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ABSTRACT. We show that if G is a (2k — 1)-connected graph
(k 2 2) with radius r, then r < [MEWJ

1 Introduction

By a graph, we mean a finite, undirected, simple graph without loops or
multiple edges. Let G be a graph. Let V(G) and E(G) denote the vertex
set and the edge set of G, respectively. For v,w € V(G), let dg(v, w) denote
the usual distance between v and w. Set

= mi d .
r(G) = min o2, dolv, w)
The number 7(G) is called the radius of G. A vertex z € V(G) is called a
central vertex of G if max,ev(c) do(z,w) = r(G)
In (1], Harant and Walther proved that the inequality r < 2 Z + O(logn)
holds for a 3-connected graph with radius r containing preclse]y n vertices,

where O denotes the order as n tends to infinity. The purpose of this paper
is to prove the following theorem.

Theorem. Let k > 2 be an integer, and let G be a (2k — 1)-connected
graph with radius r containing precisely n vertices. Then the following
inequality holds:

< | +2k+9

<=5
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2 Preliminary Results
Throughout the rest of the paper, we let G, n, T be as in the Theorem. For
a vertex v € V(G) and a nonnegative integer 1, let

Ni(v) := {w | w € V(G),dg(v,w) = i}.
We write N(v) for N;(v). Fix a central vertex z, and let

X; = N,(z) for0<:i<r.

Note that for each i with 1 <i<r-1landanyz € X;, N(z) C X;_1U
X; U Xin.
Lemma 1. |X;| 22k -1 forall1<i<r—1.

Proof: Since G — X; is disconnected, the desired conclusion immediately
follows from the (2k — 1)-connectedness of G. a

Lemma 2. n > (2k — 1)r — (2k - 3).

Proof: By Lemma 1, n = 31 | X:| 2 14+ (2k - 1)(r = 1)+ 1 = (2k -
)r — (2k — 3). 0

3 Proof of the Theorem

We continue with the notation of the preceding section. The bulk of the
proof of the Theorem is devoted to the verification of the following propo-
sition, which roughly says that the average of the | X;| is only slightly less
than 2k, if it is less than 2k:

Proposition 3. Let a, b be integers with a > 6,a+2 < b <7 —5, and
suppose that | X,| = |Xs| =2k —1 and | X;| >2k—1foralla+1<i<b.

Then
b—-1

ST 1X:| 2 2k(b - a).
i=a

To prove Proposition 3, suppose, by way of contradiction, that E;’;: Xl <
2k(b — a). Then one of the following two situations must occur:

(A) |X;| = 2k for all @ < i < b; or

(B) |Xat41] = 2k —1, and |Xi| = 2k or (2k+ 1) for each a +1 < i <},
and the number of X; with |X;| = 2k + 1 is at most one.

We now introduce a graph structure G on X, by joining u and v if and
only if dg(u,v) < 2 and u # v. Let a denote the independence number of
g.
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Lemma 4. a < 2.

Proof: Suppose @ > 3. Then there exist vy,vp,v3 € Xgz4+1 such that
dg(vi,vj) > 3 for all 1 < i < j < 3. This implies that ({v;} U N(v;)) N
({v;}UN(v;)) =0 for all 1 <i < j < 3. On the other hand, whether
(A) holds or (B) holds, [Xa41| + |Xat2| < 4k. Consequently, 3(2k — 1) <
215;'53 IN(vi)| = | U15553 N(vi)| < [(XaU Xay1U Xayo) — {u1,u2,u3}| <
(2k — 1) + 4k — 3 = 6k — 4, a contradiction. ]

Lemma 5. If a connected graph H has independence number less than or
equal to 2, then r(H) < 2.

Proof: We may assume H is not a complete graph. Then there exist
u,v € V(H) with dy(u,v) = 2. Let 2’ be a vertex adjacent to both
and v. Since the independence number of H is at most 2, each vertex in
V(H) — {2’,u,v} is adjacent to u or v. This means that dg(2’,z) < 2 for
all z € V(H), and hence r(H) < 2. O

Now let ¢’ denote the number of components of G. By Lemma 4, ¢ = 1
or 2.

Lemma 6.

(a) If ¢ =1, then there exists u € Xq41 such that dg(u,u’) < 4 for
every u' € Xg41.

(b) If ¢ =2, then for some B witha+1 < B < b—2, there exists w € X
such that dg(w,w') < 6 for every w' € Xg.

Proof: We first prove (a). Assume that G is connected, i.e., ¢ = 1. Then
since ar < 2 by Lemma 4, r(G) < 2 by Lemma 5. Let u be a central vertex
of G. Then for any vertex u’ € Xo41,dg(u,v') < 2, and hence dg(u, ') < 4
by the definition of G.

