Finite Abelian Groups with the m-DCI Property

Cai Heng Li*
Department of Mathematics
University of Western Australia
Nedlands W.A. 6907
Australia
email: li@maths.uwa.edu.au

Abstract

A Cayley digraph Cay(G,S) of a finite group G is isomorphic to another Cayley digraph $Cay(G,S^{\sigma})$ for each automorphism σ of G. We will call Cay(G,S) a CI-graph if, for each Cayley digraph Cay(G,T), whenever $Cay(G,S)\cong Cay(G,T)$ there exists an automorphism σ of G such that $S^{\sigma}=T$. Further, for a positive integer m, if all Cayley digraphs of G of out-valency m are CI-graphs, then G is said to have the m-DCI property. This paper shows that for any positive integer m if a finite abelian group G has the m-DCI property then all Sylow subgroups of G are homocyclic.

1 Introduction

Let G be a group, and set $G^{\#}:=G\setminus\{1\}$ where 1 is the identity of G. For a subset S of $G^{\#}$, the Cayley digraph $\Gamma=Cay(G,S)$ of G with respect to S is defined as the directed graph with vertex set G and arc set $E\Gamma=\{(a,b)\mid a,b\in G,ba^{-1}\in S\}$. A Cayley digraph Cay(G,S) is called a CI-graph (CI stands for Cayley Isomorphism) if, for any Cayley digraph Cay(G,T), whenever $Cay(G,S)\cong Cay(G,T)$ there exists $\alpha\in Aut(G)$ such that $S^{\alpha}=T$. For a positive integer m, if all Cayley digraphs of a

^{*}The author thanks his supervisor, Professor Cheryl E. Praeger, for her helpful suggestions on this paper, and acknowledges support of an Overseas Postgraduate Research Scholarship from Australia and a University Postgraduate Award from University of Western Australia. The author is grateful to the referee for his valuable comments.

group G of out-valency m are CI-graphs, then G is said to have the m-DCI property.

The problem of determining which Cayley digraphs are CI-graphs of the corresponding groups has been investigated for a long time, see for example [1, 3, 6, 7, 10, 11] and the references in these papers. Regarding this problem, Praeger, Xu and the author in [9] initiated to study finite groups with the m-DCI property. For a finite group G, elements a, b of Gare said to be fused if $a^{\sigma} = b$ for some $\sigma \in Aut(G)$, and similarly, subsets S, T of G are said to be fused if $S^{\sigma} = T$ for some $\sigma \in Aut(G)$. A group G has the 1-DCI property if and only if all elements of G of the same order are fused. Zhang [13] gave a good description for such groups. The author [4] completely classified the finite groups which have the 2-DCI property but do not have the 1-DCI property. More recently, for infinitely many values of m, the author [8] constructed an infinite family of groups which have the m-DCI property but not the i-DCI property for any i < m. In [9], a general investigation was made of the structure of Sylow subgroups of groups with the m-DCI property for certain values of m; and moreover, a reasonable complete characterization for cyclic groups with the m-DCI property is given in [5]. However, it seems very hard to obtain a 'good' characterization of the groups with the m-DCI property. The aim of this paper is to characterize finite abelian groups with the m-DCI property.

We use \mathbb{Z}_n to denote a cyclic group of order n, and we call a group G homocyclic if G is a direct product of cyclic groups of the same order. The main result of this paper is the following theorem.

Main Theorem Let m be a positive integer and let G be an abelian group. If G has the m-DCI property then all Sylow subgroups of G are homocyclic.

Remarks: Let G be an abelian group, and let m be a positive integer. By [9, Theorem 1.6], if $1 \le m \le 4$ then the m-DCI prop implies the k-DCI property for all k < m, and therefore, G has the m-DCI property if and only if G is an m-DCI-group (that is, G has the k-DCI property for all $k \le m$). On the other hand, by [5], \mathbb{Z}_{25} has the 9-DCI property but does not have the k-DCI property for k = 6, 7 or 8.

Question 1 For abelian groups and $5 \le m \le 8$, does the m-DCI property imply the k-DCI property for all k < m?

Assume that G is an abelian m-DCI-group and that G_q is a Sylow q-subgroup of G. Then by [10], G_q is homocyclic if q > m; G_q is elementary abelian or cyclic if q = m; G_q is elementary abelian or \mathbb{Z}_4 if q < m. Conversely, if $m \le 4$ then this condition is sufficient for G to be an m-DCI-group. Therefore, the abelian groups which have the m-DCI property for $m \le 4$ are completely classified. In particular, this shows that the converse of the Main Theorem is not true.

