = 1,2,...,21 and
(IF N Hyu, |F 0 Hyl, |F N H|, |F N Hyyl) = (23,23, 26, 26), (23,24, 25, 26),
(24,24, 24, 26), (23,25,25,25) or (24,24,25,25) for i = 22,23,...,85. Let
z, a, b, ¢ and d denote the number of integers ¢ in {1,2,...,85} such that
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(IF N Hy, IF N Hizl, |F N H,~3|, |F n Hi4|) = (23, 23,23, 25), (23, 23,26, 26),
(23,24, 25, 26), (24, 24,24, 26) or (23,25, 25, 25), respectively. Then ny3 =
42+4+x4+2a+4b+d, nog = 170—2z—2a—b+c—2d, nys = 12842—2a—b—2c+d,
nge = 2a + b + c and ngq = 1. Hence it follows from the third equation of
(2.2) that z+4a+2b+c+d = 381. On the other hand, it follows from z < 21
and a+b+c+d<64that z+4a+2b+c+d <z+4(a+b+c+d) <277.
This is a contradiction.

Proof of Theorem 2.1: It follows from Lemmas 3.1, 3.2 and 3.3 that
there is no {3v; + 2v2 + v4, 2v1 + v3;4,4}-minihyper. This completes the
proof.

Proof of Theorem 2.2: Using a method similar to the proof of Lemmas
3.1-3.3, it can be shown that (1) if there exists a {3vy +va+v4,v1 +v3;4,4}-
minihyper F, then there exists a 3-fiat IT in PG(4, 4) such that |[FNH| = 85
or 84 and (2) there is no {3v; +v2 +v4,v1 +v3;4,4}-minihyper F such that
|Fn H| =85 or 84 for some 3-flat H in PG(4,4). This implies that there
is no {3v; + v2 + v4,v1 + v3;4,4}-minihyper.

4 The proof of Theorem 2.3

Lemma 4.1. If there exists a {v; + 3v2 + v4, 3v1 + v3;4,4}-minihyper F,
then (1) 24 < |[FNH| <25 or 30 < |[FNH| < 85 for any 3-flat H in
PG(4,4) and (2) there exists a 3-flat II in PG(4,4) such that |[FNII| = 85
or 84.

Proof: Let F be a {v1 + 3vg + v4, 3v1 + v3;4,4}-minihyper.

(1) Suppose there exists a 3-flat H in PG(4,4) such that |F n H| =
vy + v3 = 26. Then it follows from Theorem A2 (§ = 5, ¢ =4, 8 =
0) and Remark A.1 that F N His a {vz + v3, vy + v2;4,4}-minihyper in
H and there exists a {vg + v3,v; + v2;3,4}-minihyper. Since there is no
{va + v3,v1 + v2; 3,4}-minihyper (cf. Theorem 3.1 in Hamada [5]), this is
a contradiction. Hence it follows from the proof of Lemma 3.1-(1) that (1)
holds.

(2) It follows from the definition of a minihyper and Theorems A.2 and
2.4 that there exists a 3-flat Hy in PG(4,4) such that FnN Hy = Ag U
{Po1, Poz, Pos} for some 2-flat Ag and some points Py, Poz, Po3 in Hp. Let
G be a 2-flat in Hp such that G N {Po1, Po2, Poz} =% and GN Ap = B for
some 1-flat B in G.

Let Hy, Hp, H3, Hy and Hy be five 3-flats in PG(4,4) which contain G,
where |FNH,| < |[FNH,| < |[FNHa| < |FNHy|. Since Y5, |[FNH;| = 97, it
follows from (1) that (|FNH,|,|FNHa|,|FNHs|, |FNHy|) = (24,24, 24, 25).

Since 3v; +v3 = 24 and 4 4+ v3 = 25, it follows that (i) F n H; =
A; U {P;, Pi2, Pz}, i = 1,2,3, for some 2-flat A; in H; and some points
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P;1, Py, P in H,\G and (ll) Gﬂ(FnH4) = B and IFan = v3 + 4,
where GN A; = GN Ay = GN Az = B. Hence it follows from Theorem 2.6
that there exists a 3-flat IT in PG(4,4) such that |[F N II| = 85 or 84. This
completes the proof.

