The Nonexistence of Quaternary Linear Codes With Parameters [243,5,181], [248,5,185] and [240,5,179]

Noboru Hamada
Department of Applied Mathematics
Osaka Women's University
Daisen-cho, Sakai
Osaka 590
Japan

ABSTRACT. Let $n_4(k,d)$ and $d_4(n,k)$ denote the smallest value of n and the largest value of d, respectively, for which there exists an [n,k,d] code over the Galois field GF(4). It is known (cf. Boukliev [1] and Table B.2 in Hamada [6]) that (1) $n_4(5,179) = 240$ or 241, $n_4(5,181) = 243$ or 244, $n_4(5,182) = 244$ or 245, $n_4(5,185) = 248$ or 249 and (2) $d_4(240,5) = 178$ or 179 and $d_4(244,5) = 181$ or 182. The purpose of this paper is to prove that (1) $n_4(5,179) = 241$, $n_4(5,181) = 244$, $n_4(5,182) = 245$, $n_4(5,185) = 249$ and (2) $d_4(240,5) = 178$ and $d_4(244,5) = 181$.

1 Introduction

Let V(n,q) be an n-dimensional vector space consisting of row vectors over the Galois field GF(q), where n>3 and q is a prime power. If C is a k-dimensional subspace in V(n,q) such that every nonzero vector in C has a Hamming weight of at least d, then C is called an [n,k,d;q]-code (or a q-ary linear code with length n, dimension k, and minimum distance d). In the special case q=4, an [n,k,d;4]-code is also called a quaternary [n,k,d] code (cf. MacWilliams and Sloane [19]).

Let $n_q(k,d)$ denote the smallest value of n for which there exists an [n,k,d;q]-code. An $[n_q(k,d),k,d;q]$ code is therefore optimal in the sense that no shorter code exists with the same k,d and q. In the case q=4 and k=4, the value of $n_4(4,d)$ is known for all $d \leq 4^3$ (cf. Greenough and Hill [3], Hamada [6] and Landgev, Maruta and Hill [18]). But in the case q=4 and k=5, the value of $n_4(5,d)$ is unknown for many integers d and a table of the bounds for $n_4(5,d)$, $1 \leq d \leq 256$, has been given by Hamada [6].

It is known (cf. Table B.2 in Hamada [6]) that (1) $n_4(5,179) = 240$ or 241, $n_4(5,181) = 243$ or 244, $n_4(5,182) = 244$ or 245, $n_4(5,185) = 248$ or 249 and (2) $d_4(240,5) = 178$ or 179 and $d_4(244,5) = 181$ or 182. The purpose of this paper is to prove that (1) $n_4(5,179) = 241$, $n_4(5,181) = 244$, $n_4(5,182) = 245$, $n_4(5,185) = 249$ and (2) $d_4(240,5) = 178$ and $d_4(244,5) = 181$, i.e., to prove the following three theorems using the nonexistence of the corresponding minihypers.

Theorem 1.1. There is no quaternary [243, 5, 181] code and $n_4(5, 181) = 244$.

It is known that if there exists a quaternary [244,5,182] code, then there exists a quaternary [243,5,181] code. Hence we have

Corollary 1.1. (1) There is no quaternary [244, 5, 182] code. (2) $n_4(5, 182) = 245$ and $d_4(244, 5) = 181$.

Using a method similar to the proof of Theorem 1.1, we can easily prove the following two theorems.

Theorem 1.2. There is no quaternary [248, 5, 185] code and $n_4(5, 185) = 249$.

Theorem 1.3. There is no quaternary [240, 5, 179] code and $n_4(5, 179) = 241$.

Remark 1.1. It was shown by Boukliev [1] that there exist a [242,5,180; 4] code and a [247,5,184; 4]-code. Hence it follows that $n_4(5,179) = 240$ or 241, $n_4(5,181) = 243$ or 244 and $n_4(5,182) = 244$ or 245.

Remark 1.2. Recently, it has been shown by Hamada [7] that in the case $k \geq 5$ and $3^{k-1} - (3^{k-3} + 3^{k-2}) < d \leq 3^{k-1} - 3^{k-2}$, there exists a ternary [n, k, d] code meeting the Griesmer bound if and only if $d = 3^{k-1} - 3^{k-2} - \varepsilon$ for some integer ε in $\{0, 1, 2\}$. In order to generalize this result for the case $q \geq 4$, it is necessary to show at first that there is no quaternary [n, 5, d] code meeting the Griesmer bound for any integer d in $\{177, 178, 179, 181, 182, 185\}$.

2 Connections between codes and minihypers

Let F be a set of f points in a finite projective geometry PG(t,q) of t dimensions over GF(q), where $f \ge 1$ and $t \ge 2$. If $|F \cap H| \ge m$ for every hyperplane (i.e., (t-1)-flat) H in PG(t,q) and $|F \cap H| = m$ for some hyperplane H in PG(t,q), then F is called an $\{f,m;t,q\}$ -minihyper, where $m \ge 0$ and |A| denotes the number of elements of the set A. It follows from Theorem A.1 in Appendix A that in order to prove Theorems 1.1 - 1.3, it is sufficient to prove the following Theorems 2.1 - 2.3, respectively. In what follows, let $v_i = (q^i - 1)/(q - 1)$ for any integer $i \ge 0$. In the special case

q = 4, $v_i = (4^i - 1)/(4 - 1)$ for any integer $i \ge 0$, i.e., $v_0 = 0$, $v_1 = 1$, $v_2 = 5$, $v_3 = 21$ and $v_4 = 85$.

Theorem 2.1. There is no $\{3v_1 + 2v_2 + v_4, 2v_1 + v_3; 4, 4\}$ -minihyper.

Theorem 2.2. There is no $\{3v_1 + v_2 + v_4, v_1 + v_3; 4, 4\}$ -minihyper.

Theorem 2.3. There is no $\{v_1 + 3v_2 + v_4, 3v_1 + v_3; 4, 4\}$ -minihyper.

In order to prove Theorems 2.1, 2.2 and 2.3, we shall use the following three theorems which play an important role in generalizing the result in Remark 1.2 for the case $q \ge 4$. The proof of Theorems 2.4, 2.5 and 2.6 will be given in Sections 5, 6 and 7, respectively.

Theorem 2.4. In the case $q \geq 3$, $\tau \geq 3$ and $0 \leq \varepsilon \leq q-1$, K is an $\{\varepsilon v_1 + v_r, \varepsilon v_0 + v_{r-1}; \tau, q\}$ -minihyper if and only if K is a disjoint union of ε points and one $(\tau - 1)$ -flat in $PG(\tau, q)$.

Remark 2.1. It is obvious that the if part of Theorem 2.4 holds.

Remark 2.2. Theorem 2.4 is a generalization of the result in Hamada and Deza [8].

Remark 2.3. It follows from Theorem 3.1 in Hamada [5] that Theorem 2.4 holds in the case $\epsilon = 0$ or 1.

Theorem 2.5. Let t, ϵ_0 and ϵ_1 be integers such that $t \geq 4$, $0 \leq \epsilon \leq q-1$ and $0 \leq \epsilon_1 \leq q-1$. Let G be a (t-2)-flat in PG(t,q) and let $H_0, H_1, \ldots, H_{q-1}$ and H_q be q+1 (t-1)-flats in PG(t,q) which contain G. If there exists an $\{\epsilon_0v_1+\epsilon_1v_2+v_t,\epsilon_1v_1+v_{t-1};t,q\}$ -minihyper F such that $F\cap H_i=A_i\cup S_i,\ i=0,1,\ldots,q$, for some (t-2)-flat A_i in H_i and some subset S_i of $H_i\setminus G$ such that (a) $G\cap A_0=G\cap A_1=\cdots=G\cap A_q=B$ for some (t-3)-flat B in G and (b) $\sum_{i=0}^q |S_i|=\epsilon_0+\epsilon_1v_2$, then F contains a (t-1)-flat in PG(t,q).