By [8], for infinitely many values of m, there exist groups which have the m-DCI property but do not have the i-DCI property for any i < m. However, it is easy to see that an abelian group with all Sylow subgroups homocyclic has the 1-DCI property, and therefore, by the Main Theorem, for abelian groups the m-DCI property implies the 1-DCI property for any positive integer m. We guess that for abelian groups, with a few exceptions, the m-DCI property implies the k-DCI property for all k < m. Thus we pose the following problem.

Problem 2 Classify the finite abelian groups which have the m-DCI property but do not have the k-DCI property for some k < m.

For this problem, the only known examples are the cyclic groups \mathbb{Z}_{p^2} where p is a prime and $p \geq 5$. It is actually proved in [5] that \mathbb{Z}_{p^2} has the m-DCI property if and only if either m < p, or $m \equiv 0$ or $-1 \pmod{p}$.

The 'm-DCI property' has a natural counterpart for undirected Cayley graphs, that is, a group G is said to have the m-CI property if all undirected Cayley graphs of G of valency m are CI-graphs. We conjecture that the conclusion of the Main Theorem is also true for the undirected case, namely,

Conjecture 3 If G is an abelian group with the m-CI property then all Sylow subgroups of G are homocyclic.

2 Preliminaries

This section quotes some preliminary results which will be used in the proof of the Main Theorem. The first lemma gives some properties of subsets of a cyclic group.

Lemma 2.1 Let $G = \langle z \rangle$ be a cyclic group of order n, and assume that $i, m \in \{1, 2, ..., n-2\}$. Suppose that $\{z, z^2, ..., z^m\} = \{z^i, z^{2i}, ..., z^{mi}\}$. Then i = 1.

Proof. Let $S = \{z, z^2, ..., z^m\}$ and $S^i = \{z^i, z^{2i}, ..., z^{mi}\}$. First we observe that i is coprime to n since $z \in S^i$, and that $1 \le i \le m$ since $1 \le i \le n-2$ and $z^i \in S$. Suppose that i > 1. Then there exists $l \in \{1, ..., m-1\}$ such that $li \le m$ and (l+1)i > m.

Assume that $m \leq \frac{n}{2}$. Since $l+1 \leq m$, $z^{(l+1)i} \in S^i = S = \{z, z^2, \ldots, z^m\}$. Since (l+1)i > m and $(l+1)i \equiv i_0 \pmod{n}$ such that $i_0 \in \{1, \ldots, m\}$, we have (l+1)i > n, and therefore, since $m \geq li \geq i$, $n \geq 2m \geq li + i = (l+1)i > n$, which is a contradiction. Thus $m > \frac{n}{2}$, and since $G = \langle z \rangle$, setting $x = z^{-1}$, $\{x, x^2, \ldots, x^{n-(m+1)}\} = \langle z \rangle^{\#} \setminus S = \langle z \rangle^{\#} \setminus S^i = \{x^i, x^{2i}, \ldots, x^{(n-(m+1))i}\}$. Since $n - (m+1) \leq \frac{n-2}{2}$, the argument above also deduces a contradiction. Thus i = 1.

For a digraph $\Gamma = (V, E)$, its complement $\overline{\Gamma} = (V, \overline{E})$ is the graph with vertex set V such that $(a, b) \in \overline{E}$ if and only if $(a, b) \notin E$. The lexicographic product $\Gamma_1[\Gamma_2]$ of two digraphs $\Gamma_1 = (V_1, E_1)$ and $\Gamma_2 = (V_2, E_2)$ is the graph with vertex set $V_1 \times V_2$ such that $((a_1, a_2), (b_1, b_2))$ is an arc if and only if either $(a_1, b_1) \in E_1$ or $a_1 = b_1$ and $(a_2, b_2) \in E_2$. For a positive integer n, K_n denotes the complete digraph on n vertices. For a graph Γ , $n\Gamma$ denotes the graph which consists of n copies of Γ . The next lemma concerns the structure of graphs that come from lexicographic product of graphs.

Lemma 2.2 Let $G = \langle a, H \rangle$ be an abelian group where H is a proper subgroup of G, and let $R = \{a^{i_1}, \ldots, a^{i_k}\}H$ where $\langle R \rangle = G$ and i_1, \ldots, i_k are distinct positive integers. Set $\overline{G} := G/H$, $\overline{R} := R/H$ and $\Sigma := Cay(\overline{G}, \overline{R})$. Then $Cay(G, R) = \Sigma[\overline{K}_m]$ where m = |H|. Further, if $S = R \cup R_0$ where R_0 is a Cayley subset of H then $Cay(G, S) = \Sigma[\Gamma_0]$ where $\Gamma_0 = Cay(H, R_0)$.