Lemma 4.2. There is no {v; + 3vs + v4, 3v; + v3;4,4}-minihyper F such
that |F N H| = 85 for some 3-flat H in PG(4,4).

Proof: Suppose there exists a {v; + 3vz + v4, 3v1 + v3; 4,4}-minihyper F
such that |FNH| = 85 for some 3-flat H in PG(4,4). Let G; and H;; be the
2-flat in H and the 3-flat in PG(4, 4), respectively, defined in the proof of
Lemma 3.2. Since Y°}_, |[F N Hy;| = 100 for i = 1,2,....,85, it follows from
Lemma 4.1 that (anHﬂl, lFﬂ Hizl, |Fn H,'3|, IFnH,-4|) = (25, 25, 25,25).
Hence nos = 340 and ngs = 1. since

25 85 101
() xsi0+ (%) (2o -
this is contradictory to the third equation of (2.2).

Lemma 4.3. There is no {v; + 3vy + v4, 3v; + vs;4,4}-minihyper F such
that |F N H| = 84 for some 3-flat H in PG(4,4).

Proof: Suppose there exists a {v; + 3v2 + v4, 3v; + va; 4, 4}-minihyper F
such that | FNH| = 84 for some 3-flat H in PG(4,4). Then FNH = H\{Q}
for some point @ in H. Let G be a 2-flat in H such that Q ¢ G and let
H,, Hy, H3, Hy and H be five 3-flats in PG(4,4) which contain G. Since

4
Y IFNH;|=|F| - |FNH|+4]FNG| =101 (4.2)
i=1
and |F N H;| = 24,25,30,... for i = 1,2,3,4, there is no solution which
satisfies the equation (4.2). This is a contradiction.

Proof of Theorem 2.3: It follows from Lemmas 4.1, 4.2 and 4.3 that
there is no {v; + 3vz + v4, 3v; + v3;4,4}-minihyper. This completes the
proof.

5 The proof of Theorem 2.4

Lemma 5.1. Inthecaset = 3,q >3 and 2 < e < ¢ — 1, there is no
{evy + v3,v2; 3, ¢}-minihyper K such that |K N H| = {ov; + (12 for some
2-flat H in PG(3,q), where (0 >0,(; >2and {o+ (1 <e+1.

Proof: Suppose there exists an {ev; + v3,v2;3, ¢}-minihyper K such that
|K N H| = {ov1 + (1v2 for some 2-flat H in PG(3,q). Sincee+1—¢q <
¢o+¢1 < €+ 1, it follows from Theorem A.2 (§ = e+ 1, 8 = 0) that
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KN H is a {¢ov1 + {1v2,{1v1; 3, ¢}-minihyper in H. Since H is a 2-flat in
PG(3, q), there exists a 1-flat L in H such that |(K N H) N L| = ¢;. Note
that |KNL|=|(KNH)NL| = (.

Let Hy, Hy,...,H,_;, H; and H be g+1 2-flats in PG(3, q) which contain
L, where |[KNH,| < |[KNH| < --- <|KNH,|. Since |K| = e+(g*>+g+1),
IKNH|=¢(o+¢i(g+1) and |[K N L| =y, it follows from (2.1) that

q
D IKNH| =|K| - |K 0 H|+q|KNL| = qus + (g — (o — ¢1). (5.1)

i=1

Hence it follows from |K N H;| > v, that there exists an integer §; such that
|[KNH;| =v2+68;, 61+62+---+86;=g—Co—(1and0< 6 <5 <--- < 6§,
Since {o + {1 > 2, this implies that §; = 0 and |K N H1| = Yg.

