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ABSTRACT. We improve upon Caro’s general polynomial char-
acterizations, all in terms of modified line graphs, restricted to
decomposing a graph into isomorphic subgraphs H with two
edges. Firstly, we solve the problem for a multigraph; secondly
we decrease polynomial bound on complexity if H = 2K> and
provide original sufficient condition which can be verified in
linear time if H = Ps.

1 Introduction

All multigraphs M considered in what follows are loopless. Let V(M) and
E(M) stand for the vertex set and edge set of M, respectively. Cardinalities
of these sets, denoted v(M) and e(M), are called the order and size of M.
Let k(M) stand for the number of connected components of M. As usual
A(M) denotes the maximum degree among vertices of M. An edge of M
whose removal increases the number of components is called a cutedge of
M. The union of A disjoint copies of M is denoted AM. Recall that P, is
a path on n vertices.

In this paper we generalize known characterizations of simple graphs or
hypergraphs which are edge-decomposable into isomorphic substructures of
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size two. The work is prompted by the first author’s contribution to solving
the third author’s problem [10} on Ps-decompositions.

The problem of decompositions into isomorphic parts H with two edges,
which possibly satisfy additional conditions, can be reduced to finding a
perfect matching in modified line graphs. This idea is presented in Caro’s
manuscript [2] in case the combinatorial structures to be decomposed are
hypergraphs. Examples for possible conditions are e.g.: the two edges are
at distance at least k, the two edges are on a cycle of bounded length, the
two edges are induced, etc. Caro’s idea can be presented in the language
of decomposing multihypergraphs M. Given an M, let G be a graph as
follows. Edges of M are the only vertices of G. Two vertices of G are
made adjacent iff the corresponding edges in M form a copy of H such
that all additional conditions are satisfied. Now it is easily seen that M
is H-decomposable iff G has a 1-factor. Testing a 1-factor in G can be
done in time O(e(M)?®) using the Even-Kariv algorithm. Thus the time
complexity of the characterization is polynomial provided that so is the
time complexity of constructing the modified line graph G, which depends
on the nature of additional conditions. See proof of Theorem 3.2 in [3]
for the case of decomposing a graph M into induced copies of a graph H
having two edges.

2 2Ks-decomposition of a multigraph

Recall that a cluster in a multigraph M is defined to be a set of edges
which are pairwaise adjacent. Therefore a cluster is a subset of edges of a
submultigraph induced by vertices of either a star or a triangle. The max-
imal size among clusters in M is called the cluster number and is denoted
w) = w1(M). Hence the cluster number of M is the clique number of the
line graph L(M) of M. Moreover,

wi(M) = max{A(M),gng& e(< K3 >)}.

In what follows we shall consider multigraphs M with cluster number not
exceeding half the number of edges. Then a cluster of size e(M)/2 is called
a critical cluster in M. By a critical triangle and a critical star we mean
a critical cluster induced by vertices of a triangle and a star, respectively.
The center of a critical star is called a critical vertez of the multigraph.

Our first result generalizes the following result due to Caro [1}, cf. [5].
A simple graph G is 2K>-decomposable iff ¢(G) is even, A(G) < e(G)/2,
and G 75 K2 U K3.

Theorem 1. (Skupien [10]) A multigraph M is 2K2-decomposable iff
its size e(M) is even and its cluster number w (M) < e(M)/2.
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Proof: Necessity is clear. To prove sufficiency we proceed by induction on
the number 2k of edges. Moreover, consider multigraphs without isolated
vertices. If k = 1 then M is a 2-matching and a decomposition exists.
Assume that the result is true for any multigraph with 2k edges and consider
a multigraph M, with 2k + 2 edges and cluster number w;(M;) < k+1.

We shall show that there exists a 2-matching 2e in M such that M =
M) — 2¢ has cluster number w; (M) < k. Then M satisfies the induction
hypothesis and therefore M; is 2K2-decomposable. Call such a 2e to be a
required 2-matching. Thus a 2-matching 2e is a required one if 2e covers all
critical vertices and each critical triangle contributes one edge to the 2e.

Consider the following cases.
A: wi(M;) < k. Any matching 2e is a required 2-matching.
Then wy (M) < k.
B: wi(M;) =k + 1. Consider the following subcases.
B1: There are two edge-disjoint critical triangles. If they are vertex-disjoint
too, a required 2-matching has one edge in each of these triangles. Oth-
erwise, the common vertex, z, of the triangles exists and can be the only
critical vertex in M. To form a required 2-matching, choose an edge inci-
dent to z in one of triangles and an edge non-incident to z in the other one.
B2: There are two critical triangles with two vertices and all connecting
them edges in common. Then each critical vertex belongs to the union of
the two triangles because they together include more than half of the edges
of M;. In particular, both common vertices are critical. Moreover, if there
is a third critical triangle, the order of M is four (because isolated vertices
are excluded). Therefore a required 2-matching exists.
B3: There is exactly one critical triangle. Note that each critical vertex
of the critical triangle is adjacent to a vertex outside the critical triangle.
On the other hand, there is none or one critical vertex outside the critical
triangle. Moreover, different critical vertices are adjacent. Therefore a re-
quired 2-matching exists.
B4: No critical triangle exists. A required 2-matching is one that covers all
critical vertices in this subcase. Considering the sum of degrees, note that
the number of critical vertices is four at most. If this number is exactly
four, four it is the order of M, and then any 2-matching is a required one.
In this case the underlying graph of M is either C4 or 2Kj,. Otherwise,
assume that there are two nonadjacent critical vertices. Then each edge of
M, belongs to the union of stars at those two vertices and therefore a re-
quired 2-matching exists. So is the case when the number of critical vertices
is at most two. The only remaining case is that there are three mutually
adjacent critical vertices. Then one can see that each of critical vertices has
a non-critical neighbour. Therefore required 2-matchings clearly exist. O

Remark: The existence of 2K,-decomposition of a multigraph M can be
verified in polynomial time. The time bound is actually linear, O(v(M)),
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which was kindly remarked by Dr Z. Lonc. It is so because M has at most
seven vertices of degree greater than e(M)/4 and each triangle thicker than
critical one clearly contains no less than two such vertices.