Proof. Let $\Gamma = Cay(G,R)$. Then the vertex set G of Γ is partitioned as $\bigcup_{i=0}^{n-1} V_i$, where $n=o(a)=|\overline{G}|$ and $V_i=a^iH=:\overline{a}^i$ such that for any $x\in V_i$, the neighbourhood $\Gamma(x)=V_{i+i_1}\cup\ldots\cup V_{i+i_k}$ (reading the subscripts modulo n). The vertex set \overline{G} of Σ is $\bigcup_{i=0}^{n-1} \{\overline{V}_i\}$ where $\overline{V}_i=\overline{a}^i$ such that \overline{V}_i has the neighbourhood $\Sigma(\overline{V}_i)=\{\overline{V}_{i+i_1}\}\cup\ldots\cup\{\overline{V}_{i+i_k}\}$. It follows from the definition of lexicographic product of graphs that $\Gamma=\Sigma[\overline{K}_m]$.

Next let $\Gamma = Cay(G, S)$. Now $Cay(G, R_0)$ consists of $\frac{|G|}{m}$ copies of Γ_0 , that is, $Cay(G, R_0) = \frac{|G|}{m}\Gamma_0$, and has components (not necessarily connected) V_i , $0 \le i \le n$. It follows from definition that $\Gamma = \Sigma[\Gamma_0]$.

Finally, we give a simple lemma which will be used.

Lemma 2.3 Let G be a finite group, and let $S, T \subseteq G^{\#}$. Then $Cay(G, S) \cong Cay(G, T)$ if and only if $Cay(\langle S \rangle, S) \cong Cay(\langle T \rangle, T)$.

Proof. If $Cay(G, S) \cong Cay(G, T)$ then clearly $Cay(\langle S \rangle, S) \cong Cay(\langle T \rangle, T)$. Conversely, if $Cay(\langle S \rangle, S) \cong Cay(\langle T \rangle, T)$ then we have that $Cay(G, S) = \frac{|G|}{|(S)|}Cay(\langle S \rangle, S) \cong \frac{|G|}{|(T)|}Cay(\langle T \rangle, T) = Cay(G, T)$.

The terminology and notation used in this paper are standard (see, for example, [2, 12]). In particular, for a positive integer n, C_n denotes the (directed or undirected) cycle of length n. For convenient, if a Cayley digraph Cay(G,S) is a CI-graph we will call the subset S a CI-subset. Finally, for a group G and a pair of subsets S,T of $G^{\#}$, if $Cay(G,S)\cong Cay(G,T)$ but S is not fused to T, then $\{S,T\}$ is called a NCI-pair of G.

3 Proof of the Main Theorem

It is clear from the definition that a Cayley subset S of G is a CI-subset if and only if $G^{\#} \setminus S$ is a CI-subset. Thus G has the m-DCI property if and only if G has the $(|G^{\#}| - |S|)$ -DCI property. So we shall always assume that $m \leq \frac{|G|-1}{2}$.

Proof of the Main Theorem: Suppose that G has the m-DCI property, and suppose that p is a prime divisor of |G| such that a Sylow p-subgroup G_p of G is not homocyclic. Then there exist $a, b \in G_p$ such that o(a) < o(b) and

$$G = \langle a \rangle \times \langle b \rangle \times L,$$

where L is a subgroup of G. Let $o(a) = p^r$ and $o(b) = p^s$. Then $s = r + \tau$ for some integer $\tau \geq 1$. Let $b_0 = b^{p^r}$. Then $o(a) = o(b_0) = p^r$ and $\langle a, b_0 \rangle = \mathbb{Z}_{p^r} \times \mathbb{Z}_{p^r}$. To prove the theorem, we are going to construct a NCI-pair of size m for every $m \in \{1, \ldots, \frac{|G|-1}{2}\}$. First of all, we note the fact that $\langle a \rangle$ is not fused to $\langle b_0 \rangle$ because an automorphism has to send a basis to a basis, in particular, a is not fused to b_0