Since € + 1 - g < 1, it follows from Theorem A.2 (# =¢+1, 8 =0) and
Theorem 3.1 in Hamada [5] that K N H, is a {vq, v1; 3, ¢}-minihyper in H,;
and K N H, is a 1-flat (denoted by L;) in H;. Since2 < {; <e+1<gq
and |[KNL|=|(KNHy)NL|=|LinL| =1or qg+1, this is contradictory
to |[KN LI = (-

Lemma 5.2. If K is an {ev; + v3,v2; 3, g}-minihyper for some integers q
and € such that ¢ > 3 and 2 < e < ¢ — 1, then K is a disjoint union of &
points and one 2-flat in PG(3, q).

Proof: Let K be an {ev; + vs, v2; 3, ¢}-minihyper and let H be any 2-flat
in PG(3, g). Since |H| = v3 and |F N H| > v, it follows from Theorem A.2
(0 = e+1) that |[K N H| = w3 or {pv; + {1v, for some integers (o and ¢,
such that {p > 0, {; > 1 and ¢{p +¢1 < €+ 1. Hence it follows from Lemma
6.1 that |K N H| = v3 or {p + v2 for some integer {p such that 0 < {p <e.
Case 1. |K N H| = v3 for some 2-flat H in PG(3,q). It follows from
|H| = v3 that H C K. Since |K| = € + va, this implies that F is a disjoint
union of ¢ points and the 2-flat H in PG(3,q).
Case 2. v < |[KNII| < vy +¢ for any 2-flat IT in PG(83, g). It follows from
the definition of a minihyper that there exists a 2-flat H in PG(3, q) such
that |[KNH| = v,. Since KN H is a {vg, v1; 3, g}-minihyper, it follows from
Theorem 3.1 in Hamada [5] that K N H is a 1-flat (denoted by L) in H.
Let Hy,H,,...,H,_y, Hy and H be ¢g+1 2-flats in PG(3, g) which contain
L. Since |[K|=e+(¢>+q+1),|KNH|=q+1and |[KNL| =g+1,it
follows that

q
S IKNH)|=|K|-|[KNH|+qKNL =2¢*+q+¢e.  (5.2)
i=1
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Since |[K N H;| < (g+1)+efori=1,2,...,4q, it follows from & < ¢ that

q
SIKNH|<qlg+1+¢€) <24 +q+¢ (5.3)

i=1
a contradiction. This completes the proof.

Lemma 5.3. If K is an {ev, + v¢,v:—1;t,q}-minihyper for some integers
t,qand ¢ such that t > 3, ¢ > 3 and 2 < € < g — 1, then K is a digjoint
union of e points and one (t — 1)-flat in PG(t, q).

Proof: We shall prove Lemma 5.3 by induction on .
Case 1. t = 3. It follows from Lemma 5.2 that Lemma 5.3 holds.
Case 2. t =7+ 1and 7 > 3. Suppose Lemma 5.3 holds in the case

t = 7. Let K be an {ev; + vr41,v,;7 + 1,¢}-minihyper. There exists a
7-flat Hp in PG(T + 1, q) such that |[K N Ho| = v,. Since KN Hp is a
{vr,vr—1;7 + 1, g}-minihyper in Hy, it follows from Remarks A.1 and 2.3
that K N Hp is a (7 — 1)-flat (denoted by Ap) in Hp.

Let G be a (1 — 1)-flat in Ho such that G N Ag = B for some (7 — 2)-flat
Biin Ao. Let Hy, Ha, ..., Hy_1, H, and Hp be g+ 1 7-flats in PG(r +1,q)
which contain G. Since |K| = e+ v-41, |KNHo| = v, and |[KNG| =v,_;,
it follows from (2.1) that 3°1_, [KNH;| = qu,+e¢. Note that v;;; = qu;+1.

Since |K N H;| > v, for i =1,2,...,q, there exists a nonnegative integer
8; such that |[K N H;| = v, + 6; and 6; + 62+ --- + 6, = €. Since K N H;
is a {6; + vr,vr—1;7 + 1, ¢}-minihyper in H; and H; is a 7-flat, it follows
by induction on ¢ that K N H; = A; U S; for some (7 — 1)-flat A; and some
subset S; of H; \ G such that GN A; = B and [S;| = §;. Hence it follows
from Theorem 2.5 (eg = ¢, €1 = 0, t = 7+ 1) that K contains a 7-flat in
PG(7+1,q). This completes the proof.