We now prove (b) in a series of claims. Assume ¢’ = 2, and let S, and
T.+1 be the vertex sets of the components. For 0 < j < r, set

S;=X;n( J Niat1-5@),

‘uGSn—{-l

T =X;n( U Nig41-5(w)).
u€Ta41

Since dg(v,v’) > 3 for any v € Sa41 and v’ € Tpyy, SiNT; = O for each
afi<a+2

Claim 1: |S;| >k —1and |T,| > k- 1.

Proof: By way of contradiction, suppose |S,| < k —2. Then since G —
(Sa U T,q2) is disconnected, [To42| = k + 1 by the (2k — 1)-connectedness
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of G, and hence |Sa12| = | Xat2 — Tas2| < (2k+1) —(k+1) = k. But since

G — (S, U Sa42) is also disconnected, this contradicts the assumption that

G is (2k — 1)-connected. Thus |S,| > k — 1. We can prove |T.a| > k—1in

exactly the same way. a
By Claim 1, we may assume |S;| =k —1 and |T| = k.

Claim 2: Let a < i < r, and suppose that for each h with ¢ < h < 4,

d(wy,w2) > 3 for any w; € S, and any wa € Th. Then the following hold.

(1) (@) |Si|2k-1. () Ifi>a+2 |Si|>k.
(2) 1Tl > .

Proof: From the assumptions of the lemma, it follows that G — (S; U Ta)
is disconnected, and hence (1)(a) follows from the assumption that G is
(2k — 1)-connected. Similarly, G — (S, UT;) is disconnected and, in the case
where i > a + 2, G — (S, U S;) is also disconnected, and hence (1)(b) and
(2) also follow from the (2k — 1)-connectedness of G. o

We define an integer C as follows. Set

there exists w; € S; and there exists
Q:=1< ila<i<b,
wy € T; such that d{w;, ws) <2

We have Q # 0 because if Q@ = 0, then |X,| = |So| + |Ts| > k + k = 2k by
Claim 2, which contradicts the assumption that | X| = 2k — 1. Now set

C =minQ.

Note that a +2 < C < maxQ < b — 1 by the definition of S,¢; and Tg41.
The following remarks immediately follow from the definition of C.
Remark. For each a < i < C, we have X; — S; =T;.
Remark. Forz € S;andy € T; (a+1 < i < C-1), N(z) C S;-1US;US; 11
and N(y) C Tic1 UT; U Ty

The following two claims also immediately follow from Claim 2.
Claim 3:

(1) If (A) holds, then |Se41| = k — 1 or k, and |S;| = k for each a +2 <
i<C.

(2) If (B) holds, then |Saq1| =k —1, |Si|=kork+1foreach a+2 <
i < C, and the number of those indices i with a+2 < ¢ < C for which
|S:| = k+ 1 is at most one.
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Claim 4:
(1) If (A) holds, then |T,41| =k or k+1, and |T;| =k foreach a +2 <
1 <C.

(2) If (B) holds, then |T;| = k or k41 for each a +1 < i < C, and the
number of those indices ¢ with a + 1 < i < C for which |Ti| = k+ 1
is at most one.

Claim 5: [S;_;US;US;41|<38k+1foreacha+1<i<C—1.

Proof: Since Claim 3 implies that |S;| < k+1 foreacha+1 < i < C, and
that the number of indices 7 with a+1 < 7 < C such that |S:| = k+1isat
most one, the desired inequality follows immediately. D

Claim 6: |T;_;UT;UT;;1| <3k+1foreacha+1<i<C-1.

Proof: Since Claim 4 implies that |T;| < k+1 for each a+1 < i < C, and
that the number of indices ¢ with a+1 < i < C such that |T;| = k+1 is at
most one, the desired inequality follows immediately. ]

Claim 7: Let a+1<:<C—-1.
(a) For any z,z' € S;, d(z,z') < 2.
(b) For any y,y' € Ty, d(y,9') < 2.

Proof: Take z,z’ € S;. If z = 2’ or zz’ € E(G), then we clearly have
d(z,z’) < 2. Thus assume z # z’ and zz’ € E(G). Then

N(:L') U N(m’) C (S,;_l uS;u Siy1) — {z, Z'}.
Since |S;—; U S; U Si41| < 3k + 1 by Claim 5, this implies
IN(Z)UN(Z)| <1921 US U Sy — {z,2'}| <3k+1-2=3k—1.

On the other hand, since G is (2k — 1)-connected, |N(z)| > 2k — 1 and
|N(z')] > 2k — 1. Consequently, N(z) N N(z') # 0 because otherwise we
would get k < 1 from 4k -2 < |[N(z)NN(z’)| < 3k—1. Hence d(z,z’) < 2.
Thus (a) is proved. We can prove (b) in exactly the same way by using
Claim 6 in place of Claim 5. a

