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It has been shown by Sittampalam and Keedwell that weak critical sets exist for
certain latin squares of order six and that previously claimed cxamples (for certain
latin squares of order 12) are incorrect. This led to the question raised in the title of
this paper. Our purpose is to show that five is the smallest order for which weakly
completable critical sets exist. In the process of proving this result, we show
that, for each of the two types of latin square of order four, all minimal critical sets
are of the same type.

1. Introduction.

A latin square of order n is an nxn matrix containing n distinct symbols such
that each symbol occurs exactly once in each row and column. We regard the latin
square as consisting of »2 triples (i, j, k) of symbols such that k is the entry in the
cell of row i and column j of the square. Usually, we shall use 0, 1, ..., n-1as
our symbols so that rows and columns will be labelled from 0 to n-1.

A uniquely completable set (UC set) U of triples is such that it characterizes
only one latin square. That is, there is a unique latin square of assigned order n
which has U as a subset of its triples. Such a set U of triples is said to be a
critical set if no subset of U is uniquely completable. Thus, for example, the sets
U,=1{(0,0,0), (2,2, )} and U, = {(0, 0, 0), (0, I, 1), (1, 0, 1)} are both
critical sets for a latin square of order three; each completes uniquely to the Cayley
table XK of the cyclic group C; and no subset of U} or U, has this property. A
minimal critical set for a particular latin square is one of smallest cardinal. Thus,
for example, U, is a minimal critical set for the latin square K.

In the process of completing a UC set to the latin square L which it character-
izes, we say that adjunction of a triple t = (r, ¢, s) is forced in the process of
completion of a set T of triples (IT|<n2, UCTCL) to the complete set of triples
which represents L (and which we also write as L), if either

({A)vr =r,3z=csuchthat (7, z, s)eT or3 z # s such that (7, ¢, 2)eT; or
(i) V' #c,3z= rsuchthat (z, ¢, s)eTor3 z=ssuchthat(r, ¢, z)eT;or
(iii)vs'#s,3z=rsuchthat(z, ¢, s')eTor3 z= csuch that (r, z, s')eT.

A UC set is called strong if we can define a sequence of sets of triples U =
F\CF,c .. CF,= L such that each triple te F, , |-F, is forced in F,.

A UC set which is not strong is called weak. In particular, a critical set may be
weak or strong.

A latin square L' is said to be isotopic to the latin square L if L' can be obtain-
ed from L by permuting the rows and/or the columns and/or the symbols of L.
Then the cell (i, j, k) of L is transformed to the cell (ig, jo, ky) of L', where 6, ¢,
y, are permutations and (6, ¢, ) is the isotopism. The whole set of latin squares
which can be obtained from L in this way are said to form an isotopy class.

Clearly, if the set U of cells of L form a UC set for L then the cells of L' onto
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which the cells of U are mapped form a set U' which is UC for L' and is of the
same type relative to L' as U is relative to L: that is, weak or strong, critical or
minimal critical or neither. We shall regard the sets U and U as equivalent.

The concept of a weak critical set was first discussed in [4]. In that paper, an
example of a weakly completable critical set for a latin square of order 12 was
offered. However, the square actually exhibited was not a latin square as it
contained more than one occurrence of the same symbol in some of its rows and
columns. Later, another latin square of order 12 which was claimed to be weakly
completable was published in [8]. Subsequently it was shown in [7] that this
claim is incorrect. The set is neither critical nor weakly completable. However, it
is strongly completable. The authors of [7] also wrote to Colbourn and received
in reply (see [3]) a corrected version of the square given in [4]. This turned out to
be the same square as that published in [8] but the alleged critical set was slightly
different. In fact, this set is not critical but it is uniquely completable (strongly).
Very recently (and since the present paper was submitteed), it has been pointed
out in [1] that, if the symbols in three of the cells of the square published in [4]
are changed, a 12x12 square which is both latin and weakly completable is
obtained. In the meanwhile, the authors of [7] had shown that weakly
completable critical sets exist for certain latin squares of order six. This led to the
question raised in the title of the present paper.

It should be recorded here that a formal definition of the concept of strongly
completable was first given in [5]. However, the definition given there differs
from ours in that adjunction of a particular triple to a UC set is regarded as forced
only if property (iii) of our definitioin is satisfied by it. (With this definition, the
corresponding critical set in any parastrophe/conjugate of L except its transpose
would not be strong.)

Our purpose is to show that five is the smallest order for which weakly
completable critical sets exist.

We first remark that a critical set for any 3x3 latin square comprises either two
or three cells (examples are given above) and it is easy to check that all are
strongly completable.

