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ABSTRACT. A directed graph operation called pushing a ver-
tex is studied. When a vertex is pushed, the orientation of
each of its incident edges is reversed. We consider the prob-
lems of pushing vertices so as to produce strongly connected,
semi-connected, and acyclic digraphs. NP-completeness results
are shown for each problem. It is shown that it is possible to
create a directed path between any two vertices in a digraph;
additional positive results and characterizations are shown for
tournaments, outerplanar digraphs, and Hamiltonian cycles.

1 Introduction

Let G = (V, E) be a directed graph (digraph). Define an edge orientation
operation called pushing a vertez as follows: when a vertex is pushed, the
orientation of each of its incident edges is reversed. This operation has been
previously studied by Pretzel [1, 2,3] and was introduced by Mosesyan [4].
We consider the problems of deciding whether the vertices of an arbitrary
digraph can be pushed so as to produce strongly connected, semi-connected,
acyclic digraphs, or Hamiltonian digraphs. Each of the problems is shown
to be NP-complete. The NP-completeness results imply that there exist
digraphs, including infinitely many 2-edge-connected digraphs, that cannot
be oriented into strongly (semi-) connected digraphs using this operation.
This result contrasts the well-known theorem of Robbins [5], which states
that every 2-edge connected digraph has a strong orientation if any indi-
vidual edge may be oriented at will. In addition, our results show that one
is unlikely to find a polynomial-time algorithm to determine if a digraph
can be so oriented, let alone determine how to find a minimal set of vertices
to push to produce the desired digraph. It is also shown that almost any
tournament can be transformed into a strongly connected digraph using the
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push operation and that a broad class of digraphs which include outerpla-
nar digraphs can be transformed into directed acyclic graphs (dags). The
necessary conditions for transforming a digraph into one having a directed
Hamiltonian cycle are also discussed.

2 Connectivity Results
Denote by (u,v) the directed edge from u to v.

2.1 NP-Completeness Results

Define the decision problem SC to be: “given a digraph G, does there
exist a subset of vertices to push so that the resultant digraph is strongly
connected?” We show this to be NP-complete.

Theorem 1. SC is NP-complete.

Proof: It is easy to see that SC is in NP, as we need only guess a subset
of the vertices to push and then easily verify in polynomial time that the
resultant digraph is strongly connected.

To show SC is NP-hard, we reduce SAT to SC. Recall that a SAT instance
consists of a set of boolean variables, B, and a set of clauses, C, over those
boolean variables [6]. C may be assumed to be in conjunctive normal form.
SAT asks if there is a truth assignment that is satisfying, i.e. results in the
value “true.” The reduction is as follows, with an example shown in Figure
1. We assume without loss of generality that each variable or its negation
appears in at least one clause, otherwise we simply ignore those variables in
the reduction. For each clause ¢; € C, create a vertex ¢;. For each boolean
variable, u, create the following wvariable subgraph: vertices u, -u, un, up
and directed edges (u,u,), (-u,up), (un,u), (un,~u). Also create a special
vertex T. For each literal vertex of the form u or —u, add the appropriate
directed edge (u,T) or (—u,T). Finally, connect each clause vertex to the
variable subgraphs as follows: for each non-negated literal » in clause c;,
add directed edges (c — ¢,%) and (ci,up); for each negated literal ~u in
clause ¢;, add directed edges (c;,—u) and (ci,up). The reduction clearly
takes only polynomial time. Call the digraph G = (V, E).