Step 1: (Construct NCI-pairs of size m for $1 \le m \le p^r - 1$.) Assume that $m \le p^r - 1$, and let

$$S = \{a, \dots, a^m\}, T = \{b_0, \dots, b_0^m\}.$$

Now there exists an isomorphism σ from $\langle a \rangle$ to $\langle b_0 \rangle$ with $a^{\sigma} = b_0$. Thus $S^{\sigma} = T$, and so $Cay(\langle a \rangle, S) \cong Cay(\langle b_0 \rangle, T)$. By Lemma 2.3, $Cay(G, S) \cong Cay(G, T)$. Since G has the m-DCI property, there exists $\alpha \in Aut(G)$ such that $S^{\alpha} = T$ and so $\langle a \rangle^{\alpha} = \langle S^{\alpha} \rangle = \langle T \rangle = \langle b_0 \rangle$. This is not possible as noted at the beginning of the proof. Therefore, we have a NCI-pair $\{S, T\}$ of size m for $1 \leq m \leq p^r - 1$.

Step 2: (Construct NCI-pairs of size m for $p^r \leq m \leq p^{2r} - 1$.) If $m = p^{2r} - 1$, then let

$$S = \langle a, b_0 \rangle \setminus \{1\}, \quad T = \langle a^p, b^{p^{\tau-1}} \rangle \setminus \{1\}.$$

Then $Cay(\langle S \rangle, S) \cong K_{p^{2r}} \cong Cay(\langle T \rangle, T)$, and so by Lemma 2.3, $Cay(G, S) \cong Cay(G, T)$. However, S is not fused to T since $\langle S \rangle \cong \mathbb{Z}_{p^r} \times \mathbb{Z}_{p^r} \not\cong \mathbb{Z}_{p^{r-1}} \times \mathbb{Z}_{p^{r+1}} \cong \langle T \rangle$. Therefore, $\{S, T\}$ is a NCI-pair of size $p^{2r} - 1$.

Thus assume that $p^r \le m \le p^{2r} - 2$. Now $m = kp^r + j$, where $1 \le k \le p^r - 1$ and $0 \le j \le p^r - 1$. Let

$$\left\{ \begin{array}{l} S = \{b_0, b_0^2, \dots, b_0^k\} \langle a \rangle \cup \{a^i \mid 1 \le i \le j\}, \\ T = \{a, a^2, \dots, a^k\} \langle b_0 \rangle \cup \{b_0^i \mid 1 \le i \le j\}. \end{array} \right.$$

Clearly there exists $\sigma \in Aut(\langle a, b_0 \rangle)$ such that $a^{\sigma} = b_0$ and $b_0^{\sigma} = a$. This σ is automatically an isomorphism from $Cay(\langle a, b_0 \rangle, S)$ to $Cay(\langle a, b_0 \rangle, T)$, and so by Lemma 2.3, $Cay(G, S) \cong Cay(G, T)$. Since G has the m-DCI property, there is an $\alpha \in Aut(G)$ such that $S^{\alpha} = T$. Thus $\langle a, b_0 \rangle^{\alpha} = \langle S^{\alpha} \rangle = \langle T \rangle = \langle a, b_0 \rangle$, so $a^{\alpha} = a^{x}b_0^{y}$ and $b_0^{\alpha} = a^{u}b_0^{v}$ for some integers x, y, u, v. Then

$$(b_0\langle a\rangle)^\alpha=a^ub_0^v\langle a^xb_0^y\rangle=\{a^{u+xh}b_0^{v+yh}\mid 0\leq h\leq p^r-1\}.$$

If $p \mid x$, then $a^{\alpha} = a^{x}b_{0}^{y} \in \Phi(G)$, the Frattini subgroup of G. However, $a \notin \Phi(G)$ and $\Phi(G)$ is characteristic in G, which is a contradiction. Thus x is coprime to p and so

$${u + xh \mid 0 \le h \le p^r - 1} \equiv {0, 1, \dots, p^r - 1} \pmod{p^r}.$$

It follows, since $(b_0\langle a\rangle)^{\alpha}\subseteq T$, that $k=p^r-1$. Since $m\leq p^{2r}-2$, we have $j\leq p^r-2$ and so α maps $\langle a,b_0\rangle^{\#}\setminus S$ (a nonempty set of $\langle a\rangle^{\#}$) to $\langle a,b_0\rangle^{\#}\setminus T$ (a nonempty subset of $\langle b_0\rangle^{\#}$), which is a contradiction because the sets contain a^{-1} and b_0^{-1} . Thus $\{S,T\}$ is a NCI-pair of size m.

