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Abstract

A Cayley digraph Cay(G,S) of a finite group G is isomorphic
to another Cayley digraph Cay(G, S?) for each automorphism o of
G. We will call Cay(G, S) a Cl-graph if, for each Cayley digraph
Cay(G,T), whenever Cay(G,S) = Cay(G,T) there exists an auto-
morphism o of G such that S° = T. Further, for a positive integer
m, if all Cayley digraphs of G of out-valency m are Cl-graphs, then
G is said to have the m-DCI property. This paper shows that for any
positive integer m if a finite abelian group G has the m-DCI property
then all Sylow subgroups of G are homocyclic.

1 Introduction

Let G be a group, and set G# := G'\ {1} where 1 is the identity of G. For
a subset S of G#, the Cayley digraph T = Cay(G, S) of G with respect
to S is defined as the directed graph with vertex set G and arc set ET" =
{(a,b) | a,b € G,ba"! € S}. A Cayley digraph Cay(G,S) is called a
CI-graph (CI stands for Cayley Isomorphism) if, for any Cayley digraph
Cay(G,T), whenever Cay(G,S) = Cay(G,T) there exists a € Aut(G)
such that S* = T. For a positive integer m, if all Cayley digraphs of a
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group G of out-valency m are Cl-graphs, then G is said to have the m-DCI
property.

The problem of determining which Cayley digraphs are Cl-graphs of
the corresponding groups has been investigated for a long time, see for
example [1, 3, 6, 7, 10, 11] and the references in these papers. Regarding
this problem, Praeger, Xu and the author in [9] initiated to study finite
groups with the m-DCI property. For a finite group G, elements a,b of G
are said to be fused if a” = b for some o € Aut(G), and similarly, subsets
S, T of G are said to be fused if S° =T for some ¢ € Aut(G). A group G
has the 1-DCI property if and only if all elements of G of the same order
are fused. Zhang [13] gave a good description for such groups. The author
[4] completely classified the finite groups which have the 2-DCI property
but do not have the 1-DCI property. More recently, for infinitely many
values of m, the author [8] constructed an infinite family of groups which
have the m-DCI property but not the i-DCI property for any ¢ < m. In
[9], a general investigation was made of the structure of Sylow subgroups
of groups with the m-DCI property for certain values of m; and moreover,
a reasonable complete characterization for cyclic groups with the m-DCI
property is given in [5]. However, it seems very hard to obtain a ‘good’
characterization of the groups with the m-DCI property. The aim of this
paper is to characterize finite abelian groups with the m-DCI property.

We use Z,, to denote a cyclic group of order n, and we call a group G
homocyclic if G is a direct product of cyclic groups of the same order. The
main result of this paper is the following theorem.

Main Theorem Let m be a positive integer and let G be an abelian group.
If G has the m-DCI property then all Sylow subgroups of G are homocyclic.

Remarks: Let G be an abelian group, and let m be a positive integer. By
[9, Theorem1.6], if 1 < m < 4 then the m-DCI prop implies the k-DCI
property for all k¥ < m, and therefore, G has the m-DCI property if and
only if G is an m-DCl-group (that is, G has the k-DCI property for all
k € m). On the other hand, by [5], Zss has the 9-DCI property but does
not have the k-DCI property for k= 6,7 or 8.

Question 1 For abelian groups and 5 < m < 8, does the m-DCI property
imply the k-DCI property for allk <m ¢
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Assume that G is an abelian m-DCl-group and that G, is a Sylow g¢-
subgroup of G. Then by [10], G, is homocyclic if ¢ > m; G, is elementary
abelian or cyclic if ¢ = m; G, is elementary abelian or Z,; if ¢ < m.
Conversely, if m < 4 then this condition is sufficient for G to be an m-DCI-
group. Therefore, the abelian groups which have the m-DCI property for
m < 4 are completely classified. In particular, this shows that the converse
of the Main Theorem is not true.

By [8], for infinitely many values of m, there exist groups which have
the m-DCI property but do not have the i-DCI property for any i < m.
However, it is easy to see that an abelian group with all Sylow subgroups
homocyclic has the 1-DCI property, and therefore, by the Main Theorem,
for abelian groups the m-DCI property implies the 1-DCI property for any
positive integer m. We guess that for abelian groups, with a few exceptions,
the m-DCI property implies the k-DCI property for all K < m. Thus we
pose the following problem.

Problem 2 Classify the finite abelian groups which have the m-DCI prop-
erty but do not have the k-DCI property for some k < m.