We show C is satisfiable if and only if G can be transformed into a
strongly connected digraph. Suppose C is satisfiable. Then each clause ¢;
has a witness, i.e. aliteral which is true. Push the associated literal vertices
which are “true.” That is, if non-negated literal u is assigned the value
“true,” push vertex u, else push vertex —u. Suppose u is the witness for ¢;
and is pushed. Figure 2 illustrates what happens when a “witness” vertex
from Figure 1 is pushed. Clearly the subgraph induced by ¢;, the variable
subgraph of ¢;’s witness, and the special vertex T is strongly connected.
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That is, each vertex in this subgraph has a directed path to T and vice
versa. Since each clause has at least one witness, every vertex in G will
have a directed path to T and T will have a directed path to every vertex
in G. Hence G is strongly connected.

clausel= (2 ornot b)

clausel clause2 clause3

Figure 1. SAT reduction to SC

clausel= (a or not b)

clausel clause2 clause3

a is assigned "true” and b is assigned "oue”

Figure 2. After a and b are pushed

Suppose G can be transformed into a strongly connected digraph, G’. It
is easy to see that exactly one of each {u,—u} pair must have been pushed
once, since pushing both vertices makes u,, a source and then pushing u,
does not alleviate this problem (it becomes a sink). Note, the net effect
of pushing a vertex twice is the same as not pushing it at all, hence we
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may assume each vertex is pushed either once or not at all. We derive
a satisfying truth assignment as follows. If one vertex was pushed in the
variable subgraph for {u, —u}, then assign the literal corresponding to the
pushed vertex the value “true.” If three vertices were pushed in the variable
subgraph, assign the literal corresponding to the vertex that was not pushed
the value “true.” This is clearly a legal truth assignment and is also a
satisfying one. This is because ¢; was initially a source, hence some vertex
(say, in variable subgraph U) which is adjacent to ¢; must be pushed. The
witness for clause ¢; may be found in variable subgraph U. o

We now show that even to determine if a digraph can be transformed
into a semi-connected digraph is NP-complete. Call this problem Semi-C.

Theorem 2. Semi-C is NP-complete.

Proof: Semi-C is easily seen to be in NP. To show NP-hardness, perform a
reduction from SAT as in Theorem 1, and let G; be the digraph produced.
Add two additional vertices to G, s; and s;, and two additional directed
edges, (T, s1) and (s2,T). An example is shown in Figure 3. Let G* be the
digraph that results from the reduction. It is claimed that C is satisfiable
if and only if G* can be made semi-connected. If C is satisfiable, we know
from Theorem 1 that G; can be made into a strongly connected subgraph.
After these vertices are pushed, it is easy to ensure that s, is a source vertex
and s; is a sink vertex. In this way s; will have a directed path to every
vertex in the transformed digraph, including s;, and every vertex will have
a directed path to s;. Therefore G* can be transformed to a semi-connected
digraph.

clausel= (a ornot b)

clausel clause2 clause3

Figure 3. SAT reduction to Semi-C
On the other hand, suppose C is not satisfiable. Let G’ be the digraph

that results from pushing a subset of the vertices in G* and suppose G’ is
semi-connected. For G’ to be semi-connected, it must be that one of s;,
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82 is a source and the other is a sink, so that they have a directed path
between them. Without loss of generality, assume s, is a source and s; is
a sink. Since no vertex has a path to sj, it must be that s; has a path to
every vertex and therefore that T has a path to every vertex. Similarly,
every vertex other than s, has a path to T. Therefore G’ — {s1,s2} is
strongly connected. It now follows as in the proof of Theorem 1 that C is
satisfiable. (m}

2.2 Finding Directed Paths in Digraphs

We show that given any pair of vertices = and v, G can be transformed so
that there is a directed path from u to v, provided the underlying undirected
graph is connected. The proof of this fact also gives a fast algorithm for
doing so.

Fact 8. Let G be a digraph such its underlying undirected graph, G, is
connected. Then given any pair of vertices u, v, we can transform G using
the push operation so that there is a directed path from « to ».

Proof: Choose some path P between u and v in G,. The proof is by
induction on the length of P.

Base Case: |P| = 1. If (u,v) is a directed edge, then we have a directed
path. Otherwise push ».

Inductive Hypothesis: Assume we can construct such a directed path if
|P| =k.

Inductive Step: |P| = k + 1. Using the inductive hypothesis, construct a
directed path from u to w, where w is the kth vertex on the undirected
path from u to v. Now simply push v, if necessary, to produce the desired
directed path. a

2.3 Strong Connectivity in Tournaments

It is now shown that given almost any tournament, i.e. a digraph in which
either edge (u, v) or (v, u) exists for every pair of vertices u, v, we can make
the tournament strongly connected using the push operation. Observe that
such a digraph is trivially semi-connected. The only tournaments that
cannot be made strong are shown in Figure 4.