Step 3: (Construct NCI-pairs of size m for $p^{2r} \leq m \leq p^{r+s} - 2$.) If $m = p^{2r}$ then let

$$S = b^{p^{\tau-1}} \langle a, b_0 \rangle, \quad T = a \langle a^p, b^{p^{\tau-1}} \rangle.$$

By Lemma 2.2, $Cay(\langle S \rangle, S) \cong C_p[\overline{K}_{p^{2r}}] \cong Cay(\langle T \rangle, T)$, and so by Lemma 2.3, $Cay(G, S) \cong Cay(G, T)$. However, S is not fused to T since all elements of S are of order p^{r+1} but the element a of T is of order p^r , a contradiction. Thus $\{S, T\}$ is a NCI-pair of size p^{2r} .

Assume that $p^{2r}+1 \le m \le p^{r+s}-2$. Now $m=kp^{2r}+j$, where $1 \le k \le p^r-1$ and $0 \le j \le p^{2r}-1$. Let $H=\langle a,b_0\rangle$.

Case 1. Suppose that $1 \le j \le p^{2r} - 2$. Let

$$S = \{b, \dots, b^k\} H \cup S_0 \text{ and } T = \{b, \dots, b^k\} H \cup T_0,$$

where $\{S_0, T_0\}$ is a NCI-pair of size j constructed in Steps 1 and 2 (so $S_0, T_0 \subset H$). Let $K = \langle a, b \rangle$ and $\overline{K} = K/H$. Let $\Gamma_1 = Cay(\overline{K}, \{\overline{b}, \dots, \overline{b}^k\})$, and let $\Gamma_2 = Cay(H, S_0)$ and $\Gamma'_2 = Cay(H, T_0)$. Then $\Gamma_2 \cong \Gamma'_2$, and so by Lemma 2.2,

$$Cay(K, S) = \Gamma_1[\Gamma_2] \cong \Gamma_1[\Gamma_2'] = Cay(K, T).$$

Thus by Lemma 2.3, $Cay(G,S) \cong Cay(G,T)$. Since G has the m-DCI property, there exists $\alpha \in Aut(G)$ such that $S^{\alpha} = T$. Thus $K^{\alpha} = \langle a,b \rangle^{\alpha} = \langle S^{\alpha} \rangle = \langle T \rangle = \langle a,b \rangle$. Note that all elements of S_0 and of T_0 are of order at most p^r , and all elements of $S \setminus S_0$ and of $T \setminus T_0$ are of order at least p^{r+1} (since $1 \leq k \leq p^r - 1$). So $S_0^{\alpha} = T_0$, which is a contradiction to Steps 1 and 2. Thus $\{S,T\}$ is a NCI-pair.

Case 2. Suppose that j=0, that is, $m=kp^{2r}$ for some $k\geq 2$. First assume that $\tau=1$. Then $o(b)=p^{r+1}$ and $H=\langle a,b^p\rangle$. Since $m\geq p^{2r}+1$, $2\leq k\leq p-1$. Let $J=\langle a^p,b\rangle$, and let

$$S = \{b, \dots, b^k\}H, T = \{a, \dots, a^k\}J.$$

Then $\langle S \rangle = \langle T \rangle = \langle a, b \rangle =: K$ and $K/H \cong K/J \cong \mathbb{Z}_p$. Now there exists an isomorphism σ from K/H to K/J such that $(bH)^{\sigma} = aJ$, and so $(S/H)^{\sigma} = T/J$. Therefore,

$$\Gamma_1 := Cay(K/H, S/H) \cong Cay(K/J, T/J) =: \Gamma_2$$

and by Lemma 2.2, we have $Cay(K,S) = \Gamma_1[\overline{K}_{p^{2r}}] \cong \Gamma_2[\overline{K}_{p^{2r}}] = Cay(K,T)$. Further, by Lemma 2.3, $Cay(G,S) \cong Cay(G,T)$. Since G has the m-DCI property, there is $\alpha \in Aut(G)$ such that $S^{\alpha} = T$. However, all elements of S are of order p^{r+1} and the element a of T is of order p^r , which is a contradictio. Hence $\{S,T\}$ is a NCI-pair.