Proof of Theorem 2.4: 1t follows from Remarks 2.1, 2.3 and Lemma 5.3
that Theorem 2.4 holds. This completes the proof.

6 The proof of Theorem 2.5

Let F be an {eov1 + £1v2 + v¢, €191 + v¢—1;¢, ¢}-minihyper which satisfies
the condition in Theorem 2.5. Then

q q
F=(J4yu sy (6.1)
i=0 i=0
Let A; = H; N (Ao ® A;) for i = 0,1,...,q, where Ao ® A; denotes the
(t — 1)-flat in PG(t,q) which contains two (¢t — 2)-flats Ag and A;. Then
A isa (t — 2)-flat in H; such that Ap = Ao, A, = A; and either A; = A;
orA;NnAj=Bforj=2,3,...,q
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If Aj = 4 for j = 2,3,...,q, then it follows that J{_q A; = UL, A: =
Ap ® A;. Since Ag ® A, is a (t — 1)-flat in PG(t,q), it follows from (7.1)
that F contains the (¢ — 1)-flat Ao ® A, in PG(t,q). Hence, in order to
prove Theorem 2.5, it is sufficient to prove that A; = Zj for j=2,3,...,9

Suppose there exists an integer j in {2,3,..., g} such that 4; # Aj, ie.,
A;n A; = B. Without loss of generality, we can assume that j = ¢, i.e.,
A n?i = B. Let I),IIy,...,IIg-1,11;_and Hy be ¢+ 1 (t — 1)- ﬁatsm
PG(t q) which contain A Smce Ao ® A., = Ao ® Ay and Ao @ A is a
(t — 1)-flat in PG(t,q) whlch contains Ay, we can assume without loss of
generality that I, = Ao @ A;.

Since A; C U 1 I for i = 2,3,...,q — 1, there exists an integer m; in
{1,2,...,q} such that A; C Iy, for each integer 7 in {2,3,...,9—1}. Since
{1,2,...,q = 1}\ {mq, ms,. mq_l} # 0, there exists at least one integer
0 in {1, 2,...,q9—1} such that 6 € {ma,ms,...,mq_1}. This implies that
A; does not contain in Iy, i.e.,, AsNIlg =B fori=2,3,...,g— 1.

Since AgNTly = A;N Ay = B and A; CIly, ie., AiNIlg=Bfori=0,1,
it follows from (7.1) that |F NTIy| = |(Ao U A; U --- U Ag) N1Ig| + |(So U
S1U---US)NI| < |Bl+ X7 1Sl =ve—2+e0+e1(g+1) <e1+v1 in
the case t > 4. Since Iy is a (¢ — 1)-flat in PG(t, q), this is contradiction.

7 The proof of Theorem 2.6

Let F be an {eou; + €192 + v, €191 + ve—1; ¢, 4}-minihyper which satisfies
the condition in Theorem 2.6. Then

3 3
F=(JA)yu(US)U(FnH,). (7.1)

i=0 i=0

Let I1= Ao ® A; and 4; = H; n(AoeeAl) fori=0,1,2,3,4. Then Il is
a (t —1)-flat in PG(¢,4) such that II = U,_0 A; and A; is a (¢t —2)-flat in
H; such that Ag = Ao, A; = A; and either A = Ajor A;nN A = B for
Jj=2,3.

