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ABSTRACT. A Freeman-Youden rectangle (FYR) is a Graeco-
Latin row-column design consisting of a balanced superimpo-
sition of two Youden squares. There are well known infinite
series of FYRs of size ¢ x (2¢+1) and (g+ 1) x (2 4 1) where
2q + 1 is a prime power congruent to 3 (modulo 4). However,
Preece and Cameron [9] additionally gave a single FYR of size
7 x 15. This isolated example is now shown to belong to one
of a set of infinite series of FYRs of size ¢ X (2¢ + 1) where
g, but not necessarily 2g + 1, is a prime power congruent to 3
(modulo 4), g > 3; there are associated series of FYRs of size
(g + 1) x (2¢ +1). Both the old and the new methodologies
provide FYRs of sizes g X (2g+1) and (g +1) X (2g + 1) where
both g and 2g+1 are congruent to 3 (modulo 4), g > 3; we give
special attention to the smallest such size, namely 11 x 23.

1 Introduction with definitions

An r x t Youden square (7,8] is a rectangular array of ¢ symbols in (< t)
rows and ¢ columns such that each symbol occurs just once in each row and
no more than once in each column, the subsets of symbols in the columns
being the blocks of a symmetric balanced incomplete block design (SBIBD,
often called a symmetric 2-design).

Preece [5,8], Bailey, Preece and Rowley [1] and Preece and Vowden [10]
considered what they termed ‘balanced superimpositions of one Youden
square on another’, e.g. the following, where upper and lower case letters

ARS COMBINATORIA 51(1999), pp. 49-63



are used for, respectively, the symbols of the two Youden squares:

Aa Bb Cc Dd Ee Ff Gg
Dg Ea Fb Gc Ad Be Cf (1)
Fd Ge Af Bg Ca Db Ec
Gf Ag Ba Cb Dc Ed Fe.

This 4 x 7 specimen seems to have been the first published of such balanced
superimpositions; it was given, in a different notation, by Clarke [3] (page
99), who obtained it from G.H. Freeman. We therefore, for ease of reference,
rename the ‘balanced superimpositions ...’ as Freeman-Youden rectangles
(FYRs).

For a formal definition of an FYR, we describe the superimposition as
having 4 factors, namely ‘rows’, ‘columns’, ‘symbols S1 of the first Youden
square’, and ‘symbols S2 of the second Youden square’. The rows-factor
is orthogonal to each of the others in that each row has exactly one entry
from each column, exactly one for each symbol S1, and exactly one for each
symbol §2. The pairwise relationships of the other 3 factors are, however,
relationships of balance. Numbering these factors as 0 (for columns), 1 (for
S1), and 2 (for S2), we define an r x t FYR as an r x ¢ rectangular array
such that

1. each entry is an ordered pair z,y where z is drawn from a set S1 of
t elements, and y is drawn from a set S2 of ¢ elements;

2. if the elements from either S1 or S2 are disregarded, the array be-
comes an r X ¢t Youden square;

3. if np; is the ¢ x¢ (0, 1)-matrix whose (%, j)th element (¢,5 =1,2,... ,t)
is the number of times that the ith element of S2 is paired with the
jth element of S1, then ng; is the incidence matrix of an SBIBD;

4. if nyg is the t x ¢ (0, 1)-matrix whose (%, )th element (3,5 = 1,2,... ,t)
is the number of times that the ith element of S1 occurs in the jth
column, and nayg is defined similarly for S2, and we write ng; for the
transpose of njo, etc., then

no1n12n20 + nogn21na0 = f1+gJ
and therefore
ny2n20n01 + nionezn2r = fI1+9J 2
and
ngono1n12 + n21nonoz = f1+ gJ,
where f and g are integers, I is the ¢ x ¢ identity matrix, and J is the
t x ¢t matrix whose entries are all 1.
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If the elements of S1 and S2 in (1) are taken in their natural orders, we
can write
n=ny =ni = ngo 3)

for (1), so the matrix sum in (2) becomes 21 + 18J for Freeman’s example.

Using Roman letters for the elements of S1, and Greek letters for the
elements of S2, an FYR can appropriately be classified as a non-orthogonal
Graeco-Latin row-column design [6]. Indeed, a (¢ —1) x ¢t FYR is merely a
t x t Graeco-Latin square from which a row has been deleted. The notation
of Greek and Roman letters is, however, not used in this paper.