2.Non-existence of weakly completable critical sets of minimal size
for the cyclic group C,.

The addition table of C4 will be used in the form shown in Fig. la below. To
transform this to the more usual form, we first interchange rows 3 and 4, then
columns 2 and 3 and finally rows 2 and 3 as shown in Figs. Ib, Ic, 1d
respectively.

To cover the four intercalates (2x2 latin subsquares), we need at least four cells
in a critical set. Moreover, at least three different symbols must occur in any
critical set for a latin square of order four. If, in Fig. la, we interchange the
symbols 0 and x or y and z then the latin square L' so obtained is a principal
isotope of L: that is, it can be transformed to L by rearrangement of rows and
columns only, the symbols being left fixed. Also, in Fig. 1a, if we interchange
the pairs of symbols 0, x and y, z, the latin square L" so obtained is again a
principal isotope of L. Thus, all four of the symbols 0, x, y, z have the same
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status. It follows that we can suppose without loss of generality that the four
symbols of a minimal critical set are 0, x, y, y or 0, x, y, z.

0 0

Xy z 0 x y 2 Yy x z 0y x z
x 0 z vy x 0 z vy x z 0y y x z 0O
zy 0 x y z x 0 y x z O x z 0y
y z x 0 z y 0 x z 0 y x z 0y x
Fig. la Fig. 1b Fig. Ic Fig. 1d

Since the Cayley table of C, has no transversals, two cells must occur in the
same row (or column) if the cell entries are all different.

We consider first the possibility of a critical set which has no two of its cells in
the same row or column. In that case, we can suppose as above that the cell
entries are 0, x, y, y and that the critical set includes the cell (0, 0) with entry 0. It
must then include also the cell (1, 3) with entry y otherwise the top right
intercalate would be uncovered. Since no two cells of the critical set are in the
same row or column and since the bottom left and bottom right intercalates must
be covered, the remaining two cells of the critical set must be the cells (2, 1)
and(3, 2) containing the entries y, x respectively. However, the set of four cells
50 obtained has two distinct completions (Figs.1a and 2) so we conclude that no
critical set comprising four cells in distinct rows and distinct columns exists.

0z y x 0 « y o 0 z y x 0 z y «x
z x 0y ¢« o o o y x 0 z y x z 0
x y z O * A e x y z 0 x y 0 z
y 0 x z o o X z 0 x vy z 0 x y

Fig. 2 Fig. 3 Fig. 4a Fig. 4b

For a critical set of four cells which has two cells in the same row (or column),
we may suppose that the rows and symbols are reordered so that these cells are in
the first row and contain the entries 0 and y respectively. (They cannot be the
cells which contain 0 and x otherwise one intercalate would be covered twice and
another left uncovered.)

In that case, the bottom right intercalate must be covered by one of the cells
which contains x. If the cell (3, 2) is used, then the fourth cell (one containing y
or z) must be the cell (2, 1) otherwise either two rows or two columns would
remain uncovered (Fig. 3) or else the bottom left intercalate would remain
uncovered. However, in that case, there exist three different completions to a
latin square (Figs. la, 4a, 4b). We conclude that, if two cells of a critical set of
four cells occur in the same row, then the critical set must include the cells 0, 0),
(0, 2), (2, 3) containing 0, y, x respectively. Then the fourth cell of the critical set
is required to cover the bottom left intercalate and must lie in the last row
otherwise two rows would be left uncovered. If it is the cell (3, 0) containing y,
the critical set has a unique strong completion to the given latin square (Fig. 5). If
it is the cell (3, 1) containing z, there exist two different completions to a latin
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square (Figs. 1a and 6) and so the set is not critical. Hence:

Theorem 1. All minimal critical sets for a 4x4 latin square based on the
cyclic group are equivalent under isotopism and are strongly completable.

0 x y z 0 x y 2
x 0 z vy zy x 0
z y 0 x y 0 z x
y z x O x z 0y

Fig. 5 Fig. 6

3. Non-existence of weakly completable critical sets of minimal size
for the clementary abelian group C,C,.

In order to cover all twelve intercalates of the Cayley table L of C,®C, given
in Fig, 7, we need at least four cells and these must be those of a transversal as is
easily seen from the table of intercalates given in Fig. 8 below. However, the part

0 x y z acbo ade ] fd bo [Ce .

x 0 z y ahg . “ij o flg . fhl 4

y 4 0 X k’lbo kieo Ilbo I’leo

zy x 0 ks, ki, 18, 1,
Fig. 7 Fig. 8

of L which remains when the cells of a transversal are deleted is a CPLS (see
Lemma | of [2]), so at least one further cell is required to cover this. Thus, a
minimal critical set of L contains at least (in fact, exactly) five cells of L. It
follows that at least two, and possibly three, of the cells of a critical set must
contain the same symbol. Without loss of generality, we may denote this symbol
by 0 and suppose that the rows and columns of L have been arranged so that 0
appears on the leading diagonal.