Theorem 2.6. Let t, ϵ_0 and ϵ_1 be integers such that $t \geq 4$, $0 \leq \epsilon_0 \leq 3$, $1 \leq \epsilon_1 \leq 3$ and $\epsilon_0 + \epsilon_1 \geq 4$. Let G be a (t-2)-flat in PG(t,4) and let H_0 , H_1 , H_2 , H_3 and H_4 be five (t-1)-flats in PG(t,4) which contain G. If there exists an $\{\epsilon_0v_1 + \epsilon_1v_2 + v_t, \epsilon_1v_1 + v_{t-1}; t, 4\}$ -minihyper F such that (i) $F \cap H_i = A_i \cup S_i$, i = 0, 1, 2, 3, for some (t-2)-flat A_i in H_i and some subset S_i of $H_i \setminus G$ and (ii) $G \cap (F \cap H_4) = B$ and $|F \cap H_4| = v_{t-1} + \delta$ for some integer $\delta \geq 4$, where $G \cap A_0 = G \cap A_1 = G \cap A_2 = G \cap A_3 = B$ for some (t-3)-flat B in G and $\sum_{i=0}^3 |S_i| + \delta = \epsilon_0 + \epsilon_1 v_2$, then there exists a (t-1)-flat Π in PG(t,4) such that $|F \cap \Pi| = v_t$ or $v_t - 1$.

Remark 2.4. Let (ω_1) , (ω_2) , (ζ_1) and (ζ_2) be four linearly independent points in PG(3,q) and let $F = ((\omega_1) \oplus (\zeta_1)) \cup ((\omega_2) \oplus (\zeta_2)) \cup \{\bigcup_{i=0}^{q-2} ((\omega_1 + \alpha^i \omega_2) \oplus (\zeta_1 + \alpha^i \zeta_2))\}$, where α is a primitive element of GF(q) and $(\omega) \oplus (\zeta)$ denotes the 1-flat in PG(3,q) passing through two points (ω) and (ζ) in

PG(3,q). Then it is easy to see that F is a $\{qv_1+v_3,qv_0+v_2;3,q\}$ -minihyper such that $|F\cap H|=q+1$ or 2q+1 for any 2-flat H in PG(3,q) and $(n_{q+1},n_{2q+1})=(q^3-q,q^2+2q+1)$, where $v_0=0, v_1=1, v_2=q+1$ and $v_3=q^2+q+1$. Since F contains no 2-flat in PG(3,q), this shows that Theorem 2.4 does not hold in the case $q\geq 3, \tau=3$ and $\varepsilon=q$ (cf. Hamada and Maekawa [13] in the case $q=3, \tau=3$ and $\varepsilon=3$).

Remark 2.5. Let F be an $\{f, m; t, q\}$ -minihyper and let H and G be a (t-1)-flat in PG(t,q) and a (t-2)-flat in H, respectively. Then

$$\sum_{i=1}^{q} |F \cap H_i| = |F| - |F \cap H| + q|F \cap G|, \tag{2.1}$$

where $H_1, H_2, \ldots, H_{q-1}$ and H_q denote q (t-1)-flats in PG(t, q), except for H, which contain G.

Remark 2.6. If there exists an $\{f, m; 4, 4\}$ -minihyper F, then

$$\sum_{i=m}^{85} n_i = v_5, \ \sum_{i=m}^{85} i n_i = f v_4 \ \text{ and } \ \sum_{i=m}^{85} \binom{i}{2} n_i = \binom{f}{2} v_3, \qquad (2.2)$$

where n_i denotes the number of 3-flats H in PG(4,4) such that $|F \cap H| = i$.

3 The proof of Theorems 2.1 and 2.2

Lemma 3.1. If there exists a $\{3v_1 + 2v_2 + v_4, 2v_1 + v_3; 4, 4\}$ -minihyper F, then (1) $23 \le |F \cap H| \le 26$ or $30 \le |F \cap H| \le 85$ for any 3-flat H in PG(4,4) and (2) there exists a 3-flat Π in PG(4,4) such that $|F \cap \Pi| = 85$ or 84.

Proof: Let F be a $\{3v_1 + 2v_2 + v_4, 2v_1 + v_3; 4, 4\}$ -minihyper.

- (1) Let H be any 3-flat in PG(4,4) such that $|F\cap H| \leq v_4 = 85$. It follows from Theorem A.2 $(\theta=6)$ in Appendix A that $|F\cap H| = \zeta_0 v_1 + \zeta_1 v_2 + \zeta_2 v_3$ for some ordered set $(\zeta_0,\zeta_1,\zeta_2,0)$ in $\overline{E}(4,4)$ such that $\zeta_0+\zeta_1+\zeta_2\leq 6$, where $\overline{E}(t,q)$ denotes the set defined in Definition A.1. Since there is no quaternary [n,4,d] code meeting the Griesmer bound for d=41,42,43 (cf. Table B.1 in Hamada [6]), it follows from Theorems A.1, A.2 and Remark A.1 that there is no 3-flat H in PG(4,4) such that $|F\cap H|=\zeta_0 v_1+\zeta_1 v_2+\zeta_2 v_3$ for any ordered set $(\zeta_0,\zeta_1,\zeta_3)$ in $\{(1,1,1),(2,1,1),(3,1,1)\}$. Since $v_1=1,v_2=5,v_3=21,v_4=85$ and $|F\cap H|\leq |H|=v_4$, this implies that (1) holds.
- (2) It follows from the definition of a minihyper and Theorem A.2 ($\theta = 6$, q = 4, $\beta = 0$) that there exists a 3-flat H_0 in PG(4,4) such that $|F \cap H_0| = 2v_1 + v_3$ and $F \cap H_0$ is a $\{2v_1 + v_3, 2v_0 + v_2; 4, 4\}$ -minihyper in H_0 . Since H_0 is a 3-flat in PG(4,4), it follows from Remark A.1 and Theorem 2.4 (q = 4,

 $\tau = 3$, $\epsilon = 2$) that $F \cap H_0 = A_0 \cap \{P_{01}, P_{02}\}$ for some 2-flat A_0 and some points P_{01} , P_{02} in H_0 .

Let G be a 2-flat in H_0 such that $G \cap \{P_{01}, P_{02}\} = \emptyset$ and $G \cap A_0$ is a 1-flat (denoted by B) in G. Then $F \cap G = (F \cap H_0) \cap G = A_0 \cap G = B$ and $|F \cap G| = |B| = v_2 = 5$. Let H_1 , H_2 , H_3 , H_4 and H_0 be five 3-flats in PG(4,4) which contain G, where $|F \cap H_1| \leq |F \cap H_2| \leq |F \cap H_3| \leq |F \cap H_4|$. Since $|F| = 3v_1 + 2v_2 + v_4 = 98$, $|F \cap H_0| = 2v_1 + v_3 = 23$ and $|F \cap G| = 5$, it follows from (2.1) and Lemma 3.1-(1) that

$$\sum_{i=1}^{4} |F \cap H_i| = |F| - |F \cap H_0| + 4|F \cap G| = 95$$
 (3.1)

and $(|F \cap H_1|, |F \cap H_2|, |F \cap H_3|, |F \cap H_4|) = (23, 24, 24, 24), (23, 23, 24, 25)$ or (23, 23, 23, 26).