For this problem, the only known examples are the cyclic groups Z,:
where p is a prime and p > 5. It is actually proved in [5] that Z,2 has the
m-DCI property if and only if either m < p, or m =0 or —1 (mod p).

The ‘m-DCI property’ has a natural counterpart for undirected Cayley
graphs, that is, a group G is said to have the m-CI property if all undirected
Cayley graphs of G of valency m are Cl-graphs. We conjecture that the
conclusion of the Main Theorem is also true for the undirected case, namely,

Conjecture 3 If G is an abelian group with the m-CI property then all
Sylow subgroups of G are homocyclic.

2 Preliminaries

This section quotes some preliminary results which will be used in the proof
of the Main Theorem. The first lemma gives some properties of subsets of
a cyclic group.

Lemma 2.1 Let G = (z) be a cyclic group of order n, and assume that
i,me {1,2,...,n — 2}. Suppose that {z,2%,...,2™} = {2}, 2%,...,2™}.
Theni=1.
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Proof. Let S = {2,22,...,2™} and S* = {2%,2%, ..., 2™}. First we observe
that ¢ is coprime to n since z € S*, and that 1 <i<msince 1 <i<n—2
and z* € S. Suppose that i > 1. Then there exists | € {1,...,m — 1} such
that i <m and (14 1)i > m.

Assume that m < 2. Sincel+1 < m, 2 € 81 = § = {2,22,..., 2™}
Since (I 4+ 1)i > m and (I + 1)i = ip (mod n) such that 4y € {1,...,m},
we have (I + 1)i > n, and therefore, since m > li > i, n > 2m >
li+i=(l+1)i > n, which is a contradiction. Thus m > %, and since
G = (2), setting z = 27!, {z,2?,...,z" " (MtD} = (2)#\ § = (2)#\ §i =
{z*,z%,..., 20~ (m+D¥} Since n — (m + 1) < 252, the argument above
also deduces a contradiction. Thus 7 =1.

For a digraph I’ = (V, E), its complement T = (V, E) is the graph with
vertex set V such that (a,b) € E if and only if (a,b) ¢ E. The lezicographic
product I'1 3] of two digraphs I'y = (V}, E;) and I’y = (Va, Es) is the graph
with vertex set V; x V4 such that ((al, az), (b1, bz)) is an are if and only if
either (a;,b;1) € E; or a; = b; and (ag,b2) € E. For a positive integer n,
K, denotes the complete digraph on n vertices. For a graph I', nI" denotes
the graph which consists of n copies of . The next lemma concerns the
structure of graphs that come from lexicographic product of graphs.

Lemma 2.2 Let G = (a,H) be an abelian group where H is a proper sub-
group of G, and let R = {a",...,a'*}H where (R) = G and 1y,...,% are
distinct positive integers. Set G := G/H, R := R/H and T := Cay(G, R).
Then Cay(G, R) = LK | where m = |H|. Further, if S = RURy where Ro
is a Cayley subset of H then Cay(G, S) = £[[g] where I'o = Cay(H, Ry).

Proof. Let I' = Cay(G,R). Then the vertex set G of T is partitioned
as Jiy Vi, where n = o(a) = |G| and V; = o'H =: @ such that for any
z € V;, the neighbourhood I'(z) = V44, U...UV,4,, (reading the subscripts
modulo n). The vertex set G of T is [J]_ {V } where V; = @ such that
V. has the neighbourhood Z(V;) = {V,.,.,l}u. LU{Vi ) It fo]lows from
the definition of lexicographic product of graphs that T' = S[K,,].

Next let T' = Cay(G, S). Now Cay(G, Ry) consists of 'Gl copies of
[y, that is, Cay(G, Ry) = IG‘I‘O, and has components (not necessarily
connected) V;, 0 <7 < n. It follows from definition that I' = Z[[).

Finally, we give a simple lemma which will be used.
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Lemma 2.3 Let G be a finite group, and let S, T C G*. Then Cay(G, S) =
Cay(G,T) if and only if Cay((S),S) = Cay((T), T).

Proof. 1f Cay(G, S) = Cay(G,T) then clearly Cay((S),S) = Cay((T), T).
Conversely, if Cay((S), S) 2 Cay((T), T') then we have that Cay(G, S) =
e Cay((S), ) = {7 Cay((T), T) = Cay(G,T).

The terminology and notation used in this paper are standard (see,
for example, (2, 12]). In particular, for a positive integer n, C, denotes
the (directed or undirected) cycle of length n. For convenient, if a Cayley
digraph Cay(G,S) is a Cl-graph we will call the subset S a Cl-subset.
Finally, for a group G and a pair of subsets S,T of G#, if Cay(G, S) =
Cay(G,T) but S is not fused to T, then {S,T} is called a NCI-pair of G.