Deletion of the first row of (1) leaves an FYR of size 3 x 7. This smaller
design, and design (1) itself, come from well known infinite series of FYRs
of sizes ¢ X (2¢+1) and (g+1) % (2¢+ 1) where g is odd, ¢ > 1, and 2g+1
is a prime power congruent to 3 (modulo 4). Such FYRs are of two types
[5]. With suitable orderings of columns, of symbols S1, and of symbols S2,
these types can be characterised as follows, where n is the incidence matrix
of an SBIBD and satisfies

n+n' = J — I for sizes ¢ x (2 +1)
or
n+n' = J+ I for sizes (g+1) x (2¢+1):

Type 1: nij =njx =ni =n for some assignment of the suffices
i, 4,k to the factors 0, 1, 2;
Type 2: nij = njr = nxi =n for any assignment of the suffices
1,4, k to the factors 0, 1, 2.
For these two types, values of the integers f and g from (2) are as in Table
1. Equation (3) shows that Freeman’s 4 x 7 example, given as (1) above, is
of type 1; so is the 3 x 7 example obtained by deleting the first row of (1).
The present paper is, however, concerned mainly with FYRs of type 2.

Size ¢ X (2¢+ 1) Size (g+1) x (29 +1)

f g f g

Typel —(¢+1)/2 (2¢°—q+1)/2 (¢+1)/2 (29°+5g+3)/2
Type2 (3¢+1)/2 (24°—-g-1)/2 —(3¢+1)/2 (2¢°>+5q+5)/2

Table 1: Values of f and g for FYRs of types 1 and 2
2 Adjugacy in Freeman-Youden rectangles

The equations (2) imply that, if the factors 0, 1 and 2 (i.e. the columns,
symbols S1, and symbols S52) of an FYR are permuted in any way, then
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the resulting array is still an FYR. This situation is very similar to that for
a Latin square, where any permutation of the factors ‘rows’, ‘columns’ and
‘symbols’ produces an arrangement that is still a Latin square. So we now
borrow some terminology from the theory of Latin squares.

We say that two FYRs belong to the same ‘transformation set’ (alias
‘isotopy class’) if one can be obtained from the other by a ‘transformation’,
i.e. by a combination of

(i) a permutation of the rows,

(ii) a permutation of the columns,
(iii) a permutation of the symbols S1, and
(iv) a permutation of the symbols S2

— where one or more of the permutations may be the identity permutation
that leaves ordering unchanged. We say that two FYRs from the same
transformation set are ‘isomorphic’ to one another. We say that a trans-
formation of an FYR is an ‘automorphism’ of the FYR if it maps the FYR
exactly on to itself. For example, if we label the rows of (1) as a, 8,%,6
and the columns as 1, 2, ... , 7, then automorphisms of (1) include

(1234567) x (ABCDEFG) x (abedefg)

d
. (By6) x (235)(476) x (BCE)(DGF) x (bce)(dgf);

the automorphism group of (1) has order 21.

We say that two FYRs are ‘adjugates’ of one another if one may be
obtained from the other by permuting the factors 0, 1 and 2. An adjugate
of an FYR F may or may not be identical to F, and may or may not
belong to the same transformation set as F. We say that the complete
set of members of a transformation set, together with all their adjugates,
constitute a ‘species’ (alias ‘main class’) of FYRs.

As with Latin squares, a species of FYRs must contain 1, 2, 3 or 6
transformation sets. But there are now two considerations that do not
arise with Latin squares. Firstly, one of the factors 0, 1, 2 in an FYR of
type 1 is inevitably distinct from the other two. For example, in each of
the type 1 sets of equations

Nig =Njk =Nk =N

and
’
Nji =Nj =Nk =N
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the suffix j appears once as the first of a pair and once as the second of a
pair; suffix j is the only suffix to appear in this pattern, so factor j is the
‘odd man out’. Secondly, an SBIBD inherent in an FYR may or may not
be self-dual. In particular, if the matrix n of a particular type 2 FYR is
the incidence matrix of a non-self-dual SBIBD, then the species containing
that particular FYR must consist of at least two transformation sets.