Case 1. $(|F \cap H_1|, |F \cap H_2|, |F \cap H_3|, |F \cap H_4|) = (23, 24, 24, 24)$. Since $2v_1 + v_3 = 23$ and $3v_1 + v_3 = 24$, it follows from Theorem A.2, Remark A.1 and Theorem 2.4 $(q = 4, \tau = 3, \varepsilon = 2, 3)$ that $F \cap H_1 = A_1 \cup \{P_{11}, P_{12}\}$ for some 2-flat A_1 in H_1 and some points P_{11} , P_{12} in $H_1 \setminus G$ and $F \cap H_i = A_i \cup \{P_{i1}, P_{i2}, P_{i3}\}, i = 2, 3, 4$, for some 2-flat A_i in H_i and some points P_{i1} , P_{i2} , P_{i3} in $H_i \setminus G$, where $G \cap A_1 = G \cap A_2 = G \cap A_3 = G \cap A_4 = B$. Hence it follows from Theorem 2.5 that F contains a 3-flat (denoted by Π) in PG(4,4). Since $|\Pi| = v_4 = 85$, this implies that $|F \cap \Pi| = |\Pi| = 85$.

Case 2. $(|F \cap H_1|, |F \cap H_2|, |F \cap H_3|, |F \cap H_4|) = (23, 23, 24, 25)$. Since $4v_1+v_3=25$, it follows from Theorem A.2, Remark A.1, Theorems 2.4 and 2.6 that there exists a 3-flat Π in PG(4,4) such that $|F \cap \Pi| = 85$ or 84.

Case 3. $(|F \cap H_1|, |F \cap H_2|, |F \cap H_3|, |F \cap H_4|) = (23, 23, 23, 26)$. Since $5 + v_3 = 26$, it follows from Theorems A.2, 2.4 and 2.6 that there exists a 3-fiat Π in PG(4, 4) such that $|F \cap \Pi| = 85$ or 84. This completes the proof.

Remark 3.1. Let F be a $\{3v_1 + 2v_2 + v_4, 2v_1 + v_3; 4, 4\}$ -minihyper and let H be a 3-flat in PG(4,4) such that $|F \cap H| = 26$. Since $v_2 + v_3 = 26$, it follows from Theorem A.2 ($\theta = 6$, q = 4, $\beta = 1$) and $\theta - 2q < 2 \le \theta - q$ that either (a) $F \cap H$ is a $\{v_2 + v_3, v_1 + v_2; 4, 4\}$ -minihyper in H or (b) $F \cap H$ is a $\{v_2 + v_3, v_2; 4, 4\}$ -minihyper in H. Since there exists a $\{v_2 + v_3, v_2; 3, 4\}$ -minihyper, it does not follow from the proof of Lemma 3.1 that there is no 3-flat H in PG(4,4) such that $|F \cap H| = 26$.

Lemma 3.2. There is no $\{3v_1 + 2v_2 + v_4, 2v_1 + v_3; 4, 4\}$ -minihyper F such that $|F \cap H| = 85$ for some 3-flat H in PG(4,4).

Proof: Suppose there exists a $\{3v_1 + 2v_2 + v_4, 2v_1 + v_3; 4, 4\}$ -minihyper F such that $|F \cap H| = 85$ for some 3-flat H in PG(4,4). Since $|H| = v_4 = 85$, this implies that $H \subset F$. Let G_i , i = 1, 2, ..., 85, be v_4 2-flats in H and let H_{i1} , H_{i2} , H_{i3} , H_{i4} and H be five 3-flats in PG(4,4) which contain G_i , where $|F \cap H_{i1}| \leq |F \cap H_{i2}| \leq |F \cap H_{i3}| \leq |F \cap H_{i4}|$. Since |F| = 98,

 $|F \cap H| = 85$ and $|F \cap G_i| = |G_i| = 21$, it follows from (2.1) and Lemma 3.1-(1) that

$$\sum_{i=1}^{4} |F \cap H_{ij}| = |F| - |F \cap H| + 4|F \cap G_i| = 97$$
 (3.2)

and $(|F \cap H_{i1}|, |F \cap H_{i2}|, |F \cap H_{i3}|, |F \cap H_{i4}|) = (23, 23, 25, 26), (23, 24, 24, 26), (23, 24, 25, 25)$ or (24, 24, 24, 25).

Let x, y and z denote the number of integers i in $\{1, 2, ..., 85\}$ such that $(|F \cap H_{i1}|, |F \cap H_{i2}|, |F \cap H_{i3}|, |F \cap H_{i4}|) = (23, 23, 25, 26), (23, 24, 24, 26)$ and (23, 24, 25, 25), respectively. Since H and H_{ij} 's are v_5 3-flats in PG(4, 4), it follows that $n_{23} = 2x + y + z, n_{24} = 2y + z + 3(85 - x - y - z) = 255 - 3x - y - 2z, n_{25} = x + 2z + (85 - x - y - z) = 85 - y + z, n_{26} = x + y$ and $n_{85} = 1$, where n_k denotes the number of 3-flats Π in $\{H_{ij} \mid i = 1, 2, ..., 85, j = 1, 2, 3, 4\}$ such that $|F \cap \Pi| = k$ for k = 23, 24, 25, 26. Hence it follows from (2.2) that

$$\binom{23}{2}(2x+y+z) + \binom{24}{2}(255-3x-y-2z) + \binom{25}{2}(85-y+z) + \binom{26}{2}(x+y) + \binom{85}{2} = \binom{98}{2}v_3.$$

This implies that 3x + 2y + z = 363. On the other hand, it follows from $x+y+z \le 85$ that $3x+2y+z \le 3(x+y+z) \le 255$. This is a contradiction.

Lemma 3.3. There is no $\{3v_1 + 2v_2 + v_4, 2v_1 + v_3; 4, 4\}$ -minihyper F such that $|F \cap H| = 84$ for some 3-flat H in PG(4,4).

Proof: Suppose there exists a $\{98, 23; 4, 4\}$ -minihyper F such that $|F \cap H| = 84$ for some 3-fiat H in PG(4, 4). Since |H| = 85, there exists a point Q in H such that $F \cap H = H \setminus \{Q\}$.

Let G_i , i = 1, 2, ..., 21, be v_3 2-flats in H such that $Q \in G_i$ and let G_i , i = 22, 23, ..., 85, be $v_4 - v_3$ 2-flats in H such that $Q \notin G_i$. Let H_{i1} , H_{i2} , H_{i3} , H_{i4} and H be five 3-flats in PG(4,4) which contain G_i , where $|F \cap H_{i1}| \leq |F \cap H_{i2}| \leq |F \cap H_{i3}| \leq |F \cap H_{i4}|$. Since |F| = 98, $|F \cap H| = 84$ and $|F \cap G_i| = 20$ or 21, it follows from (2.1) that

$$\sum_{i=1}^{4} |F \cap H_{ij}| = |F| - |F \cap H| + 4|F \cap G_i| = 94 \text{ or } 98$$
 (3.3)

according as $1 \le i \le 21$ or $22 \le i \le 85$. Hence $(|F \cap H_{i1}|, |F \cap H_{i2}|, |F \cap H_{i3}|, |F \cap H_{i4}|) = (23, 23, 23, 25)$ or (23, 23, 24, 24) for $i = 1, 2, \ldots, 21$ and $(|F \cap H_{i1}|, |F \cap H_{i2}|, |F \cap H_{i3}|, |F \cap H_{i4}|) = (23, 23, 26, 26), (23, 24, 25, 26), (24, 24, 24, 26), (23, 25, 25, 25)$ or (24, 24, 25, 25) for $i = 22, 23, \ldots, 85$. Let x, a, b, c and d denote the number of integers i in $\{1, 2, \ldots, 85\}$ such that

 $(|F \cap H_{i1}|, |F \cap H_{i2}|, |F \cap H_{i3}|, |F \cap H_{i4}|) = (23, 23, 23, 23, 25), (23, 23, 26, 26),$ (23, 24, 25, 26), (24, 24, 24, 26) or (23, 25, 25, 25), respectively. Then $n_{23} = 42 + x + 2a + b + d, n_{24} = 170 - 2x - 2a - b + c - 2d, n_{25} = 128 + x - 2a - b - 2c + d,$ $n_{26} = 2a + b + c$ and $n_{84} = 1$. Hence it follows from the third equation of (2.2) that x + 4a + 2b + c + d = 381. On the other hand, it follows from $x \le 21$ and $a + b + c + d \le 64$ that $x + 4a + 2b + c + d \le x + 4(a + b + c + d) \le 277$. This is a contradiction.