We now establish Lemma 6(b) by proving the following statement:

there exists w € X¢_1 such that dg(w,w’) <6 for every v’ € X¢_;.
By the definition of C, there exist wy € S¢ and wy € T¢ such that

dg(w1,ws) < 2. Let w be a vertex in X¢_; which is on a shortest z — w;
path. Then w € Sg_;. Now let w’ € Xc_;. We show that dg(w,w’) < 6.
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If w' € Sc_1, Claim 7 implies that dg(w,w’) < 2 < 6. Thus we may

assume w' € To_;. Let w” be a vertex in X¢-1 which is on a shortest

z — wp path. We clearly have dg(w,w1) = 1 and dg(wq,w”) = 1, and

de(w”,w') < 2 by Claim 7. Since dg(wy, we) £ 2, we obtain de(w,w') <

de(w, w1) + de(wi, ws) + de(ws, w") + dg(w”,w') < 1+2+1+2=6, as

desired. O
For convenience, we restate Lemma 6 in the following form:

Lemma 7. There exists m with a+1 < m < b—1 and there exists v € Xm
such that dg(v,v’) < 6 for every v' € X, and such that in the case where
m=>b-—1, dg(v,v’') < 4 for every v' € Xm.

We now complete the proof of Proposition 3.

Proof of Proposition 3: Let m and v be as in Lemma 7. Observe that
6<a,a+1<m m<b-landb<r-5
Case 1. r—m < m.

Let 2z’ be a vertex in X,_m, which is on a shortest z — v path. Then
dg(z',2) =r —m and dg(2,v) =m —(r—m)=2m —r. Takez € V(G),
and let z € X,. First assume that 0 <p <m. Then

de(z',z) < dg(7,2) +de(z,z) =r—m+p<r-—m+m=r.

Next assume that m < p < 7. Let v’ be a vertex in X,, which is on
a shortest z — z path. Then dg(v/,z) = p—m < r —m, and hence
do(#,2) < do(2,v)+da(,v)+da(v/,z) < (2m—7)+dg(v,v')+(r—m) =
m+dg(v,v’). On the other hand, it follows from Lemma 7 that if m < b2,
then m + dg(v,v’') < (b—2)+6; and if m = b—1, then m + dg(v,v') <
(b—1)+4. Since b < r — 5, we now get dg(z’,z) < m +dg(v,v') < T
Thus in either case, dg(2',z) < r. Since z was arbitrary, this contradicts
the fact that r is the radius of G.
Case 2. r —m > m.

In this case, 2m < r. Let 2/ = v € Xy, Then dg(2',2) = m. Take
z € V(G), and let z € X. First assume that 0 <p <m. Then

de(2',z) € dg(#,2) + de(z,z) =m+p<2m <.
Next assume that m < p < r. Let v’ be a vertex in X,, whichison a shortest
z — z path. Then dg(v’,z) = p — m. Since dg(2',v") = dg(v,v') < 6 by
Lemma 7 and since m > a+1 2> 7, we get

de(2',z) < dg(2',v') + de(v',z) <6 + (p—-m)<r+(6-m)<r

Thus in either case, dg(z’,z) < r. Since z was arbitrary, this contradicts
the fact that r is the radius of G.

This completes the proof of Proposition 3. m|
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Proposition 8. Suppose that r > 12. Then E;:GS [Xi| = 2k(r — 10) — 2.
Proof: Let I := {i|6 <i<r—5,|X;] =2k~ 1}. We may assume |I| > 3.
Let I = {i1,da,..., 4} withi; <ip <-+- < ¢7)- From I, we define a new
sequence ji < j2 < --- < j, inductively as follows. Set j; = i;. For I > 2,
set i=min{i|i€,i> 51 +2} (if{i|i€1,i>5_1+2}=0, then we
set s =1 — 1 and terminate this procedure). We have j, = i1 Or 7511 by
the definition.

By Proposition 3, -7A71 [ Xi| > 2k(jn — jn—1) for all 2 < h < 5. Tak-
ing the sum of these inequalities, we get Zi.;;,l IX: =300 {;;:_1 [X:] >
2k(js—j1)- Consequently, S°72¢ | X = SILG" [ Xul+ 00! 1Xa+3005 Xl
> 2k(j1 — 6) +2k(js — j1) + 2k(r —4 — j5) — 2 = 2k(r — 10) —2, as desired. O

We are now in a position to complete the proof of the Theorem. If » < 11,
the conclusion follows from Lemma 2. Thus we may assume r > 12. We
clearly have |Xo| = 1 and |X,| > 1 and, by Lemma 1, |X;| > 2k —1 for
all1<i<5andallT—4 <i<r—1. By Proposition 8, 7= |X;| >
2k(r — 10) — 2. Adding all | X;|, we obtain

n=> "|Xi| > 14+(2k—1)x5+{2k(r—10)—2}+(2k—1) x4+1 = 2kr—2k—9.
i=0

This completes the proof of the Theorem. O

4 Remarks

If & > 6, there are infinitely many graphs which attain equality in the
Theorem. To see this, let ¢ be a positive integer, and let C be a cycle with
length 2kt + 2. Define a graph G with V(G). = V(C) by letting E(G) =
{wv | do(u,v) < k}. Then G is 2k-connected (so (2k — 1)-connected), and

r(G) =t+1= | Geiiikio |
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