Returning to our example (1), which is of type 1, we see that factor 1
(the capital letters) is the ‘odd man out’. However, the inherent SBIBD is
self-dual. With the columns of (1) again labelled 1, 2, ... , 7, its adjugate
obtained by swapping factors 0 and 2 is

a b ¢ d e f g
Al B2 C3 D4 E5 F6 GT7
E2 F3 G4 A5 B6 C7 D1
C5 D6 E7T F1 G2 A3 B4
B3 C4 D5 E6 F71 G1 A2

If we now make the symbol-interchanges (BG), (CF), (DE), (1a), (29), (3f),
(4e), (5d), (6¢), (7b) and re-order the columns accordingly, we retrieve (1).
Thus (1) is isomorphic to one of its adjugates, and belongs to a species
of FYRs that contains 3 transformation sets, these having, respectively,
factors 1, 2 and 0 as ‘odd man out’.

3 The background to the several new infinite series

As stated above, there are well known infinite series of FYRs of types 1 and
2, with sizes ¢ x (2¢ +1) and (g +1) x (29 + 1) where q is odd, ¢ > 1, and
2q+1 is congruent to 3 (modulo 4). Because their methods of construction
require 2¢ + 1 to be a prime power, which 15 is not, the series have gaps
for sizes 7 x 15 and 8 x 15. However, Preece and Cameron [9] additionally
produced single examples of 7 x 15 and 8 x 15 FYRs of type 2, the 7 x 15
example being obtainable by deleting a row from the 8 x 15 example, just
as the first row of (1) can be deleted to produce a 3 x 7 FYR. We have
now found that Preece and Cameron’s 7 X 15 and 8 x 15 examples are
special cases of general and very fruitful methods of construction for sizes
g% (2g+1) and (g+1) x (2g+1) where g(> 3) is a prime power congruent to
3 (modulo 4). For each such value of ¢, an FYR of size (g+1) x (2¢+1) can
be obtained from a corresponding FYR of size g x (2¢g+ 1) by adding a row
in an obvious way, so we restrict most of our exposition to sizes g x (2¢+1).

For ease of exposition, we introduce our account not with Preece and
Cameron’s 7 x 15 FYR, but with another similar 7 x 15 FYR that is ob-
tainable by our methodology and is of type 2. This other example is given
in Table 2 where, to reflect our general method of construction, we label
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the 15 symbols of each of S1 and S2 as
a9, a1, .-+ ,Q6; bOvbl,"' ’bG;*

— in that order. When we come to consider adjugacy properties, we label
the 15 columns in the same way.

box bsbs baby asap beb2 asay azas xap byas bias asbs b2az azbs a1b3 agbo
asas byx bebs bgba agas bobs apaz asbs *a1 bsao baas asbs bzas azbo a1by
a1a3 asag box bobg bsbs aoas bibs asby agbs *xaz beay baao agbo beas azbs
bobs azay agap bsx bibo bebs aias bsas asbe asbs a3 boaz bsay agdy asbs
asag babg asas agay byx baby bobs aiba beao agbs asbo *as bias bsaz asbs
bibs azag bsby asag ajag bsx bsby bgaz azbs boa; aobs agby *as baag asbs
babs bobo asa; bsby asag azas bex baas bpas azbs biaz aibs aobz *as agbe

Table 2: A 7 x 15 FYR of type 2

Now writing N (not =, as hitherto) for the incidence matrix of the inher-
ent SBIBD, we have
npo=np2 =nz1 =N 4)
for the 7 x 15 FYR in Table 2, with

n n 1
N=|n+lI ' 0 (5)
0 v 0
where n, itself still the incidence matrix of an SBIBD, is given by
[ 1 . 1 1 ]
1 . 1 . 1
1 1 . . . 1 .
n= . 1 1 . . . 1 (6)
1 . 1 1 . .
. 1 . 1 1 .
| 1 . 1 1 ]

and where 1 and 0 are column-vectors of, respectively, ones and zeroes; we
haven+n'=J—-JTand N+ N =J-I.

There are five mutually non-isomorphic SBIBD:s for 15 symbols in blocks
of size 7. The matrix N above is the incidence matrix for the non-self-dual
SBIBD labelled [a;c}]; by Nandi [4] and C; by Bhat and Shrikhande [2].
So the FYR from Table 2 has an adjugate with

4
nio=np2=n21=N
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where N’ is the incidence matrix of the dual of C;, this dual being the
SBIBD labelled [aza5] and C3 by the authors already quoted.