Proof of Theorem 2.1: It follows from Lemmas 3.1, 3.2 and 3.3 that there is no $\{3v_1 + 2v_2 + v_4, 2v_1 + v_3; 4, 4\}$ -minihyper. This completes the proof.

Proof of Theorem 2.2: Using a method similar to the proof of Lemmas 3.1-3.3, it can be shown that (1) if there exists a $\{3v_1+v_2+v_4, v_1+v_3; 4, 4\}$ -minihyper F, then there exists a 3-fiat Π in PG(4,4) such that $|F\cap H|=85$ or 84 and (2) there is no $\{3v_1+v_2+v_4, v_1+v_3; 4, 4\}$ -minihyper F such that $|F\cap H|=85$ or 84 for some 3-flat H in PG(4,4). This implies that there is no $\{3v_1+v_2+v_4, v_1+v_3; 4, 4\}$ -minihyper.

4 The proof of Theorem 2.3

Lemma 4.1. If there exists a $\{v_1 + 3v_2 + v_4, 3v_1 + v_3; 4, 4\}$ -minihyper F, then (1) $24 \le |F \cap H| \le 25$ or $30 \le |F \cap H| \le 85$ for any 3-flat H in PG(4,4) and (2) there exists a 3-flat Π in PG(4,4) such that $|F \cap \Pi| = 85$ or 84.

Proof: Let F be a $\{v_1 + 3v_2 + v_4, 3v_1 + v_3; 4, 4\}$ -minihyper.

- (1) Suppose there exists a 3-flat H in PG(4,4) such that $|F \cap H| = v_2 + v_3 = 26$. Then it follows from Theorem A.2 ($\theta = 5$, q = 4, $\beta = 0$) and Remark A.1 that $F \cap H$ is a $\{v_2 + v_3, v_1 + v_2; 4, 4\}$ -minihyper in H and there exists a $\{v_2 + v_3, v_1 + v_2; 3, 4\}$ -minihyper. Since there is no $\{v_2 + v_3, v_1 + v_2; 3, 4\}$ -minihyper (cf. Theorem 3.1 in Hamada [5]), this is a contradiction. Hence it follows from the proof of Lemma 3.1-(1) that (1) holds.
- (2) It follows from the definition of a minihyper and Theorems A.2 and 2.4 that there exists a 3-flat H_0 in PG(4,4) such that $F \cap H_0 = A_0 \cup \{P_{01}, P_{02}, P_{03}\}$ for some 2-flat A_0 and some points P_{01} , P_{02} , P_{03} in H_0 . Let G be a 2-flat in H_0 such that $G \cap \{P_{01}, P_{02}, P_{03}\} = \emptyset$ and $G \cap A_0 = B$ for some 1-flat B in G.

Let H_1 , H_2 , H_3 , H_4 and H_0 be five 3-flats in PG(4,4) which contain G, where $|F \cap H_1| \le |F \cap H_2| \le |F \cap H_3| \le |F \cap H_4|$. Since $\sum_{i=1}^4 |F \cap H_i| = 97$, it follows from (1) that $(|F \cap H_1|, |F \cap H_2|, |F \cap H_3|, |F \cap H_4|) = (24, 24, 24, 25)$.

Since $3v_1 + v_3 = 24$ and $4 + v_3 = 25$, it follows that (i) $F \cap H_i = A_i \cup \{P_{i1}, P_{i2}, P_{i3}\}, i = 1, 2, 3$, for some 2-flat A_i in H_i and some points

 P_{i1} , P_{i2} , P_{i3} in $H_i \setminus G$ and (ii) $G \cap (F \cap H_4) = B$ and $|F \cap H_4| = v_3 + 4$, where $G \cap A_1 = G \cap A_2 = G \cap A_3 = B$. Hence it follows from Theorem 2.6 that there exists a 3-flat Π in PG(4,4) such that $|F \cap \Pi| = 85$ or 84. This completes the proof.

Lemma 4.2. There is no $\{v_1 + 3v_2 + v_4, 3v_1 + v_3; 4, 4\}$ -minihyper F such that $|F \cap H| = 85$ for some 3-flat H in PG(4, 4).

Proof: Suppose there exists a $\{v_1 + 3v_2 + v_4, 3v_1 + v_3; 4, 4\}$ -minihyper F such that $|F \cap H| = 85$ for some 3-flat H in PG(4,4). Let G_i and H_{ij} be the 2-flat in H and the 3-flat in PG(4,4), respectively, defined in the proof of Lemma 3.2. Since $\sum_{j=1}^{4} |F \cap H_{ij}| = 100$ for i = 1, 2, ..., 85, it follows from Lemma 4.1 that $(|F \cap H_{i1}|, |F \cap H_{i2}|, |F \cap H_{i3}|, |F \cap H_{i4}|) = (25, 25, 25, 25)$. Hence $n_{25} = 340$ and $n_{85} = 1$. since

$$\binom{25}{2} \times 340 + \binom{85}{2} \neq \binom{101}{2} v_3, \tag{4.1}$$

this is contradictory to the third equation of (2.2).

Lemma 4.3. There is no $\{v_1 + 3v_2 + v_4, 3v_1 + v_3; 4, 4\}$ -minihyper F such that $|F \cap H| = 84$ for some 3-flat H in PG(4, 4).

Proof: Suppose there exists a $\{v_1 + 3v_2 + v_4, 3v_1 + v_3; 4, 4\}$ -minihyper F such that $|F \cap H| = 84$ for some 3-flat H in PG(4,4). Then $F \cap H = H \setminus \{Q\}$ for some point Q in H. Let G be a 2-flat in H such that $Q \notin G$ and let H_1, H_2, H_3, H_4 and H be five 3-flats in PG(4,4) which contain G. Since

$$\sum_{i=1}^{4} |F \cap H_i| = |F| - |F \cap H| + 4|F \cap G| = 101$$
 (4.2)

and $|F \cap H_i| = 24, 25, 30, \ldots$ for i = 1, 2, 3, 4, there is no solution which satisfies the equation (4.2). This is a contradiction.

Proof of Theorem 2.3: It follows from Lemmas 4.1, 4.2 and 4.3 that there is no $\{v_1 + 3v_2 + v_4, 3v_1 + v_3; 4, 4\}$ -minihyper. This completes the proof.

5 The proof of Theorem 2.4

Lemma 5.1. In the case t=3, $q\geq 3$ and $2\leq \varepsilon \leq q-1$, there is no $\{\varepsilon v_1+v_3,v_2;3,q\}$ -minihyper K such that $|K\cap H|=\zeta_0v_1+\zeta_1v_2$ for some 2-flat H in PG(3,q), where $\zeta_0\geq 0$, $\zeta_1\geq 2$ and $\zeta_0+\zeta_1\leq \varepsilon+1$.