Now assume that $\tau > 1$. Set $S' = H^{\#} \cup \{b^{p^{\tau-1}}\}$ and $T' = H^{\#} \cup \{b^{p^{\tau-1}+p^{\tau}}\}$. If $p^{\tau-1} \ge k$ then let

$$\begin{cases} S = \{b, \dots, b^{k-1}\}H \cup S', \\ T = \{b, \dots, b^{k-1}\}H \cup T'; \end{cases}$$

if $p^{\tau-1} < k$ then let

$$\begin{cases} S = (\{b, \dots, b^k\}H \setminus b^{p^{\tau-1}}H) \cup S', \\ T = (\{b, \dots, b^k\}H \setminus b^{p^{\tau-1}}H) \cup T'. \end{cases}$$

Now $F := \langle S' \rangle = \langle T' \rangle = \langle H, b^{p^{\tau-1}} \rangle = \langle a \rangle \times \langle b^{p^{\tau-1}} \rangle \cong \mathbb{Z}_{p^r} \times \mathbb{Z}_{p^{r+1}}$, and

$$\begin{cases}
F = H \cup b^{p^{\tau-1}} H \cup \ldots \cup b^{(p-1)p^{\tau-1}} H, \\
K := \langle a, b \rangle = \langle S \rangle = \langle T \rangle = F \cup bF \cup \ldots \cup b^{p^{\tau-1}-1} F.
\end{cases}$$

Thus neither Cay(K,S') nor Cay(K,T') is connected, and moreover, both Cay(K,S') and Cay(K,T') have b^iF , $i=0,1,\ldots,p^{\tau-1}-1$, as vertex sets of their connected components. We use C_i and D_i to denote the connected components of Cay(K,S') and of Cay(K,T') containing the vertex b^i , respectively. Clearly there is $\sigma \in Aut(F)$ such that $a^{\sigma}=a$ and $(b^{p^{\tau-1}})^{\sigma}=b^{p^{\tau-1}+p^{\tau}}$, which normalizes H and so $S'^{\sigma}=T'$. Thus σ automatically induces an isomorphism from Cay(F,S') to Cay(F,T') Let ρ be a map from K to K defined by

$$\rho: b^i f \to b^i f^{\sigma}$$
, where $i \in \{0, 1, \dots, p^{\tau-1} - 1\}$ and $f \in F$.

Then $(b^i F)^{\rho} = b^i F$ and ρ induces an isomorphism from C_i to D_i for every $i \in \{0, 1, \dots, p^{\tau-1} - 1\}$. Thus ρ preserves adjacency from Cay(K, S') to Cay(K, T').

Now we are going to prove that ρ also induces an isomorphism from Cay(K, S) to Cay(K, T). Write K as a union of cosets by

$$K = \bigcup_{0 \le x \le p^{\tau-1}-1} \bigcup_{0 \le y \le p-1} b^x b^{yp^{\tau-1}} H.$$

For any x, y, we have

$$(b^x b^{yp^{\tau-1}} H)^{\rho} = b^x (b^{yp^{\tau-1}} H)^{\sigma} = b^x b^{y(p^{\tau-1} + p^{\tau})} H = b^x b^{yp^{\tau-1}} H.$$

In particular, $(b^iH)^\rho=b^iH$ for every $1\leq i\leq k$. Thus ρ also preserves adjacency from $Cay(K,S\setminus S')$ to $Cay(K,T\setminus T')$. Consequently, ρ is an isomorphism from Cay(K,S) to Cay(K,T), so $Cay(G,S)\cong Cay(G,T)$ (see Lemma 2.3).

Since G has the m-DCI property, there is $\alpha \in Aut(G)$ such that $S^{\alpha} = T$ and so $K^{\alpha} = \langle S^{\alpha} \rangle = \langle T \rangle = K$. Hence $b^{\alpha} = b^{y}a^{x}$ for some integers x, y. Note that all elements of $H^{\#}$ are of order at most p^{r} . Since $1 \leq k \leq p^{r} - 1$, every element of each of both $S \setminus H^{\#}$ and $T \setminus H^{\#}$ is of order at least p^{r+1} . Therefore, α must send $H^{\#}$ to $H^{\#}$ and $H^{\alpha} = H$. Thus for any integer i, $(b^{i}H)^{\alpha} = (b^{i})^{\alpha}H^{\alpha} = b^{yi}a^{xi}H = b^{yi}H$. Consequently, $(\{b, \ldots, b^{k-1}\}H)^{\alpha} = \{b, \ldots, b^{k-1}\}H$ and $((\{b, \ldots, b^{k}\} \setminus \{b^{p^{r-1}}\})H)^{\alpha} = (\{b, \ldots, b^{k}\} \setminus \{b^{p^{r-1}}\})H$. It follows that $(b^{p^{r-1}})^{\alpha} = b^{p^{r-1}+p^{r}}$ and so $(b^{p^{r-1}}H)^{\alpha} = b^{p^{r-1}+p^{r}}H = b^{p^{r-1}}H$. Therefore,

$$\{b^y, \dots, b^{(k-1)y}\}H = (\{b, \dots, b^{k-1}\}H)^{\alpha} = \{b, \dots, b^{k-1}\}H, \quad \text{if } p^{\tau-1} \ge k; \\ \{b^y, \dots, b^{ky}\}H = (\{b, \dots, b^k\}H)^{\alpha} = \{b, \dots, b^k\}H, \quad \text{if } p^{\tau-1} < k.$$