If Ay = Ay, A3 Az and F 07474 = 14 or Ag \ {Q} for some point Q

in Ay, then (U,_o A)NIl = U;—o A, (UL, 8),nI =0, (FNH)NTI =
(FNH4)NAy = FN'Ay = A4 or A;\{Q} and FNII =T or IT\ {Q}. Hence
in order to prove Theorem 2.7, it is sufficient to prove that (i) Az = As,
A3 =23 and (ii) IF n7L| = vYy_y OF vg—1 — 1.
Case 1. A; = Az and A3 = Za._Let IT;, Iy, I3, IT and Hy be five (¢t — 1)-
flats in PG(t 4) which contain A4, where |FNII;| < |[FNIp| < [FNII3).
Then (U,_OA yul, = (U, 4:)UA, = B, (FOHQ)NH; = FAg for j =
1,2,3 and 5, [(Uizo 8)) U I = [(Uszo $:) N (UG, L) = Ui Sil =
Zi:O |Si| = €0 + 51 — 6.
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Since |FNII;| < |FNILz| < |FNII3}, it follows from (8.1) that |FNII;| =
1Bl + 1(Ui—o ;) N Ty + (IF NAq| — |B]) < |F NA4| + {e0 + 5e1 — 6}/3.
Since [FNIL| > vi—; + €1, €0 £ 3, €1 < 3 and § > 4, it follows that
|FNAy| > vy —(e0+261 —8)/3 > v—1 —5/3. Since |Fﬂz4_| is an integer
such that |F NA4| < [A4] = ve—1, this implies that |F N A4| = v,y or
V¢—1 — 1.

Case 2. A; = Zg and Az ﬂzs = B. Let Iy, I3, I3, IT and Hy4 be five
(t — 1)-flats in PG(t,4) which contain A4. Since A3 C II; for some integer
i in {1,2,3}, we can assume without loss of generality that A; ¢ II,,
A3 ¢ I3, A3 C Iz and [FNIT| < |F0H2| Since (U2, A:)NII; = B and
I(U._oS )N |+ (U S:) NTIa| = (Ui Si) N (T Uﬂz)l < Uiz Sil =
>3 o 1Si| = €0 + 561 — &, it follows that |F N 1II;| = |(sz_0 A)NIL| +
{F N Ay — B} + (o S) NIL| < |F 0 A4| + (eo + 5e; ~ 8)/2. Since
|FNII| 2 ve—y + €3, this implies that |FN A4| > ve—; — (€0 + 361 — 6)/2.

Let Agy, Ag2, Ag3, A4 and G be five (t — 2)-flats in H; which contain B.
Let z; denote the number of points in F N (A4; \ B) for i = 1,2,3. Since
|FnH4| = |Fn}T4| +z1+x2+x3 and IFﬂZ.;I > v — (Eo + 3¢ —5)/2,
it follows from |F N Hy| = v;—1 + 6 that z1 + z2 + z3 < (€0 + 361 + 6)/2.

Let A; = A3 ® Ay for i =1, 2,3, where IFNA | L |FNAg < |FNA;|.

Then Ay’s are (¢t — 1)-flats in PG(¢,4) such that |[F N Ay + |F N Ag] +
|FnAs| = 3|Fn As| + |(Ug S:) N (A1 U A2 U A3)| + 2y + 22 + 23 <
3|F N3] + T2, ISi| + (€0 + 3¢1 + 8)/2. Since |F N A3| < ve_s + |Ssl,
2?=0 ISi| = (e0+5€e1)—6—|S3| and |S3| < eg+é€;, it follows that |FNA,| <
ve—2 + (360 +13e; -6+ 4|S3|)/6 <vi2+ (760 + 17y — 4)/6 < v +€1.
Since A; is a (¢t — 1)-flat in PG(t,4), this is a contradiction.
Case 3. A; nz: = B and A3nZ3 = B. Since Ag = ZO, A = Zl and
(Ao® A1)N(A20 Ag) is a (t—2)-flat in the (t—1)-flat Ao A; which contains
B, it follows from Ao ® A; = ;_o A: that (Ao ® A1) N (A2® As) = Ao, A
or Ay.

(A) In the case (Ag®A1)N(A20A3) = Ao, it follows that HoN(A2® A3) =
Ao and Hy N (A2 @ Az) # A;. Hence we have a contradiction from Case 2.

Similarly, it follows from Case 2 that (Ao ® A1) N (A2 ® A3) # A;.