Proof: Suppose there exists an $\{\varepsilon v_1 + v_3, v_2; 3, q\}$ -minihyper K such that $|K \cap H| = \zeta_0 v_1 + \zeta_1 v_2$ for some 2-flat H in PG(3, q). Since $\varepsilon + 1 - q < \zeta_0 + \zeta_1 \le \varepsilon + 1$, it follows from Theorem A.2 $(\theta = \varepsilon + 1, \beta = 0)$ that

 $K \cap H$ is a $\{\zeta_0v_1 + \zeta_1v_2, \zeta_1v_1; 3, q\}$ -minihyper in H. Since H is a 2-flat in PG(3,q), there exists a 1-flat L in H such that $|(K \cap H) \cap L| = \zeta_1$. Note that $|K \cap L| = |(K \cap H) \cap L| = \zeta_1$.

Let $H_1, H_2, \ldots, H_{q-1}, H_q$ and H be q+1 2-flats in PG(3,q) which contain L, where $|K \cap H_1| \leq |K \cap H_2| \leq \cdots \leq |K \cap H_q|$. Since $|K| = \varepsilon + (q^2 + q + 1)$, $|K \cap H| = \zeta_0 + \zeta_1(q+1)$ and $|K \cap L| = \zeta_1$, it follows from (2.1) that

$$\sum_{i=1}^{q} |K \cap H_i| = |K| - |K \cap H| + q|K \cap L| = qv_2 + (q - \zeta_0 - \zeta_1).$$
 (5.1)

Hence it follows from $|K \cap H_i| \ge v_2$ that there exists an integer δ_i such that $|K \cap H_i| = v_2 + \delta_i$, $\delta_1 + \delta_2 + \cdots + \delta_q = q - \zeta_0 - \zeta_1$ and $0 \le \delta_1 \le \delta_2 \le \cdots \le \delta_q$. Since $\zeta_0 + \zeta_1 \ge 2$, this implies that $\delta_1 = 0$ and $|K \cap H_1| = v_2$.

Since $\varepsilon+1-q<1$, it follows from Theorem A.2 $(\theta=\varepsilon+1, \beta=0)$ and Theorem 3.1 in Hamada [5] that $K\cap H_1$ is a $\{v_2,v_1;3,q\}$ -minihyper in H_1 and $K\cap H_1$ is a 1-flat (denoted by L_1) in H_1 . Since $2\leq \zeta_1\leq \varepsilon+1\leq q$ and $|K\cap L|=|(K\cap H_1)\cap L|=|L_1\cap L|=1$ or q+1, this is contradictory to $|K\cap L|=\zeta_1$.

Lemma 5.2. If K is an $\{\varepsilon v_1 + v_3, v_2; 3, q\}$ -minihyper for some integers q and ε such that $q \geq 3$ and $2 \leq \varepsilon \leq q-1$, then K is a disjoint union of ε points and one 2-flat in PG(3, q).

Proof: Let K be an $\{\varepsilon v_1 + v_3, v_2; 3, q\}$ -minihyper and let H be any 2-flat in PG(3,q). Since $|H| = v_3$ and $|F \cap H| \ge v_2$, it follows from Theorem A.2 $(\theta = \varepsilon + 1)$ that $|K \cap H| = v_3$ or $\zeta_0 v_1 + \zeta_1 v_2$ for some integers ζ_0 and ζ_1 such that $\zeta_0 \ge 0$, $\zeta_1 \ge 1$ and $\zeta_0 + \zeta_1 \le \varepsilon + 1$. Hence it follows from Lemma 6.1 that $|K \cap H| = v_3$ or $\zeta_0 + v_2$ for some integer ζ_0 such that $0 \le \zeta_0 \le \varepsilon$.

Case 1. $|K \cap H| = v_3$ for some 2-flat H in PG(3, q). It follows from $|H| = v_3$ that $H \subset K$. Since $|K| = \varepsilon + v_3$, this implies that F is a disjoint union of ε points and the 2-flat H in PG(3, q).

Case 2. $v_2 \leq |K \cap \Pi| \leq v_2 + \varepsilon$ for any 2-flat Π in PG(3,q). It follows from the definition of a minihyper that there exists a 2-flat H in PG(3,q) such that $|K \cap H| = v_2$. Since $K \cap H$ is a $\{v_2, v_1; 3, q\}$ -minihyper, it follows from Theorem 3.1 in Hamada [5] that $K \cap H$ is a 1-flat (denoted by L) in H.

Let $H_1, H_2, \ldots, H_{q-1}, H_q$ and H be q+1 2-flats in PG(3,q) which contain L. Since $|K| = \varepsilon + (q^2 + q + 1)$, $|K \cap H| = q + 1$ and $|K \cap L| = q + 1$, it follows that

$$\sum_{i=1}^{q} |K \cap H_i| = |K| - |K \cap H| + q|K \cap L| = 2q^2 + q + \epsilon.$$
 (5.2)

Since $|K \cap H_i| \leq (q+1) + \varepsilon$ for i = 1, 2, ..., q, it follows from $\varepsilon < q$ that

$$\sum_{i=1}^{q} |K \cap H_i| \le q(q+1+\varepsilon) < 2q^2 + q + \varepsilon, \tag{5.3}$$

a contradiction. This completes the proof.

Lemma 5.3. If K is an $\{\varepsilon v_1 + v_t, v_{t-1}; t, q\}$ -minihyper for some integers t, q and ε such that $t \geq 3$, $q \geq 3$ and $2 \leq \varepsilon \leq q-1$, then K is a disjoint union of ε points and one (t-1)-flat in PG(t,q).

Proof: We shall prove Lemma 5.3 by induction on t.

Case 1. t = 3. It follows from Lemma 5.2 that Lemma 5.3 holds.

Case 2. $t = \tau + 1$ and $\tau \geq 3$. Suppose Lemma 5.3 holds in the case $t = \tau$. Let K be an $\{\varepsilon v_1 + v_{\tau+1}, v_{\tau}; \tau + 1, q\}$ -minihyper. There exists a τ -flat H_0 in $PG(\tau + 1, q)$ such that $|K \cap H_0| = v_{\tau}$. Since $K \cap H_0$ is a $\{v_{\tau}, v_{\tau-1}; \tau + 1, q\}$ -minihyper in H_0 , it follows from Remarks A.1 and 2.3 that $K \cap H_0$ is a $(\tau - 1)$ -flat (denoted by A_0) in H_0 .

Let G be a $(\tau - 1)$ -flat in H_0 such that $G \cap A_0 = B$ for some $(\tau - 2)$ -flat B in A_0 . Let $H_1, H_2, \ldots, H_{q-1}, H_q$ and H_0 be q+1 τ -flats in $PG(\tau+1,q)$ which contain G. Since $|K| = \varepsilon + v_{\tau+1}, |K \cap H_0| = v_{\tau}$ and $|K \cap G| = v_{\tau-1}$, it follows from (2.1) that $\sum_{i=1}^{q} |K \cap H_i| = qv_{\tau} + \varepsilon$. Note that $v_{i+1} = qv_i + 1$.

Since $|K \cap H_i| \ge v_\tau$ for $i=1,2,\ldots,q$, there exists a nonnegative integer δ_i such that $|K \cap H_i| = v_\tau + \delta_i$ and $\delta_1 + \delta_2 + \cdots + \delta_q = \varepsilon$. Since $K \cap H_i$ is a $\{\delta_i + v_\tau, v_{\tau-1}; \tau + 1, q\}$ -minihyper in H_i and H_i is a τ -flat, it follows by induction on t that $K \cap H_i = A_i \cup S_i$ for some $(\tau - 1)$ -flat A_i and some subset S_i of $H_i \setminus G$ such that $G \cap A_i = B$ and $|S_i| = \delta_i$. Hence it follows from Theorem 2.5 $(\varepsilon_0 = \varepsilon, \varepsilon_1 = 0, t = \tau + 1)$ that K contains a τ -flat in $PG(\tau + 1, q)$. This completes the proof.