In the exposition that follows, most of our description is of the construc-
tion of type 2 FYRs of size ¢ x (2¢ + 1) that satisfy (4) and (5), with
n = J — I —n’ being an incidence matrix of an SBIBD with ¢ symbols in
blocks of size (g — 1). But we also indicate that (5) can be replaced by

n n
N=|n+I n . (7)
o v

[=} =N

With n as in (6), the matrix in (7) is the incidence matrix of the self-dual
SBIBD labelled [yy'] and Cs; we still have n+n’ = J—I and N+ N’ = J-1I.

4 A general construction for new series

Suppose the positive integer g(> 3) is a prime power congruent to 3 (modulo
4). Let € represent a primitive element within the finite field 4 containing
g elements. When working with powers of ¢ it is convenient to employ the
notation €™ — 1 = €™ in which m is any exponent satisfying €™ # 1 and
m is taken between 0 and g — 2, but 7 avoids the value (¢ — 1). Our
construction for g x (2¢ + 1) FYRs extends the scheme described in the
previous section. We label the 2¢ + 1 symbols of each of S1 and S2 as
ai(i € IFy), bi(i € F,), and . We define a g x (2q + 1) array by specifying
separately entries in two successive sets of ¢ columns and in a final further
column. Rows are identified by an index ¢ and columns, within each of
the two sets of g columns, by an index j; both i and j are drawn from F,.
Entries are ordered pairs of symbols, from S1 and 52, as follows:-

For the first set of ¢ columns

Qgartay 4 j Qgartagyj when i—j =€,
b82r—1+'11 +j b52r-1+12+j When 'i —j = 627'—1,
b; * when i = j,

for the second set of columns

Quart8y 45 bo2r+8, +j when i—j = 62",
baar-14+6 +j Qgar—1482 4 j when 1 —j7 = 521'-1’
* a; when =3,
and for the final column
a bi
Here ay, 1,71, 61, @2, B2, 72, 82 are parameters introduced to aid the con-
struction, each drawn from the integer range 1,... ,g—2. Our construction

55



provides an FYR if these parameters are chosen to satisfy certain require-
ments which we now present.

To ensure that each symbol of S; occurs exactly once in each row we
need the pair @; and B, to be of opposite parity (i.e. one odd and the
other even), and also the pair 7y, and 8,. Correspondingly for the symbols
of S we need the pair @, and 82 to be of like parity, and also the pair B2
and %¥,. For the same reasons each of ey, 81, 11,61, @2, B2,72, 62 must be
non-zero.

To investigate the relationships of balance between the factors ‘columns’,

‘symbols S1’ and ‘symbols S2’ we introduce, as in (5) above, matrices n
and N where

n n 1
N=|n+I n' 0 (8)
g 10

and n is the g x ¢ matrix of zeroes and ones whose ijth entry equals 1 if
i — j is an even power of ¢, but is 0 otherwise (where indexing for the rows
and columns of n is by means of the elements of IF;). Both n and N are
incidence matrices of SBIBDs; we haven+n'=J—-Iand N+ N'=J-1.
We find

norn' as a; is even or odd norn’as Brisevenorodd | 1
nio=| n+Jorn'4+Tas y1is0dd or even | norn’ as 6 is odd or even | 0
o iy 0

So ny0 = N when a3, 81, 8, are even and 7 is odd. In the same manner we
find that ng; = N when S, 2, 62 are even and a2 is odd. The incidence
between elements of S1 and elements of S2 is expressed by

norn' as % —e™ norn' as % — ¢
is an odd or even power of € | is an even or odd power of e | 1

nogy=| n+lorn'+Ias e —¢P2 norn as gNn —~gn
is an odd or even power of ¢ | is an even or odd power ofe | 0
o 1 0

so that ng; = N when e® —e%2, gf1 — g2 ¢ — 72 are odd powers of e
and € — €% is an even power of . In particular these conditions imply
o1 # ay, 1 # B, 11 # Y2, 61 # ba.