We consider first the possibility of a critical set which includes three cells each
of which contains the entry 0. These cells may occur consecutively or non-
consecutively along the leading diagonal. However, the second case may be
reduced to the first by interchanging the last two rows, then the last two columns
and finally re-naming y as z and z as y, as shown in Figs. 9b, 9c, 9d respectively.

0 x y z 0 x y z 0 x z vy 0 x y z
x 0 z vy x 0z vy x 0y z x 0 z y
y z 0 x z yx 0 zy 0 x y z 0 x
zy x 0 y z 0 «x y z x O zy x O

Fig. 9a Fig. 9b Fig. 9c Fig. 9d

Thus, we need consider only the first case. The three cells which contain 0 cover
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the intercalates a, b, c, i, j, { of Fig. 8 but leave the intercalates d, e, f, g, h, k
uncovered. It is easy to check that no two further cells can cover all six of these
uncovered intercalates. Thus, no critical set of five cells can include three cells all
of which contain the same symbol.

We consider the remaining case in which two cells of a critical set of five cells
each contain the symbol 0. Again, it is easy to see that we can assume without
loss of generality that these cells are the first two on the leading diagonal. (An
isomorphism involving interchange of rows, columns and symbols will put any
two cells containing 0 into these positions.) Because the bottom right 2x2
subsquare in Fig. 7 is an intercalate and must be covered, there must be a cell
containing x and it must be either the cell (2, 3) or else the cell (3, 2). The sym-
metry of the square shows that these are equivalent. We can assume, therefore,
that any critical set of five cells includes the cells (0, 0), (1, 1) and (2, 3). Jointly,
these leave the intercalates d, f, g, k uncovered. No cell covers more than two of
these four intercalates. They can be covered by either of the pairs of cells (0, 2)
and (3, 0) or (3, 1) and (1, 2). When each of these pairs of cells in turn is
adjoined to the previous three, the second of the two sets of five cells thus
produced is isotopic to the transpose of the first. (This is illustrated in Fig. 10,
where we first interchange the first and last pairs of columns and then interchange
the first and last pairs of rows. Fig. 10d is the transpose of Fig. 10c and contains
the first of the two critical sets.).

0O o o o e« 0 o Q0 ¢ o 2 0 o y o
[ Q Z . Q [ . 2 . Q [} [} . Q [ [}
[} L] o X [ * X o y . L] [} o . . X
oy o . y o o o e e X o Z & o o

Fig. 10a Fig. 10b Fig. 10c Fig. 10d

Since either set is strongly completable, we have:

Theorem 2. All minimal critical sets for a 4x4 latin square based on the
elementary abelian 2-group C,®C, are equivalent under the operations of
isotopism and/or transposition and are strongly completable.

It is not too difficult to check that all uniquely completable sets of five or more
cells for a latin square based on the the cyclic group C, and all uniquely
completable sets of six or more cells for a latin square based on the group C,®C,
are strongly completable. Consider first the latter. Let us suppose that a stage has
been reached at which there are no forced triples. Then, by hypothesis, at least
six cells have been filled. If any three of these filled cells contain the same
symbol, then the fourth cell to contain that symbol is forced: a contradiction. We
may therefore assume that no symbol occurs more than twice unless it occurs four
times. Also, no three of the filled cells can be in the same row or column
otherwise the entry of the fourth cell of that row or column would be forced:
another contradiction. We may therefore assume that any row or column which is
not completely filled contains at most two filled cells.

We consider first the case when no symbol occurs four times and no row or
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column is completely filled. Since there are at least six filled cells, there must
exist two rows (and two columns) each of which has two filled cells. As in the
argument used to establish Theorem 2, we can suppose without loss of generality
that the cells (0, 0) and (1, 1) both contain the entry 0 and that the cell (2, 3)
contains x (Fig. 11). The remaining celis of our supposedly weakly completable
set must include cells containing either x, y, z or x, y, y (up to isomorphism the
same as x, z, z) or y, y, z (up to isomorphism the same as z, z, y). Moreover, the
top right and bottom left intercalates must be covered. It is then very easy to
check that any such set is in fact strongly completable (or else that some intercalate
is left uncovered).