3 Proof of the Main Theorem

It is clear from the definition that a Cayley subset S of G is a Cl-subset if
and only if G# \ S is a Cl-subset. Thus G has the m-DCI property if and

only if G has the (JG#| — |S|)-DCI property. So we shall always assume
that m < J#

Proof of the Main Theorem: Suppose that G has the m-DCI property,
and suppose that p is a prime divisor of |G| such that a Sylow p-subgroup
Gp of G is not homocyclic. Then there exist a,b € G, such that o(a) < o(b)
and

= (a) x (b) x L,

where L is a subgroup of G. Let o{a) = p” and o(b) = p*. Then s=r+17
for some integer 7 > 1. Let bp = b®". Then o{a) = o(by) = p" and
(a,b0) = Zyr x Zy-. To prove the theorem, we are going to construct a
NCI-pair of size m for every m € {1,..., 'GI;I }. First of all, we note the
fact that (a) is not fused to (by) because an automorphism has to send a
basis to a basis, in particular, a is not fused to bg

Step 1: (Construct NCI-pairs of size m for 1 <m < p" — 1.) Assume
that m < p" — 1, and let

S={a,...,a"}, T ={bo,...,b5}.
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Now there exists an isomorphism o from {a) to (by) with a° = bp. Thus
S? =T, and so Cay({a), S) = Cay({bp), T). By Lemma 2.3, Cay(G, S) =
Cay(G,T). Since G has the m-DCI property, there exists o € Aut(G) such
that S* = T and so {(a)* = (S®) = (T) = (bo). This is not possible as
noted at the beginning of the proof. Therefore, we have a NCl-pair {S,T}
ofsizemforl<m<p -1

Step 2: (Construct NCl-pairs of size m for p” < m < p*" —1.) If
m = p*" — 1, then let

S={a,b)\{1}, T=( " )\ {1}

Then Cay({S), S) & K- = Cay((T),T), and so by Lemma 2.3, Cay(G, S) =
Cay(G,T). However, S is not fused to T since (S) = Zy X Zy ¥
Zr-1 X Zprtr 2 (T). Therefore, {S,T} is a NCI-pair of size p?" — 1.
Thus assume that p” < m < p*” —2. Now m = kp" + j, where 1 <k <
p"—1and 0 <j<p —1. Let
{ S = {bo, 8§, ...,b§Ha) U {a* | 1 <i < 4},
T ={a,a?...,a*}{bo) U {bh | 1 < i < j}.
Clearly there exists o € Aut({a,bo)) such that a” = bp and b§ = a. This
o is automatically an isomorphism from Cay({a, bo}), S) to Cay({a, bo),T),
and so by Lemma 2.3, Cay(G, S) = Cay(G,T). Since G has the m-DCI
property, there is an a € Aut(G) such that S* = T. Thus (a, bo)* = (5°) =
(T) = (a, bo), s0 a* = a®b§ and b§ = a®bf for some integers z, y,u,v. Then

(bofa))™ = a“B(a"by) = {a*+"bp ™" |0 <h <p —1}.

If p|z, then a® = a®b§ € ®(G), the Frattini subgroup of G. However,
a ¢ ®(G) and &(G) is characteristic in G, which is a contradiction. Thus
z is coprime to p and so

{u+zh|0<h<p —1}={0,1,...,p" — 1} (mod p").

It follows, since (bo{a))* C T, that k = p” — 1. Since m < p* — 2, we
have j < p” — 2 and so & maps {a, bo)# \ S (a nonempty set of (a)#) to
(a,bo)# \ T (a nonempty subset of (bo)#), which is a contradiction because
the sets contain a~! and by . Thus {S,T} is a NCI-pair of size m.
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Step 3: (Construct NCI-pairs of size m for p? < m < p™ts —2.) If
m = p?" then let

S§=t"""(a,bo), T=afa® b’ ).

By Lemma 2.2, Cay((S), S) & Cp[Kp2r] = Cay((T), T), and so by Lemma 2.3,
Cay(G, S) = Cay(G, T). However, S is not fused to T since all elements of
S are of order p™*! but the element a of T is of order p", a contradiction.
Thus {S, T} is a NCl-pair of size p?".

Assume that p +1 < m < p™* — 2. Now m = kp? + j, where
1<k<p"—1and0<j<p* —1. Let H = (a,bp).