Summarising, we can conclude that our construction, which is dependent
upon a choice for the parameters ay, 81,71, 61, a2, B2, y2, 62, produces a g x
(29 + 1) FYR provided these parameters satisfy the conditions:-

1. ai, f1,M, 61, a2, B2,72, 62 are drawn from the range of integers 1,.. .,
q-2;
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. @ and B, are of opposite parity;
. ¥; and &, are of opposite parity;
. @ and &, are of like parity;
. B and 7, are of like parity;
. a1, B, 61 are even and 7, is odd;

. B2,72,62 are even and ay is odd;

b2

© N oo A W N

€™ —g™ ¢Pt _ P2 eM — g7 are odd powers of €, whereas €% — ¢
is an even power of ¢.

Consider, by way of example, the case g = 7: Fy identifies with integer
arithmetic modulo 7 and € = 3 is a primitive element. Our final three
conditions easily imply that 8; = 2, 2 = 4, §; = 4 and 6, = 2. From
the parity conditions we then find that a; = 4 and 42 = 4. Proceeding in
this way we conclude that in this instance there is a unique choice for the 8
parameters, namely a; =4, 81 =2, 11 =1,6, =4, a2 =5, fo =4, 0 =4,
62 = 2, which corresponds to the 7 x 15 FYR exhibited in Table 2.

5 The selection of parameters for one of the new infinite series

For selecting values of the parameters in our general construction of g x
(29 + 1) FYRs, we need to classify each parameter value m in the integer
range 1,...,q — 2 according to the parity of both m and 7. Vowden [11]
showed that, if m is even, then 7@ and (¢ — 1) — m have opposite parity,
but that, if m is odd ,7% and (g~ 1) — m agree in parity. As the prime
power g(> 3) is congruent to 3 (modulo 4), we may write ¢ = 4\ + 3 for
some positive integer A. The counts of the 4 possible parity combinations
for m and T are displayed in Table 3.

m | m | Number of
possibilities
Even | Even A
Even | Odd A
Odd | Even A+1
Odd | Odd A

Table 3: Counts of integers satisfying the different parity combinations
We choose for B any even value for which B; is odd. We next allow r

to range through all even values with ¥ odd, and consider the X\ values of
m = f2 + r, with reduction modulo g — 1 when this is necessary to bring
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m into our range. Because the choice r = (g — 1) — B2 is excluded, we
obtain values with 1 < m < ¢ — 1 and which are all different, all even, and
all distinct from Bz. For at least one choice of » we have 72 even. We set
B1 = m, so that B; and B, are even, and e” — P2 =7 P2, an odd power
of e.

We let §; = B, and 6, = B, ; this gives et — &% = —(efr — P2) =
eP*1(P1 — gP2) and so €% — % is an even power of €.

Next we choose an integer s < 2A+ 1 with s odd but 5 even. When 2sis
odd we take a; = 25 and az = s, so that €™ — e = ¢*+%, an odd power
of &. In the contrary case, when 2s is even, we take a; = (¢ —1) — 25 and
@z = (g—1) —s, so that £ —22 = 0=1D=25(1 —¢?) = gla~D-2+@A+1)43,
which is again an odd power of €.

Finally we choose an integer ¢ with both ¢ and 7 odd. We need v; to be
odd but 7, even. There are A + 1 possibilities for ;. Considering any one
of these, we take 7, = 71 — ¢, and as before we reduce modulo ¢ — 1 where
necessary. Whatever selection we make for ;, the parameter v, is even
and the A+ 1 values are all different. Since 7z can be even for at most A of
them, we can choose v, so that 73 is odd. Finally, e —e™ = &72t¢, which
is an odd power of €.

This selection scheme for the 8 parameters associated with the construc-
tion described in §4, enables us to exhibit a ¢x (2¢+1) FYR for each prime
power g(> 3) that is congruent to 3 (modulo 4). When ¢ = 7 we obtain
the unique parameter set that generates a 7 x 15 FYR. For the next larger
size ¢ = 11 and, by considering the primitive element € = 2 of IF;;, we are
led to the choice B3 = 6, then B, =2, 6, =6, 62 = 2, a1 =8, ap = 9,
71 =1 and 2 = 8. The 11 x 23 FYR which this parameter set produces via
our construction in §4 is displayed in Table 4, and has an automorphism
group of order 55. It is, therefore, distinct from any 11 x 23 FYR of type
2 that arises in the earlier ¢ x (2¢ + 1) construction where 2¢ + 1, but not
g, is required to be a prime power congruent to 3 (modulo 4). The earlier
construction provided the 11 x 23 type 2 example given by Preece [5] (see
also Bailey, Preece and Rowley [1]), and, for 2¢ + 1 = 23, produces only
type 2 FYRs for which the order of the automorphism group is 253.