Proof of Theorem 2.4: It follows from Remarks 2.1, 2.3 and Lemma 5.3 that Theorem 2.4 holds. This completes the proof.

6 The proof of Theorem 2.5

Let F be an $\{\varepsilon_0v_1 + \varepsilon_1v_2 + v_t, \varepsilon_1v_1 + v_{t-1}; t, q\}$ -minihyper which satisfies the condition in Theorem 2.5. Then

$$F = (\bigcup_{i=0}^{q} A_i) \cup (\bigcup_{i=0}^{q} S_i). \tag{6.1}$$

Let $\overline{A}_i = H_i \cap (A_0 \oplus A_1)$ for i = 0, 1, ..., q, where $A_0 \oplus A_1$ denotes the (t-1)-flat in PG(t,q) which contains two (t-2)-flats A_0 and A_1 . Then \overline{A}_i is a (t-2)-flat in H_i such that $\overline{A}_0 = A_0$, $\overline{A}_1 = A_1$ and either $\overline{A}_j = A_j$ or $A_j \cap \overline{A}_j = B$ for j = 2, 3, ..., q.

If $A_j = \overline{A}_j$ for $j = 2, 3, \ldots, q$, then it follows that $\bigcup_{i=0}^q A_i = \bigcup_{i=0}^q \overline{A}_i = A_0 \oplus A_1$. Since $A_0 \oplus A_1$ is a (t-1)-flat in PG(t,q), it follows from (7.1) that F contains the (t-1)-flat $A_0 \oplus A_1$ in PG(t,q). Hence, in order to prove Theorem 2.5, it is sufficient to prove that $A_j = \overline{A}_j$ for $j = 2, 3, \ldots, q$.

Suppose there exists an integer j in $\{2,3,\ldots,q\}$ such that $A_j \neq \overline{A}_j$, i.e., $A_j \cap \overline{A}_j = B$. Without loss of generality, we can assume that j = q, i.e., $A_q \cap \overline{A}_q = B$. Let $\Pi_1, \Pi_2, \ldots, \Pi_{q-1}, \Pi_q$ and H_q be q+1 (t-1)-flats in PG(t,q) which contain \overline{A}_q . Since $A_0 \oplus \overline{A}_q = A_0 \oplus A_1$ and $A_0 \oplus \overline{A}_q$ is a (t-1)-flat in PG(t,q) which contains \overline{A}_q , we can assume without loss of generality that $\Pi_q = A_0 \oplus A_1$.

Since $A_i \subset \bigcup_{j=1}^q \Pi_j$ for $i=2,3,\ldots,q-1$, there exists an integer m_i in $\{1,2,\ldots,q\}$ such that $A_i \subset \Pi_{m_i}$ for each integer i in $\{2,3,\ldots,q-1\}$. Since $\{1,2,\ldots,q-1\}\setminus\{m_2,m_3,\ldots,m_{q-1}\}\neq\emptyset$, there exists at least one integer θ in $\{1,2,\ldots,q-1\}$ such that $\theta\not\in\{m_2,m_3,\ldots,m_{q-1}\}$. This implies that A_i does not contain in Π_θ , i.e., $A_i\cap\Pi_\theta=B$ for $i=2,3,\ldots,q-1$.

Since $A_q \cap \Pi_\theta = A_q \cap \overline{A}_q = B$ and $A_i \subset \Pi_q$, i.e., $A_i \cap \Pi_\theta = B$ for i = 0, 1, it follows from (7.1) that $|F \cap \Pi_\theta| = |(A_0 \cup A_1 \cup \cdots \cup A_q) \cap \Pi_\theta| + |(S_0 \cup S_1 \cup \cdots \cup S_q) \cap \Pi_\theta| \le |B| + \sum_{i=0}^q |S_i| = v_{t-2} + \varepsilon_0 + \varepsilon_1(q+1) < \varepsilon_1 + v_{t-1}$ in the case $t \ge 4$. Since Π_θ is a (t-1)-flat in PG(t,q), this is contradiction.

7 The proof of Theorem 2.6

Let F be an $\{\varepsilon_0v_1 + \varepsilon_1v_2 + v_t, \varepsilon_1v_1 + v_{t-1}; t, 4\}$ -minihyper which satisfies the condition in Theorem 2.6. Then

$$F = (\bigcup_{i=0}^{3} A_i) \cup (\bigcup_{i=0}^{3} S_i) \cup (F \cap H_4).$$
 (7.1)

Let $\Pi = A_0 \oplus A_1$ and $\overline{A}_i = H_i \cap (A_0 \oplus A_1)$ for i = 0, 1, 2, 3, 4. Then Π is a (t-1)-flat in PG(t,4) such that $\Pi = \bigcup_{i=0}^4 \overline{A}_i$ and \overline{A}_i is a (t-2)-flat in H_i such that $\overline{A}_0 = A_0$, $\overline{A}_1 = A_1$ and either $\overline{A}_j = A_j$ or $A_j \cap \overline{A}_j = B$ for j = 2, 3.

If $A_2 = \overline{A}_2$, $A_3 = \overline{A}_3$ and $F \cap \overline{A}_4 = \overline{A}_4$ or $\overline{A}_4 \setminus \{Q\}$ for some point Q in \overline{A}_4 , then $(\bigcup_{i=0}^3 A_i) \cap \Pi = \bigcup_{i=0}^3 \overline{A}_i, (\bigcup_{i=0}^3 S_i), \cap \Pi = \emptyset$, $(F \cap H_4) \cap \Pi = (F \cap H_4) \cap \overline{A}_4 = F \cap \overline{A}_4 = \overline{A}_4$ or $\overline{A}_4 \setminus \{Q\}$ and $F \cap \Pi = \Pi$ or $\Pi \setminus \{Q\}$. Hence in order to prove Theorem 2.7, it is sufficient to prove that (i) $A_2 = \overline{A}_2$, $A_3 = \overline{A}_3$ and (ii) $|F \cap \overline{A}_4| = v_{t-1}$ or $v_{t-1} - 1$.

Case 1. $A_2 = \overline{A}_2$ and $A_3 = \overline{A}_3$. Let Π_1 , Π_2 , Π_3 , Π and H_4 be five (t-1)-flats in PG(t,4) which contain \overline{A}_4 , where $|F \cap \Pi_1| \leq |F \cap \Pi_2| \leq |F \cap \Pi_3|$. Then $(\bigcup_{i=0}^3 A_i) \cup \Pi_j = (\bigcup_{i=0}^3 \overline{A}_i) \cup \overline{A}_4 = B$, $(F \cap H_4) \cap H_j = F \cap \overline{A}_4$ for j = 1, 2, 3 and $\sum_{j=1}^3 |(\bigcup_{i=0}^3 S_i) \cup \Pi_j| = |(\bigcup_{i=0}^3 S_i) \cap (\bigcup_{j=1}^3 \Pi_j)| = |\bigcup_{i=0}^3 S_i| = \sum_{i=0}^3 |S_i| = \varepsilon_0 + 5\varepsilon_1 - \delta$.

Since $|F \cap \Pi_1| \leq |F \cap \Pi_2| \leq |F \cap \Pi_3|$, it follows from (8.1) that $|F \cap \Pi_1| = |B| + |\bigcup_{i=0}^3 S_i) \cap \Pi_1| + (|F \cap \overline{A}_4| - |B|) \leq |F \cap \overline{A}_4| + \{\varepsilon_0 + 5\varepsilon_1 - \delta\}/3$. Since $|F \cap \Pi_1| \geq v_{t-1} + \varepsilon_1$, $\varepsilon_0 \leq 3$, $\varepsilon_1 \leq 3$ and $\delta \geq 4$, it follows that $|F \cap \overline{A}_4| \geq v_{t-1} - (\varepsilon_0 + 2\varepsilon_1 - \delta)/3 \geq v_{t-1} - 5/3$. Since $|F \cap \overline{A}_4|$ is an integer such that $|F \cap \overline{A}_4| \leq |\overline{A}_4| = v_{t-1}$, this implies that $|F \cap \overline{A}_4| = v_{t-1}$ or $v_{t-1} - 1$.