Case 1. Suppose that 1 < j < p? — 2. Let
S={b,...,b5}HUSp and T = {b,...,b*} H U T,

where {Sp,To} is a NCI-pair of size j constructed in Steps 1 and 2 (so
S0,To C H). Let K = (a,b) and K = K/H. Let T; = Cay(K, {5,...,5°}),
and let I’y = Cay(H, Sp) and I'y = Cay(H,Tp). Then 'y = I}, and so by
Lemma 2.2,

Cay(K» S) = FI[F2] = FI[PIZ] = Cay(K! T)'

Thus by Lemma 2.3, Cay(G, S) & Cay(G,T). Since G has the m-DCI
property, there exists a € Aut(G) such that S* =T. Thus K* = {a,b)* =
(8%) = (T) = (a,b). Note that all elements of Sp and of T are of order at
most p”, and all elements of S\ Sp and of T\ Ty are of order at least p™+!
(since 1 < k <p™ —1). So S§ = To, which is a contradiction to Steps 1
and 2. Thus {5, T} is a NCl-pair.

Case 2. Suppose that j = 0, that is, m = kp?" for some k > 2. First
assume that 7 = 1. Then o(b) = p™*! and H = (g, b?). Since m > p*" + 1,
2<k<p-1. Let J = (aP,b), and let

S={b,...,bF}H, T ={a,...,a*}J.

Then (S) = (T) = (a,b) =: K and K/H = K/J = Z,. Now there exists an
isomorphism o from K/H to K/J such that (bH)® = aJ, and so (S/H)° =
T/J. Therefore,

Ty := Cay(K/H,S/H) = Cay(K/J,T/J) =: Ty
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and by Lemma 2.2, we have Cay(K, S) = I'1 [K p2r] & I[Kper] = Cay(K,T).
Further, by Lemma. 2.3, Cay(G, S) = Cay(G,T). Since G has the m-DCI
property, there is @ € Aut(G) such that S* = T. However, all clements
of S are of order p™*! and the element a of T is of order p", which is a
contradictio. Hence {S, T} is a NCI-pair.

Now assume that 7 > 1. Set S’ = H*¥ U {t*" '} and T = H* U
{5P" 7 +P"}. If p™~1 > k then let

S=1{b,...,bk--11HUS,
T={b,...,.bF}HUT

if p*~ < k then let

S=({b,...,bF}H\b*"  H)US,
T =({p,...,bF}H\ " "H)UT".

Now F := (') = (T") = (H, b ') = (a) x (b*" ') & Zpr X Zpr+1, and
r—1

F=HUW "HuU...ube-Dr" ' g
K :=(a,b) = (S) = (T) = FUbFU...up '~IF.

Thus neither Cay(K, S’) nor Cay(K,T") is connected, and moreover, both
Cay(K,S’) and Cay(K,T’) have b'F, i =0,1,...,p" ! — 1, as vertex sets
of their connected components. We use C; and D; to denote the con-
nected components of Cay(K,S’) and of Cay(K,T’) containing the ver-
tex b*, respectively. Clearly there is ¢ € Aut(F) such that ¢ = a and
(5*"71)? = bP" ' +P", which normalizes H and so S’ = T". Thus o auto-
matically induces an isomorphism from Cay(F, S’) to Cay(F,T’) Let p be
a map from K to K defined by

p: bif - bf°, whereie {0,1,...,p7" 1 -1} and f€ F.

Then (b*F)? = b'F and p induces an isomorphism from C; to D; for every
i€ {0,1,...,p""! —1}. Thus p preserves adjacency from Cay(K,S’) to
Cay(K,T").

Now we are going to prove that p also induces an isomorphism from
Cay(K, S) to Cay(K,T). Write K as a union of cosets by

k= U U o 'H.
0<z<pT—1 -1 0<y<p-1
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For any z,y, we have
(GO T H)P = bR (T H)O = bRV ) e

In particular, (b*H)? = b*H for every 1 < i < k. Thus p also preserves
adjacency from Cay(K, S\ §’) to Cay(K,T \ T’). Consequently, pis an
isomorphism from Cay(K,S) to Cay(K,T), so Cay(G, S) = Cay(G,T)
(see Lemma 2.3).

Since G has the m-DCI property, there is a € Aut(G)such that S* =T
and so K* = (§%) = (T) = K. Hence b® = Wa® for some integers z,y.
Note that all elements of H# are of order at most pT. Sincel <k <p"-—1,
every element of each of both S\ H# and T'\ H# is of order at least p7+1.
Therefore, & must send H# to H# and H* = H. Thus for any integer i,
(B*H)™ = (b)*H> = b¥*a® H = b¥ H. Consequently, ({5, ...,bF "1} H)> =
{b,..., 65" 1}H and (({b,...,b5} \ {6*"" 1) H)= = ({b,...,65}\ {5* " })H.
It follows that (b*" ')* = b?"'+?" and so (b*" 'H)® = oP" '+P"f =
¥ H. Therefore,

{89, ..., b= DV = ({b,... .01} H)= = {b,..., bk} H, ifpT > k;
{0, .. b} H = ({b,...,bF}H)* = {b,...,b"}H, ifp™! <k.