It follows from Lemma 2.1 that $y\equiv 1\pmod{p^\tau}$, namely $b^\alpha=b^{1+p^\tau h}a^x$ for some integer h. So $(b^{p^{\tau-1}})^\alpha=(b^{1+p^\tau h}a^x)^{p^{\tau-1}}=b^{p^{\tau-1}+p^{2\tau-1}h}a^{xp^{\tau-1}}\neq b^{p^{\tau-1}+p^\tau}$, a contradiction. Thus $\{S,T\}$ is a NCI-pair of size $kp^{2\tau}$.

Case 3. Suppose that $j = p^{2r} - 1$, namely $m = kp^{2r} + (p^{2r} - 1)$. Set $S' = H^{\#} \setminus \{a\} \cup \{b^{p^{\tau-1}}\}$ and $T' = H^{\#} \setminus \{a\} \cup \{b^{p^{\tau-1}+p^{\tau}}\}$. If $p^{\tau-1} > k$ then let

$$\begin{cases} S = \{b, \dots, b^k\}H \cup S', \\ T = \{b, \dots, b^k\}H \cup T'; \end{cases}$$

if $p^{\tau-1} \leq k$ then let

$$\begin{cases} S = (\{b,\ldots,b^{k+1}\}H \setminus b^{p^{\tau-1}}H) \cup S', \\ T = (\{b,\ldots,b^{k+1}\}H \setminus b^{p^{\tau-1}}H) \cup T'. \end{cases}$$

Arguing as in Case 2, we have $Cay(G, S) \cong Cay(G, T)$ but S is not fused to T. Thus $\{S, T\}$ is a NCI-pair of size $kp^{2r} + (p^{2r} - 1)$.

By Steps 1, 2 and 3, we have constructed a NCI-pair of G with size m for every value of $m \in \{1, 2, \ldots, p^{r+s} - 2\}$. Hence, if $G = \langle a, b \rangle$ or $m \leq p^{r+s} - 2$, the theorem holds. To complete the proof of the theorem,

assume that $G \neq \langle a, b \rangle$ and $m \geq p^{r+s} - 1$. Then $G = \langle a, b \rangle \times L$ for some $L \neq 1$.

Step 4: (Construct NCI-pairs of size m for $m \ge p^{r+s} - 1$.) First assume that $p^{r+s} - 1 \le m \le |L|$. Then $m \ge 2^{1+2} - 1 = 7$. Set

$$S = \{a\} \cup R, T = \{b_0\} \cup R,$$

where R is a Cayley subset of L of size m-1 which is defined as follows: Write $L=\langle a_1\rangle\times\ldots\times\langle a_l\rangle$ such that each $o(a_i)$ is a prime-power. If $m\leq o(a_1)$ then let R be an arbitrary Cayley subset of $\langle a_1\rangle$ of size m-1. Suppose that $m>o(a_1)$. Then there exists an integer i such that $|\langle a_1\rangle\times\ldots\times\langle a_i\rangle|\leq m-1\leq |\langle a_1\rangle\times\ldots\times\langle a_i\rangle\times\langle a_{i+1}\rangle|$. Set $M=\langle a_1\rangle\times\ldots\times\langle a_i\rangle$ and $m_0=|M|$, and let $m-1=km_0+j$ for some $k\geq 1$ and $0\leq j< m_0$. Let R_0 be an arbitrary Cayley subset of M of size j (if j=0 then $R_0=\emptyset$), and let $R=\{a_{i+1},\ldots,a_{i+1}^k\}M\cup R_0$. Then

$$Cay(\langle S \rangle, S) = Cay(\langle a \rangle, \{a\}) \times Cay(\langle R \rangle, R)$$

$$\cong Cay(\langle b_0 \rangle, \{b_0\}) \times Cay(\langle R \rangle, R) = Cay(\langle T \rangle, T).$$

Thus $Cay(G,S) \cong Cay(G,T)$ (by Lemma 2.3). Since G has the m-DCI property, there is $\alpha \in Aut(G)$ such that $S^{\alpha} = T$. It is straightforward to check that R cannot be written as $R = R' \cup \{c\}$ such that $\langle R \rangle = \langle R' \rangle \times \langle c \rangle$ for any $c \in R$. Consequently, $a^{\alpha} = b_0$, which is a contradiction. So $\{S,T\}$ is a NCI-pair of size m.