_Q o o ] 0 I 2 . 3
. _Q e o 1 0 o « 2
L] L) L] & L ) o L] L J *
e e o o 3 2 o o 1
e ¢ o ¢ 0
Fig. 11
Fig. 12

Suppose now that some symbol occurs four times in our supposedly weakly
completable set. Again without loss of generality, we can assume that it is the
symbol 0. Also, because the top right intercalate must be covered, we can assume
that our critical set includes the cell (0, 2) containing y. (If it contains one of the
other cells of this intercalate, an interchange of symbols and/or rows and columns
will replace that cell by the one proposed.) Since
(i) no three cells of our weakly completable set can be in the same row or column,
(i) the cells of a uniquely completable set must jointly contain at least three
distinct symbols, and (iii) the intercalates e, g, h, k shown in Fig. 8 must be
covered, one of the following situations must occur:

Case I.  Our set includes the cell (1, 0) containing x and cell (2, 1) containing z.
Case IL. Our set includes the cell (3, 0) containing z and cell (2, 3) containing x.

In either case, it is easy to check that the resulting set of cells is strongly
completable.

The cases in which a row (or column) is completely filled is equivalent to the
case when some symbol occurs four times because, in the consideration of wheth-
er a particular set of triples does or does not form a critical set, the constraints
row/column/symbol are interchangeable and so the roles of row/column/symbol
can be interchanged without changing the nature (weak or strong) of a critical set..

Finally, in the cases when the set is uniquely completable and two symbols
each occur four times or a symbol occurs four times and a row or column is
completely filled, it is trivial to check that the completion is strong.

The corresponding argument for the case of the cyclic group is similar but
rather more lengthy. We may outline it as follows:

As before, let us suppose that a stage has been reached at which there are no
forced triples. Since we are assuming that at least five cclls are already filled, at
least two cells of our supposedly weakly completable critical set contain the same
symbol. Since, in Fig.la, there exist isotopisms which interchange the symbols 0
and x and/or y and z and also an isotopism which exchanges the pair 0, x for the
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pair y, z, we can suppose that the repeated symbol is 0. O cannot appear thrice
(unless it occurs four times) otherwise the fourth occurrence of 0 would be forc-
ed, a contradiction. There are two main cases according as the two occurrences of
0 are in the same or different intercalates.

Case 1. The cells (0, 0) and (1, 1) contain the symbol 0. At least two symbols
other than 0 must occur. Since (in Fig. 1a) the bottom right intercalate must be
covered, x must occur either in cell (2, 3) or else in cell (3, 2). Since y and z are
exchangeable and since the top left intercalate must be covered, we can suppose
without loss of generality that y occurs in cell (0, 2). Also, for unique compl-
etion, one of the cells of the bottom left intercalate must be in our critical set. It is
easy to check that, whichever one is included, the square completes uniquely to
that of Fig. la.

Case II. The cells (0, 0) and (2, 2) contain the symbol 0. One of the symbols y
or z must occur. We can suppose without loss of generality that y occurs. There
are two subcases according as y occurs in cell (0, 2) or in cell (1, 3) of the top
right intercalate.

In the first subcase, there can be no further cells in the zeroth row or second
column otherwise the fourth entry of that row or column would be forced. Also,
the bottom left intercalate must be covered. Suppose, for example, that z occurs
in cell (2, 0). For weak completion, no row or column must have three of its cells
filled so the only other cells which can be filled are cell (3, 1) with z and/or cell
(1, 3) with y. In any event, the square completes strongly and uniquely to Fig.
la. The cases z occurs in cell (3, 1) or y occurs in cell (2, 1) or in cell (3, 0) are
similar,

In the second subcase, y occurs in cell (1, 3). There are then a large number
of situations to consider according to which cell or cells of the bottom left
intercalate are filled. If cell (2, 0) is filled with z, completion to Fig. 1a is unique
and strong. The remaining possibilities are considerably more tedious to check
but in all cases completion is unique and strong.

From this and evidence obtained elsewhere, we make the conjecture that, for a
latin square of any order based on a cyclic group, no weakly completable critical
sets exist.

Since every latin square of order four is isotopic either to C; or else to C,®C,
we can conclude that:

Theorem 3. There are no weakly completable critical sets for any latin
square of order four.

Next, we note that the partial latin square W of order five exhibited in Fig. 12
has no forced triples but that it is UC: that is, it is weakly completable. It is due to
D. R. Burgess and was obtained with the aid of a weakly completable edge-
colouring scheme for a certain directed graph (see [2]). In fact, the triples of W
form a critical set but this is less immediate to show. Note that it is not a minimal
critical set. The details are in [2]. Hence, we have:

Theorem 4. The smallest order for which there exists a latin square which
has a weakly critical set is order five.
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