[+}

° o o

—

(-] o}

Figure 4. Tournaments that cannot be made strong
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Theorem 4. Any tournament except those in Figure 4 can be transformed
into a strongly connected digraph using the push operation.

Proof: Let G = (V, E) be a tournament other than those in Figure 4.
Assume for now that |V|=2n+1, i.e. |V]is odd. It is well known that G

contains a directed Hamiltonian path, (v1,vs,...,%2n+1)- If (v2n+1,v1) isa
directed edge in E, we are done. Otherwise (v;,v2n+1) is a directed edge,
in which case we simply push vertices »;, for i = 2,4,...,2n — 3,2n — 1.

This reverses all the edges in the Hamiltonian path, creating a directed
Hamiltonian cycle.

Now suppose |V| is even. Inspection reveals that the tournaments shown
in Figure 4 cannot be made strongly connected. One can also observe that
any tournament on four vertices that is not isomorphic to any of the di-
graphs in Figure 4 can be made strongly connected. Now suppose |V| > 6
and |V| is even. Partition V into two subsets, V4 and Vp, each of odd
cardinality greater than or equal to three. Let G4 and Gg be the tourna-
ments induced by this partitioning. Utilize the algorithm described in the
first part of the proof to make G4 and Gp each have a directed Hamilto-
nian cycle. Let A be the set of vertices pushed to make G4 Hamiltonian
and B the set pushed to make Gp Hamiltonian. Returning to G, push
vertices in A union B, creating G’. If G’ is not strongly connected, then
all edges between vertices in G4 and Gp must be oriented in the same
direction, say from G4 toward Gp. Let the directed Hamiltonian cycle in
G4 be (v1,v2,...,V,v1). There also is a directed Hamiltonian cycle in
GB, (u1,u2,...,u;j,u1). We can make G’ strongly connected by pushing
the following vertices: P = {vg,uy,us,...,u;j_2}. To see this, observe that
before the vertices in P were pushed (vk—_1, vk, uj, u1,u2,...,%;j-1) is a di-
rected Hamiltonian path in the subgraph of G’ induced by the V(Gg) union
{vk,vk—1}. By pushing the vertices listed above, we create a Hamiltonian
cycle in that subgraph: (v, vk—1,%j-1,uj-2,-..,%;,vx). But we also now
have a directed edge (u;,v;) since u; was pushed and v; was not, and we
still have directed edges (v;,vi41), for 1 < ¢ < k — 2, and directed edge
(vk—2,u2) as none of the v vertices incident to those edges were pushed.
Therefore the resultant digraph is strongly connected. a

Note that Theorem 4 implies that any tournament can be made to have
a directed Hamiltonian cycle, by the classic result of [7]. From the result
of [8] we get the stronger result that every vertex in a strong tournament
is contained in a cycle of length k, for k= 3,4,...,|V|.
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3 Producing DAGs and Hamiltonian Digraphs
8.1 NP-Completeness of Transforming a Digraph to a DAG

It is now shown that it is NP-complete to decide if an asymmetric digraph
can be transformed into a dag. By asymmetric, we mean (u,v) in E implies
(v,u) not in E. If there exist vertices u and v in G such that (u,v) and
(v,u) are both directed edges in G, it is obvious G cannot be transformed
into a dag. Thus no symmetric digraph can be transformed to a dag.