Now assume that m>|L| and m=k|L|+j where $1\leq k\leq p^{r+s}-2$ and $0\leq j\leq |L|-1$. Note that $m\leq \frac{|G|-1}{2}=\frac{p^{r+s}|L|-1}{2}$. Let $\{S_0,T_0\}$ be a NCI-pair of $\langle a,b\rangle$ of size k constructed in Steps 1-3. Let R be an arbitrary Cayley subset of L of size j. Set

$$S = S_0 L \cup R$$
, $T = T_0 L \cup R$.

Let $\Gamma_1 = Cay(L, R)$. By Lemma 2.2, we have

$$Cay(\langle S \rangle, S) = Cay(\langle S_0 \rangle, S_0)[\Gamma_1] \cong Cay(\langle T_0 \rangle, T_0)[\Gamma_1] = Cay(\langle T \rangle, T).$$

Thus $Cay(G,S)\cong Cay(G,T)$ (by Lemma 2.3). Since G has the m-DCI property, there is $\alpha\in Aut(G)$ such that $S^{\alpha}=T$. Let $\Gamma=Cay(G,S)$ and $\Sigma=Cay(G,T)$, and let $A=Aut\Gamma$ and $B=Aut\Sigma$. Then this α automatically induces an isomorphism from Γ to Σ so that $1^{\alpha}=1$ and

 $\Gamma(1)^{\alpha} = \Sigma(1)$. Now $\{xL \mid x \in \langle a,b \rangle\}$ is an imprimitive system of A on $V\Gamma$. It follows that for each $x \in S_0L$, x lies in an orbit of A_1^S of size at least |L|; for each $x \in R$, the orbit of A_1^S containing x has size at most |R| < |L|. Similarly, if $x \in T_0L$ then x lies in an orbit of B_1^T of size at least |L|; if $x \in R$ then the orbit of B_1^T containing x has size at most |R| < |L|. Consequently, $(S_0L)^{\alpha} = T_0L$ and $R^{\alpha} = R$. Let $\overline{\alpha}$ be the automorphism of $G/L \cong \langle a,b \rangle$ induced by α . Then it follows that S_0 is fused to T_0 , a contradiction. This completes the proof of the Main Theorem.

References

- [1] L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar. 29 (1977), 329-336.
- [2] N. Biggs, Algebraic Graph Theory, (Cambridge Uni. Press, New York, 1974).
- [3] C. Delorme, O. Favaron and M. Maheo, Isomorphisms of Cayley Multigraphs of degree 4 on finite abelian groups, *Europ. J. Combin.* 13 (1992), 59-61.
- [4] C. H. Li, The finite groups with the 2-DCI property, Comm. Algebra 24 (1996), 1749-1757.
- [5] C. H. Li, The cyclic groups with the m-DCI property, Europ. J. Combin. 18 (1997), 253-261.
- [6] C. H. Li, On isomorphisms of connected Cayley graphs, Discrete Math. 178 (1998), 109-122.
- [7] C. H. Li, On isomorphisms of connected Cayley graphs, II, J. Combin. Theory (B) 74 (1998), 28-34.
- [8] C. H. Li, On finite groups with the Cayley isomorphism property, II, J. Combin. Theory (A) (to appear).
- [9] C. H. Li, C. E. Praeger and M. Y. Xu, On finite groups with the Cayley isomorphism property, J. Graph Theory 27 (1998), 21-31.

- [10] C. H. Li, C. E. Praeger and M. Y. Xu, Isomorphisms of finite Cayley digraphs of bounded valency, J. Combin. Theory (B) 73 (1998), 164-183.
- [11] P. P. Pálfy, Isomorphism problem for relational structures with a cyclic automorphism, *Europ. J. Combin.* 8 (1987), 35-43.
- [12] M. Suzuki, Group Theory I, (Springer-Verlag, New York, 1986).
- [13] J. P. Zhang, On finite groups all of whose elements of the same order are conjugate in their automorphism groups, J. Algebra 153 (1992), 22-36.