Case 2. $A_2 = \overline{A}_2$ and $A_3 \cap \overline{A}_3 = B$. Let Π_1 , Π_2 , Π_3 , Π and H_4 be five (t-1)-flats in PG(t,4) which contain \overline{A}_4 . Since $A_3 \subset \Pi_i$ for some integer i in $\{1,2,3\}$, we can assume without loss of generality that $A_3 \not\subset \Pi_1$, $A_3 \not\subset \Pi_2$, $A_3 \subset \Pi_3$ and $|F \cap \Pi_1| \leq |F \cap \Pi_2|$. Since $(\bigcup_{i=0}^3 A_i) \cap \Pi_1 = B$ and $|(\bigcup_{i=0}^3 S_i) \cap \Pi_1| + |(\bigcup_{i=0}^3 S_i) \cap \Pi_2| = |(\bigcup_{i=0}^3 S_i) \cap (\Pi_1 \cup \Pi_2)| \leq |\bigcup_{i=0}^3 S_i| = \sum_{i=0}^3 |S_i| = \varepsilon_0 + 5\varepsilon_1 - \delta$, it follows that $|F \cap \Pi_1| = |(\bigcup_{i=0}^3 A_i) \cap \Pi_1| + \{|F \cap \overline{A}_4| - |B|\} + |(\bigcup_{i=0}^3 S_i) \cap \Pi_1| \leq |F \cap \overline{A}_4| + (\varepsilon_0 + 5\varepsilon_1 - \delta)/2$. Since $|F \cap \Pi_1| \geq v_{t-1} + \varepsilon_1$, this implies that $|F \cap \overline{A}_4| \geq v_{t-1} - (\varepsilon_0 + 3\varepsilon_1 - \delta)/2$.

Let A_{41} , A_{42} , A_{43} , \overline{A}_4 and G be five (t-2)-flats in H_4 which contain B. Let x_i denote the number of points in $F \cap (A_{4i} \setminus B)$ for i = 1, 2, 3. Since $|F \cap H_4| = |F \cap \overline{A}_4| + x_1 + x_2 + x_3$ and $|F \cap \overline{A}_4| \ge v_{t-1} - (\varepsilon_0 + 3\varepsilon_1 - \delta)/2$, it follows from $|F \cap H_4| = v_{t-1} + \delta$ that $x_1 + x_2 + x_3 \le (\varepsilon_0 + 3\varepsilon_1 + \delta)/2$.

Let $\Delta_i = \overline{A}_3 \oplus A_{4i}$ for i=1,2,3, where $|F \cap \Delta_1| \leq |F \cap \Delta_2| \leq |F \cap \Delta_3|$. Then Δ_i 's are (t-1)-flats in PG(t,4) such that $|F \cap \Delta_1| + |F \cap \Delta_2| + |F \cap \Delta_3| = 3|F \cap \overline{A}_3| + |(\bigcup_{i=0}^2 S_i) \cap (\Delta_1 \cup \Delta_2 \cup \Delta_3)| + x_1 + x_2 + x_3 \leq 3|F \cap \overline{A}_3| + \sum_{i=0}^2 |S_i| + (\epsilon_0 + 3\epsilon_1 + \delta)/2$. Since $|F \cap \overline{A}_3| \leq v_{t-2} + |S_3|$, $\sum_{i=0}^2 |S_i| = (\epsilon_0 + 5\epsilon_1) - \delta - |S_3|$ and $|S_3| \leq \epsilon_0 + \epsilon_1$, it follows that $|F \cap \Delta_1| \leq v_{t-2} + (3\epsilon_0 + 13\epsilon_1 - \delta + 4|S_3|)/6 \leq v_{t-2} + (7\epsilon_0 + 17\epsilon_1 - 4)/6 < v_{t-1} + \epsilon_1$. Since Δ_1 is a (t-1)-flat in PG(t,4), this is a contradiction.

Case 3. $A_2 \cap \overline{A}_2 = B$ and $A_3 \cap \overline{A}_3 = B$. Since $A_0 = \overline{A}_0$, $A_1 = \overline{A}_1$ and $(A_0 \oplus A_1) \cap (A_2 \oplus A_3)$ is a (t-2)-flat in the (t-1)-flat $A_0 \oplus A_1$ which contains B, it follows from $A_0 \oplus A_1 = \bigcup_{i=0}^4 \overline{A}_i$ that $(A_0 \oplus A_1) \cap (A_2 \oplus A_3) = A_0$, A_1 or \overline{A}_4 .

- (A) In the case $(A_0 \oplus A_1) \cap (A_2 \oplus A_3) = A_0$, it follows that $H_0 \cap (A_2 \oplus A_3) = A_0$ and $H_1 \cap (A_2 \oplus A_3) \neq A_1$. Hence we have a contradiction from Case 2. Similarly, it follows from Case 2 that $(A_0 \oplus A_1) \cap (A_2 \oplus A_3) \neq A_1$.
- (B) In the case $(A_0 \oplus A_1) \cap (A_2 \oplus A_3) = \overline{A}_4$, let Π_1 , Π_2 , Π_3 , Π and H_4 be five (t-1)-fiats in PG(t,4) which contain \overline{A}_4 . Since $H_4 \cap (A_2 \oplus A_3) = \overline{A}_4$, we can assume without loss of generality that $\Pi_3 = A_3 \oplus \overline{A}_4 = A_2 \oplus A_3$. This implies that $A_2 \not\subset \Pi_1$, $A_3 \not\subset \Pi_1$, $A_2 \not\subset \Pi_2$, $A_3 \not\subset \Pi_2$, $A_2 \subset \Pi_3$ and $A_3 \subset \Pi_3$. Hence it follows from Case 2 that $|F \cap \overline{A}_4| \ge v_{t-1} (\varepsilon_0 + 3\varepsilon_1 \delta)/2$ and $x_1 + x_2 + x_3 \le (\varepsilon_0 + 3\varepsilon_1 + \delta)/2$.

Let $\Delta_i = \overline{A}_3 \oplus A_{4i}$ for i = 1, 2, 3. Since $A_2 \subset \Delta_i$ for some integer i in $\{1, 2, 3\}$, we can assume without loss of generality that $A_2 \not\subset \Delta_1$, $A_2 \not\subset \Delta_2$ and $A_2 \subset \Delta_3$. Hence $|F \cap \Delta_1| + |F \cap \Delta_2| = 2|F \cap \overline{A}_3| + |\bigcup_{i=0}^2 S_i| \cap A_i$

 $(\Delta_1 \cup \Delta_2)| + x_1 + x_2 \le 2(v_{t-2} + |S_3|) + \sum_{i=0}^2 |S_i| + (\varepsilon_0 + 3\varepsilon_1 + \delta)/2 \le 2v_{t-2} + (7\varepsilon_0 + 13\varepsilon_1 + \delta)/2$ and $|F \cap \Delta_1| \le v_{t-2} + (4\varepsilon_0 + 7\varepsilon_1)/2 \le v_{t-1} + \varepsilon_1$, where $|F \cap \Delta_1| \le |F \cap \Delta_2|$ and $4 \le \delta \le \varepsilon_0 + \varepsilon_1$. Since Δ_1 is a (t-1)-flat in PG(t,4), this is a contradiction. Hence Theorem 2:6 holds.