Theorem 5. It is NP-complete to decide if an asymmetric digraph, G =
(V, E), can be transformed into a directed acyclic graph (dag) using the
push operation.

o

notu

Figure 5. Variable Component

Proof: Let us denote the problem by TDAG (transform to dag). We reduce
Not All Equal 3-SAT (NAE3-SAT) [6] to TDAG. A NAE3-SAT instance
consists of a set of boolean variables, B, and a set of clauses, C, over those
boolean variables. C may be assumed to be in conjunctive normal form.
NAES3-SAT asks if there is a truth assignment such that each clause has at
least one true literal and at least one false literal. For each variable u in
B, create a variable component subgraph as in Figure 5. Form a cycle of
length three (a clause cycle) among the three literals in each clause and call
the resulting digraph G. This is clearly a polynomial time reduction. An
example is shown in Figure 6. We claim there is a satisfying not-all-equal
truth assignment if and only if G can be transformed into a dag. First
suppose G can be transformed to a dag G*. This direction follows from the
observation that exactly one of the literal vertices {u, —u} for each variable
must be pushed in order to make the subgraph induced by the variable
component acyclic. This leads to a valid truth assignment by associating a
pushed literal vertex with a “true” literal in the boolean expression. That is,
variable u is assigned “true” if and only if vertex u is pushed. Furthermore,
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each clause must have at least one “true” witness and one “false” witness
since in the clause cycles, such as (u,v,w,u) in Figure 5, can be broken if
and only if one or two of the vertices in the cycle are pushed. Now suppose
C is satisfiable. Using the mapping between truth assignment and pushed
literal vertices described above, it is easy to see that G can be transformed

into an acyclic dag. o
< ; >
ON (N (2N
I/ d I/o ¥ 1/0

Figure 6. NAE 3-Sat Graph

3.2 Digraphs that can be Transformed to DAGs

Define a degree-two permutation digraph (D2P-graph) to be a graph such
that there exists a permutation vy, vs,...,v, of the vertices such that v;
has degree at most two in the subgraph induced by {vy,vs,...,%:}. Clearly
any subgraph of a D2P-graph is itself a D2P-graph.

Fact 6. Any orientation of a D2P-graph G = (V, E) can be transformed
into a dag using the push operation.

Proof: By induction on the number of vertices.

Base Case: |V| = 1. Trivial.

Inductive Hypothesis: Assume true for [V| = n.

Inductive Step: |V| = n+ 1. By the inductive hypothesis, assume G is
acyclic prior to the addition of v,4;1. If the addition of v,4; does not
create any cycles, we are done. Suppose the addition of v, creates one
or more cycles. From the inductive hypothesis, we may assume the degree
of ¥p41 is at most two (in the underlying undirected graph). We claim
that pushing v,+1 renders G acyclic. Suppose otherwise. Then there was a
directed cycle vy, ..., ¥k, ¥n+1,v1 in the digraph before vy, +; was pushed and
a directed cycle vy, ¥n41,%,-..,v; in the digraph after v,4+1 was pushed.
Note that at least one of these two cycles must be of length greater than
three. But since vn4; was the only vertex pushed, this implies there is
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another cycle vy,...,vk,...,v1, (of length at least three) that does not
include vy, 43, which is a contradiction. O

A planar graph is outerplanar if it can be drawn with all nodes on the
exterior boundary of the graph [9]. D2P-graphs include the class of outer-
planar digraphs, as it is known (see for example [10]) that any outerplanar
graph must have at least two vertices of degree at most two.

3.3 Hamiltonian Digraphs

Another logical question to ask is whether a digraph can be made to have a
directed Hamiltonian path or cycle. Let us first consider the question “can
G be made to have a directed Hamiltonian path” where G is an arbitrary
digraph. However, in light of Fact 3, this problem is simple, if a Hamiltonian
Path in the underlying, undirected digraph is specified as part of the input.
If so, we can use the algorithm of Fact 3 to produce a directed Hamiltonian
path in G. Otherwise, the problem requires us to determine if G has a
Hamiltonian path, which is of course NP-complete [6].

Now consider Hamiltonian cycles. Suppose we are given a Hamiltonian
cycle in the underlying, undirected graph as part of the input. If G has
an odd number of vertices, we can use the algorithm in Theorem 4 to
produce a directed Hamiltonian cycle. However, if G has an even number
of vertices, we cannot always produce a Hamiltonian cycle — as may easily
be seen by considering some oriented cycles on four vertices. Below, we
shall characterize when a digraph with an even number of vertices and an
underlying Hamiltonian cycle can be made to have a directed Hamiltonian
cycle.