6 Variants of the general method

The allocation to rows and columns of ordered pairs of symbols drawn from
S and S, which §4 specifies for our general construction of ¢ x (2¢ + 1)
FYRs is not the only feasible arrangement. We may, for example, adapt
the scheme from §4 by reassigning the entries corresponding to the second

set of columns as follows:-
bear+y +j Qgar+say;  When i-j= ez’, .
Qor-148145 Dgar-146,4; Wheni—j=e“"",
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all other entries remaining unchanged. This necessitates a modification to
the constraints imposed on the parameters ay, f1, 11, 61, @2, B2, 72, 62, and
we must now require that:-
@, and §; have the same parity, likewise for B, and 7¥,;
@, and B, have opposite parity, likewise for 7, and 8j;
o is even and By, 7, 61 are odd; 2 is even and ag, B2, 82 are odd;
g® — g2 P _ P eM _ g™ gre odd powers of €, and %' — €% is an
even power of €.

If we consider again the case ¢ = 7, there are six parameter sets that
satisfy these new conditions and so generate 7 x 15 FYRs. Of these pa-
rameter sets, one gives rise to an FYR that is an adjugate of the 7 x 15
FYR displayed in Table 2 and whose construction we described in §4. One
other parameter set, namely a; =4, f1 =1, v1 = 1, 6 = 3, az = 3,
B2 =5, v2 = 4, 82 = 5 is especially interesting from the adjugacy point of
view: the associated FYR is identical to each of its adjugates got from even
permutations of factors 0, 1 and 2.

Besides the two schemes that we have now described, there are a further
six admissible ways of distributing the pairs of a’s and b’s within the first
and second column sets, and for the case ¢ = 7 we find a total of 78
parameter sets that generate FYRs. Of course there are many adjugacy
relations between these FYRs, though we also find further instances of
FYRs self-adjugate with respect to even permutations of the factors. We
classify these 78 parameter sets presently.

We may further vary the construction described in §4 by relacing the
matrix N in (8) that characterises the incidence between factors. Retaining
our earlier definition of n, the matrix

n n 1
Ni=|»'+1 »' 0 (9)
o’ 1 0

is also the incidence matrix of a SBIBD, in fact of the design dual to that
which N describes (and this may be verified by noting that Nj is obtained
from N’ as the result of a simple reordering of rows and columns). These
two SBIBDs can be shown to be non-isomorphic. {2] The eight parameters
a1, 1, 7, 61, oz, B2, 72, 62 are introduced exactly as in §4, and to ensure
that ny9 = ng2 = na; = N; the first five of the conditions 1 to 8 appearing
there remain unchanged; but in place of the final three we must now require
that:-

a1, 71, 61 are even and B is odd;

B2 is even and asg, 77, 62 are odd;

€M —g22 M — M2 h _ 82 are 0dd powers of €, and €' — €2 is an

even power.



Where ¢ = 7 a valid choice of parameter set is a; =4, 81 =5, 7, = 2,
6, =4, a3 =3, fp =4, 72 = 3, & = 3. The corresponding 7 x 15
FYR is that previously exhibited by Preece and Cameron [9]. We can
describe an infinite series of FYRs that starts with this example. As before,
suppose ¢(> 3) is a prime power that is congruent to 3 (modulo 4) and write
q = 42+3. Choose some odd integer r in therange 1,... , g—~2 for which 7 is
even. Set §; = 2A+1. If B and B; + r have opposite parity, set a; = 8 +r
and B; = (¢ — 1) — ay; otherwise set fo = f1 +r and o) = (g — 1) — fs.
Finally set v1 = ay, 6; = B, a2 = y2 = 8 = B;. Of course any FYR
whose construction is based on the incidence matrix N; is necessarily an
adjugate (obtained by swapping a pair of factors) of one derived from the
incidence matrix N, so, working with N, there are again 78 parameter sets
that generate FYRs.