Appendix A. Preliminary results

Let E(k-1,q) denote the set of all ordered sets $(\varepsilon_0,\varepsilon_1,\ldots,\varepsilon_{k-2})$ such that $\varepsilon_i \in \{0,1,\ldots,q-1\}$ for $i=0,1,\ldots,k-2$ and $(\varepsilon_0,\varepsilon_1,\ldots,\varepsilon_{k-2}) \neq (0,0,\ldots,0)$. The following theorem due to Hamada [5] plays an important role in proving Theorems 1.1 - 1.3.

Theorem A.1. In the case $d=q^{k-1}-\sum_{i=0}^{k-2}\varepsilon_iq^i$ and $n=v_k-\sum_{i=0}^{k-2}\varepsilon_iv_{i+1}$ for some ordered set $(\varepsilon_0,\varepsilon_1,\ldots,\varepsilon_{k-2})$ in E(k-1,q), there is a one-to-one correspondence between the set of all nonequivalent [n,k,d;q]-codes meeting the Griesmer bound and the set of all $\{\sum_{i=0}^{k-2}\varepsilon_iv_{i+1},\sum_{i=0}^{k-2}\varepsilon_iv_i;k-1,q\}$ -minihypers, where $v_i=(q^i-1)/(q-1)$ for any integer $i\geq 0$.

Definition A.1. Let $\overline{E}(t,q)$ denote the set of all ordered sets $(\zeta_0,\zeta_1,\ldots,\zeta_{t-1})$ of integers ζ_i such that (a) $(\zeta_0,\zeta_1,\ldots,\zeta_{t-1})\in E(t,q)$, or (b) $\zeta_0=q$, $0\leq \zeta_1\leq q-1,\ldots,0\leq \zeta_{t-1}\leq q-1$, or (c) $\zeta_0=\zeta_1=\cdots=\zeta_{\lambda-1}=0$, $\zeta_\lambda=q$, $0\leq \zeta_{\lambda+1}\leq q-1,\ldots,0\leq \zeta_{t-1}\leq q-1$ for some integer λ in $\{1,2,\ldots,t-1\}$.

The following theorem due to Hamada and Helleseth [9], [10] plays an important role in characterizing some minihypers and in proving the nonexistence of some minihypers.

Theorem A.2. If there exists a $\{\sum_{i=0}^{t-1} \varepsilon_1 v_{i+1}, \sum_{i=0}^{t-1} \varepsilon_i v_i; t, q\}$ -minihyper F for some ordered set $(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{t-1})$ in $\overline{E}(t, q)$ and H is a (t-1)-flat in PG(t, q) such that $|F \cap H| = \sum_{i=0}^{t-1} \zeta_i v_{i+1}$ for some ordered set $(\zeta_0, \zeta_1, \ldots, \zeta_{t-1})$ in $\overline{E}(t, q)$, then:

- (1) $\sum_{i=0}^{t-1} \zeta_i \leq \theta$, where $\theta = \sum_{i=0}^{t-1} \varepsilon_i$.
- (2) In the case $\theta (\beta + 1)q < \sum_{i=0}^{t-1} \zeta_i \le \theta \beta q$ for some integer $\beta \ge 0$, $F \cap H$ is a $\{\sum_{i=0}^{t-1} \zeta_i v_{i+1}, \sum_{i=0}^{t-1} \zeta_i v_i \gamma; t, q\}$ -minihyper in H for some integer γ in $\{0, 1, \ldots, \beta\}$.
- (3) If there is no (t-1)-flat Π in PG(t,q) such that $\sum_{i=1}^{t-1} \varepsilon_i v_i < |F \cap \Pi| \le s + \sum_{i=1}^{t-1} \varepsilon_i v_i$ for some positive integer s < q, then $\sum_{i=0}^{t-1} \zeta_i = \theta$ or $\sum_{i=0}^{t-1} \zeta_i < \theta s$.

Remark A.1. There exists an $\{f, m; t, q\}$ -minihyper F such that $F \subset H$ for some (t-1)-flat H in PG(t,q) if and only if there exists an $\{f, m; t-1, q\}$ -minihyper, where $0 \le m < f < v_t$.

Acknowledgements. This research was partially supported by Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture under Contract Numbers 304-3508-07640326.

References

- I.G. Boulcliev, A method for construction of good linear codes and its applications to ternary and quaternary codes, Proceedings of the International Workshop on "Optimal Codes and Related Topics", Sozopol, Bulgaria (1995), 15-20.
- [2] A.E. Brouwer and M. van Eupen, The correspondence between projective codes and 2-weight codes, to appear in *Designs, Codes and Cryptography*.
- [3] P.P. Greenough and R. Hill, Optimal linear codes over GF(4), Discrete Math. 125 (1994), 187-199.
- [4] T.A. Gulliver and V.K. Bhargava, New good rate (m-1)/pm ternary and quaternary quasi-cyclic codes, *Designs*, *Codes and Cryptography* 7 (1996), 223-233.
- [5] N. Hamada, A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math. 116 (1993), 229-268.
- [6] N. Hamada, The nonexistence of some quaternary linear codes meeting the Griesmer bound and the bounds for $n_4(5,d)$, $1 \le d \le 256$, Math. Japonica 43 (1996), 7-21.
- [7] N. Hamada, A necessary and sufficient condition for the existence of ternary [n, k, d] codes meeting the Griesmer bound, *Designs*, *Codes and Cryptography* 10 (1997), 41-56.
- [8] N. Hamada and M. Deza, A characterization of $\{v_{\mu+1} + \varepsilon, v_{\mu}; t, q\}$ -minihypers and its applications to error correcting codes and factorial designs, J. Statist. Plann. Inference 22 (1989), 323-336.
- [9] N. Hamada and T. Helleseth, A characterization of some ternary codes meeting the Griesmer bound, Amer. Math. Soc. Contemp. Math. 168 (1994), 139-150.
- [10] N. Hamada and T. Helleseth, A characterization of $\{3v_1 + v_4, 3v_0 + v_3; 4, 3\}$ -minihypers and projective ternary [78, 5, 51] codes, *Math. Japonica* 43 (1996), 253-266.
- [11] N. Hamada and T. Helleseth; The uniqueness of [87, 5, 57; 3]-codes and the nonexistence of [258, 6, 171; 3]-codes, J. Statist. Plann. Inference 56 (1996), 105-127.
- [12] N. Hamada, T. Helleseth and ϕ . Ytrehus, On the construction of $[q^4 + q^2 q, 5, q^4 q^3 + q^2 2q; q]$ -codes meeting the Griesmer bound, *Designs*, Codes and Cryptography 2 (1992), 225–229.

- [13] N. Hamada and T. Maekawa, A characterization of some $\{3v_1 + v_3, 3v_0 + v_2; 3, 3\}$ -minihypers and its applications to error correcting codes, J. Statist. Plann. Inference 56 (1996), 147-169.
- [14] N. Hamada and Y. Watamori, The nonexistence of some ternary linear codes of dimension 6 and the bounds for $n_3(6, d)$, $1 \le d \le 243$, Math. Japonica 43 (1996), 577-593.
- [15] R. Hill, Caps and codes, Discrete Math. 22 (1978), 111-137.
- [16] R. Hill and D. E. Newton, Optimal ternary linear codes, Designs, Codes and Cryptography 2 (1992), 137-157.
- [17] R. Hill and I. Landgev, On the nonexistence of some quaternary codes, Salford University Technical Report MCS-94-05 (1994), 1-18.
- [18] I. Landgev, T. Maruta and R. Hill, On the nonexistence of quaternary [51, 4, 37] codes, Finite Fields and Their Applications 2 (1996), 96–110.
- [19] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland and Mathematical Library Vol. 16 (1977), Amsterdam.