On the other hand, suppose we are given an arbitrary digraph and wish
to determine if it can be made to have a directed Hamiltonian cycle. As
one would expect, this is NP-complete.

Fact 7. Given a digraph G, determining if G can be transformed to a
digraph containing a directed Hamiltonian cycle is NP-complete.

Proof: The problem is easily seen to be in NP. We prove the question to
be NP-hard by reducing the Hamiltonian cycle problem in an undirected
graph G, to our question. If G; has an odd number of vertices, construct a
digraph Gy by providing an arbitrary orientation of the edges of G1. From
the algorithm described in Theorem 4, it is easy to see that Gy can be
transformed to a digraph with a directed Hamiltonian cycle if and only if
G, contains a Hamiltonian cycle. If G; has an even number of vertices,
construct digraph Gy from G, as follows: Gy has the same vertex set as
Gy; for each undirected edge (u,v) in Gy, create edges (u,v) and (v,u) in
Gpy. It is clear that G, has a Hamiltonian cycle if and only if Gy can be
transformed to have a directed Hamiltonian cycle by pushing the empty set
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of vertices. 0O

We now give the condition under which a digraph with an underlying
undirected Hamiltonian cycle having an even number of vertices can be
transformed to a directed Hamiltonian cycle. For simplicity, we consider
digraphs that are oriented n-cycles, i.e., the underlying undirected graph is
connected and has n vertices and » edges. Assume a circular representation
of G and number the vertices from 1 to n in a clockwise direction. Directed
edges are identified as being oriented in a “clockwise” or “counterclockwise”
direction.

Theorem 8. A directed digraph G that is an oriented n-cycle with an even
number of vertices can be transformed into a directed Hamiltonian cycle
using the push operation if and only if G has an even number of clockwise
edges.

Proof: First suppose G = (V, E) has an odd number of clockwise edges.
Then G has an odd number of counterclockwise edges. Observe that push-
ing a vertex v in G has one of three effects: 1) no change in the number of
clockwise edges (if v is a source or a sink), 2) increases the number of clock-
wise edges by two (if v has indegree equal to one and its incident edges were
counterclockwise prior to the push), 3) decreases the number of clockwise
edges by two (if v has indegree equal to one and its incident edges were
clockwise prior to the push). Thus it is not possible to produce a digraph
having an even number of clockwise edges.

Now suppose G has an even number of clockwise edges. Assume without
loss of generality that edge (v, v2) is a clockwise edge, otherwise we either
have a directed (counterclockwise) Hamiltonian cycle to begin with or we
may re-label the vertices. To transform G into a directed (clockwise) cycle,
execute the following algorithm:

for 7 :=2 to n loop
if (vi,vi—1) € E then push v;
note that edges of the form (v;,v;_,) are
counterclockwise by definition

We claim this algorithm produces a directed clockwise cycle. The proof
is by induction on e, the number of counterclockwise edges in E. The base
case, e = 0, is trivial. Now assume the algorithm works for e = k. We show
the algorithm works for e = k4 2. Let v;, ¢ > 1, be the first vertex pushed
by the algorithm. This implies (v;, vi—1) is a counterclockwise edge. There
are two cases to consider.

Case 1) (v;41,:) is a counterclockwise edge. When v; is pushed by the
algorithm, the number of counterclockwise edges in the graph is reduced
by two. Furthermore, all remaining counterclockwise edges must be of the
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form (v;,vj—1) where j > i+ 1. The claim then follows from the inductive
hypothesis.

Case 2) (viy1,;) is not a counterclockwise edge. When v; is pushed by
the algorithm, the number of counterclockwise edges in the graph remains
unchanged. However, in this case, all remaining counterclockwise edges will
be of the form (vj,v;—1) where j >= i+ 1. Therefore, the algorithm will
eventually reach a point where Case 1) applies and we can reduce the num-
ber of counterclockwise edges by two and invoke the inductive hypothesis.
a
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