Towards the end of §3 we gave in (7) a further replacement for the matrix
N that appears in our general construction, namely

No=| n'+1

(10)

Ry s
=33
[=Jl=RT

which is the incidence matrix of a self-dual SBIBD when n is the matrix
employed previously in (8) and (9). The schemes we have described for
creating FYRs function as before, again working via selections of the pa-
rameters ay, Bi, 71, 61, az, B2, 72, 62 employed to control the assignment
of ordered pairs of symbols (each such symbol being one of the a;, the b;
or *) to locations within the g x (2 + 1) row and column array. Working
with NN, there are 18 parameter sets that generate FYRs.

It is now convenient to introduce a system for referring to any of the eight
ways of distributing the pairs of a’s and b’s within and between the first and
second column sets. We assign the code 000 to our original arrangement
from §4, and the code 001 to the arrangement described at the beginning
of this section, in which, within the second set of columns, the allocation
to rows of the a,b and b,a pairs is reversed when rows are distinguished
according to whether a row index attaches to an even or odd power of the
primitive element . Likewise the second binary digit of our code is used
to specify the alternative row allocations of a,a and b,b pairs within the
first set of columns. Finally, the a,a and b,b pairs may be allocated to the
second set of columns instead of to the first, where the a,b and b,a pairs are
then placed. We employ the left-most binary digit of our code to express
this additional means of adapting the original scheme. The numbers of
parameter sets that generate 7 x 15 FYRs for these eight arrangements and
the three underlying incidence matrices N, N; and N, are as in Table 5.
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incidence
matrix
code N N N

000 1 16 4
001 6 16 0
010 1 16 4
011 6 16 1
100 16 6 0
101 16 1 4
110 16 6 1
111 16 1 4
total 78 78 18

Table 5: Numbers of 7 x 15 FYRs of type 2 for the various construction
schemes

Six of the eighteen 7x 15 FYRs based on the self-dual N, are self-adjugate
with respect to even permutations of factors 0, 1 and 2. In particular this is
so for the FYR generated from scheme 011, where oy =3, 1 =2, 1 =3,
5, =5, az =1, By =4, 72 =4, 62 = 2. For this arrangement of the a and
b pairs the parameter choice must satisfy:-

@, and B, have opposite parity, likewise for 7, and &§;;

@> and 8, have the same parity, likewise for B, and ¥,;

a1,71,61 are odd and B, is even; 82,2, 62 are even and a; is odd;
e —g22 gh _gPa 8 _ %2 are odd powers of €, and €M —e™ is an
even power of €.

We conclude by describing an infinite series of FYRs based on the self-
dual N, that starts with the 7x 15 example just given. As previously ¢(> 3)
is a prime power congruent to 3 (modulo 4), and ¢ = 4X + 3. Choose any
odd a; with @; odd. Consider the A + 1 distinct values that we obtain
from u = = — a; when z varies through those odd values for which T is
even. Again arithmetic for parameter values is performed modulo (g —1)
in order to bring the result into the range 0 to ¢ — 2. Table 3 shows
that @ is odd for at least one such value of z. We set az = a; + u and
note that e — g2 = a1 +%+(2A+1)_ Gimjlarly, take an even §; with B,
even also, and consider the A values of 81 + v when v and 7 are even.
Because v # (g — 1) — 1, the value of B; + v is never zero and since it also
avoids the value B; there is a choice for v so that 8; + v is odd. We set
B2 = B+ v so that et — P2 = Ar+9HA+1) Consider any odd y with
1 < y < 2\ + 1 such that 7 is even. Set z = (¢ — 1) — y and note that, as
for y, z is odd but % is even. Then 2z = 2(q — 1) — 2y which is congruent
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to (¢ —1) — 2y modulo (g — 1). Hence either 2y or 2z is even. We may thus
choose an odd v, for which 7, is even and 2v, is odd. We set v, = 27,
and find &M — &M = M+N+(22 1) Likewise by considering an odd y with
1 <y < 2XA +1 such that 7 is odd, together with z = (¢ — 1) — y, we may
choose an odd 6; for which 8, is odd and 26, is even. We set 6, = 261, so
that e — g8 = g81+81+(2+1) gpd this is an odd power of ¢ as we require.

Just as with our main construction, so all of these variants produce FYRs
of type 2; as yet this whole approach will not go forward for type 1.
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