(B) In the case (Ao ® A1) N (A2 ® A3) = Ay, let Iy, Iz, I3, I and Hy be
five (t — 1)-fiats in PG(t,4) which contain A4. Since Hy N (A2 ® A3) = Ay,
we can assume without loss of generality that [I3 = A3 @ A5 = Ay @ As.
This implies that As ¢ II;, Az ¢ II;, A ¢ Hl, Az ¢ I, A; C II3 and
A3 C II3. Hence it follows from Case 2 that |FNAy| > ve—1—(e0+321—6)/2
and z; + z2 + 3 < (€0 + 3e1 + 6)/2.

Let A; = A3 @ Ay; for i = 1,2,3. Since A3 C A; for some integer i in
{1,2,3}, we can assume without loss of generality that A, ¢ Ay, A ¢ A,
and A; C As. Hence |F N A+ |FN Ay = 2|F nAs|+ (UL, 8:) N
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(A1U Ag)| + 21 + 22 < 2(ve—2 + IS3]) + 7o |Si] + (€0 + 361 + 6)/2 <
2v;_2+(Teo+13e1 +6)/2 and |[FNA,| < ve_o+ (deg +T7€1)/2 < vy +€4,
where |[FNA;| < |[FN Az and 4 < 6 < ep+e;. Since A; is a (t — 1)-flat
in PG(t,4), this is a contradiction. Hence Theorem 2:6 holds.

Appendix A. Preliminary results

Let E(k — 1,q) denote the set of all ordered sets (eg,€1,...,€&k_2) such
that ¢; € {0,1,...,¢—1} for i = 0,1,...,k — 2 and (eq,€1,.-.,6xk-2) #
(0,0,...,0). The following theorem due to Hamada [5] plays an important
role in proving Theorems 1.1 - 1.3.

Theorem A.l. In thecased = ¢*~! — ,_0 et and n = ve— E,_o €iVip1
for some ordered set (eo,é1,...,6x—2) in E(k —1,q), there is a one-to-
one correspondence between the set of all noneqmvalent [n, k, &; g]-codes
meetmg the Griesmer bound and the set of all {E elv,_,.l, > _02 €V k—

1, g}-minihypers, where v; = (¢ —1)/(g — 1) for any integer ¢ > 0.

Definition A.1. Let E(t,q) denote the set of all ordered sets ((o,(,. ..,
(t—1) of integers ¢; such that (a) (¢o,¢1,---,¢e—1) € E(t,q), or (b) (o = g,
0<(1<¢q-1,...,08¢G-1<g-Lor(e)o=C1 =" =1 =0,
O =¢0<LOBy1 £9g-1,...,0 £ ¢—1 £ g—1 for some integer X in
{1,2,...,t -1}

The following theorem due to Hamada and Helleseth [9], [10] plays an

important role in characterizing some minihypers and in proving the nonex-
istence of some minihypers.
Theorem A.2. If there exists a {3 i_y €1%i41, > s €ivi;t, q}-minihyper
F for some ordered set (eo,€1,...,6¢—1) in E(t,q) and H is a (t — 1)-
flat in PG(t,q) such that [F N H| = Yia Givig1 for some ordered set
(CO: Ch ,Ct l) in E(ts 9), then:

(1) 2206 < 6, where 0= 3 g &

(2) In the case 6 — (B+ 1)g < Z:;o (i < 0 — Bq for some integer 8 >0,
FnH isa {E:;é Civit, E:;é Givi—; t, q}-minihyper in H for some integer
v in {0,1,.

3) If there is no (t — 1)-flat II in PG(t,q) such that 3 i_] e;v; < |[F N
I < s+ Zi_ €;v; for some positive integer s < q, then Z::o (i=80or
Tiati<0—s.

Remark A.1. There exists an {f,m;t, q}-minihyper F such that F c H
for some (t—1)-flat H in PG(t, q) if and only if there exists an {f, m;t—1, ¢}-
minihyper, where 0 < m < f < v;.
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