It follows from Lemma 2.1 that y = 1 (mod p”), namely b* = bl+P hg=
for some integer h. So (57”71 = (b1+P"haZ)PTT! — pp" T 4p* A gzt 4
" '+7" a contradiction. Thus {S,T} is a NClI-pair of size kp?".

Case 3. Suppose that j = p" — 1, namely m = kp + (p?" —1). Set
§'=H#*\{a}U{t* "'} and T' = H*\ {a} U{b*" ""+*"}. It p"~! > k then

let
S={b,...,b*}HU S,
T={b,...,.bFYHUT"

if p”~! < k then let

S=({b,..., 0} H\ " "H)u &,
T=({b,...,.05 Y H\ > "H)U T

Arguing as in Case 2, we have Cay(G, S) = Cay(G,T) but S is not fused
to T. Thus {S, T} is a NCI-pair of size kp? + (p>" —1).

By Steps 1, 2 and 3, we have constructed a NCl-pair of G with size
m for every value of m € {1,2,...,p"t* — 2}. Hence, if G = (a, b) or
m < p™t® — 2, the theorem holds. To complete the proof of the theorem,
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assume that G # (a,b) and m > p"+* — 1. Then G = (a,b) x L for some
L#1.

Step 4: (Construct NCI-pairs of size m for m > p~+s—1.) First assume
that p+* —1 <m < |L|. Then m > 2112 —1="7. Set

S={a}UR, T={b}UR,

where R is a Cayley subset of L of size m — 1 which is defined as follows:
Write L = {aj) X ... x (@) such that each o(a;) is a prime-power. If
m < o(a;) then let R be an arbitrary Cayley subset of {ay) of size m — 1.
Suppose that m > o(a;). Then there exists an integer ¢ such that [{a1) x
ox (e <m—1<[{a1) x ... x {ai) X {@air1)}]- Set M = {a1) x ... % (a;)
and mg = | M|, and let m — 1 = kmg + j for some k 2> 1 and 0 < j < my.
Let R, be an arbitrary Cayley subset of M of size j (if = 0 then Ro = 0),
and let R = {ait1,...,a%.,}M U Ro. Then

Cay((S),S) = Cay((a),{a}) x Cay((R), R)
2 Cay((bo), {bo}) x Cay((R), R) = Cay({T), T).

Thus Cay(G,S) = Cay(G,T) (by Lemma 2.3). Since G has the m-DCI
property, there is a € Aut(G) such that S* =T. It is straightforward to
check that R cannot be written as R = R’U {c} such that (R) = (R') x {(c)
for any ¢ € R. Consequently, a® = bo, which is a contradiction. So {S,T}
is a NCI-pair of size m.

Now assume that m > |L| and m = k|L| +j where 1 < k < p™+* —2
and 0 < j < |L| - 1. Note that m < l6=1 = EIH=L et {S), Ty} be a
NCl-pair of (a,b) of size k constructed in Steps 1-3. Let R be an arbitrary
Cayley subset of L of size j. Set

S=SLUR, T=T,LUR.
Let T'y = Cay(L, R). By Lemma 2.2, we have
Cay((S), S) = Cay({So), So)[['1] = Cay({To), To)[['1] = Cay((T), T).

Thus Cay(G,S) = Cay(G,T) (by Lemma 2.3). Since G has the m-DCI
property, there is & € Aut(G) such that S* = T. Let ' = Cay(G,S)
and & = Cay(G,T), and let A = AutT and B = AutZ. Then this &
automatically induces an isomorphism from I' to ¥ so that 1% =1 and
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[(1)* = £(1). Now {zL | z € (a,b)} is an imprimitive system of A on
VI'. It follows that for each z € SgL, z lies in an orbit of A'f of size at
least |L|; for each z € R, the orbit of A containing z has size at most
|R| < |L|. Similarly, if z € ToL then z lies in an orbit of BT of size at least
|L|; if z € R then the orbit of B containing z has size at most |R| < |L].
Consequently, (SoL)* = ToL and R®* = R. Let & be the automorphism
of G/L = (a,b) induced by a. Then it follows that Sy is fused to To, a
contradiction. This completes the proof of the Main Theorem.
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