3 Ps-decomposition of a multigraph

Given a multigraph M, define *-line graph of M, denoted L*(M), to be
a graph with the vertex set V(L*(M))=E(M) and the edge set E(L*(M))=
{wiwa : wy, wa € E(M), |wy Nws| = 1}. Evidently, L*(M) is obtainable
from the ordinary line graph L(M) by removal of all edges which represent
multiple adjacency of edges in the root multigraph M. In other words,
the operator L* represents doubly adjacent edges in M as if they were
nonadjacent in M.

Given a connected multigraph M, let

{ 0 if (M) # 2 and e(M) is even,
n(M)=< 1 if v(M) # 2 and e(M) is odd,
e(M) ifv(M)=2.

If M is a disconnected multigraph with components My, ..., M, define
(M) = n(My) + ...+ n(Mg), k = k(M). Note that n(M) is the number
of odd (odd order) components in L*(M).

In what follows we present a polynomial time characterization of Ps-
decomposable multigraphs M. The proof is based on the famous Tutte’s
1-factor theorem.

Theorem 2 (Tutte) A graph G has a 1-factor iff the order v(G) of G
is even and there is no set S, S C V(G), such that the number of odd
components of G — S ezceeds |S|. O

Theorem 3 Given a multigraph M, the following statements are equiva-
lent:

(i) M is P3-decomposable,

(i?) L*(M) has a I-factor,

(ii5) n(M — S) < |S| for all S C E(M).

Proof: The neighbouring properties are clearly mutually equivalent. a

Remark: The notion of x-line graph and the equivalence (i) < (i) in
Theorem 3 are implicitly included in Caro’s manuscript [2]. Note that
Caro applies his constructions only to hypergraphs.

Corollary 4 Parity of the size e(M) is a necessary condition for a multi-
graph M to be Ps-decomposable. (]
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As follows from what is in Introduction, the time complexity of the
characterization in Theorem 3 above is O(e(M)5/2) or in fact, O((v(G) +
e(@))v(G)/?) where G = L*(M) and v(G) = e(M). We are going to
present a sharp sufficient condition for M to be P3-decomposable, which
can be verified in the time O(e(N)) where N is the underlying graph of a
multigraph M. Such is the time complexity of finding cutedges and leaves
(i.e., maximal submultigraphs without cutedges).

Given a cutedge e and its endvertex z in a multigraph M, call z to be
an even vertez of e if the component of M — e containing z has even size.
For any adjacent vertices z and y of M, let p(z,y) denote the number of
edges joining = and y, that is, p(z,y) is the multiplicity of z—y adjacency.
Write z oy if p(z,y) > 2.

Theorem 5 Assume that M is a connected multigraph of even size e(M)
without any cutedge whose even vertex is incident to multiple edges of M.
Moreover, for any pair, denoted xoy, of multiply adjacent vertices  and y,

deg(z) + deg(y) > 4p(z,y) — e(z, y) 1)

where e(z,y) € {0, 1, 2, 3} and 3_,,, €(z,y) = 3. Then M is Ps-decompos-
able.

Proof: Let S be any subset of E(M). Define recursively M’ and S’. To
this end, let M’ = M and S’ = S. Find, if possible, an odd size component,
Q, of M’ — 8’ such that E(Q) has exactly one neighbour, eg, in S’ and
perform updating:

M ~M-V@Q), 8 —{e}

Continue this procedure as long as it is possible. Eventually we get fixed
objects M’ and S’ with property that the number of edges in S’ which are
incident to any odd size component of M’ is at least two. Because at each
step an even number of edges are removed, the property of being an even
vertex of a cutedge is invariant under passing to a new M’. Therefore the
degree conditions for multiply adjacent vertices in M’ coincide with their
original versions in M. Our assumption on degrees implies that among
removed components of M — S none is of order two and size bigger then
one.

If S’ is empty then k(M’) = 1 and M’ has even size. Hence
IS|=k(M-8)-1=n(M -S5).

Therefore we consider the remaining case S’ # . Let k' be the number
of all specialized components My, ... , My of M’ — S’ which are ordered
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so that v(M;) = 2 and e(M;) > 1 for i = 1, ..., t where ¢ is an integer,
0<t<K,elsee(M;)isodd forj=¢t+1, ...,k

If ¢ <t then V(M;) = {=z, y} for some vertices z, ¥ and our assumption
implies that E(M;) has at least 2p(z,y) — e(z,y) (= 2e(M;) — e(z,y))
neighbours in §’. If t < j < k' then M; is an odd size component whose
edge set has two or more neighbours in S’. Moreover, each edge in S’ is
clearly incident to at most two components of M’ — S’. Therefore bounds
on the sum of numbers of those neighbours are

218’ > 2e(My) + ... +2e(M,) = Y _e(z,y) + 2(K' — ),
oy

whence
IS"]+3/2 2 n(M' — 5').
Therefore
5] 2 n(M’ - 5")

because both sides are of the same parity due to even size of M’. Hence
|S] = n(M - S).

By Theorem 3, this completes the proof. a

Easy examples show that Theorem 5 is sharp, that is, right-hand sides of
(1) cannot be essentially smaller, see Figure 1. New examples are obtainable
by adding a number of edge-disjoint copies of a Hamiltonian cycle to any
multigraph M; in Figure 1.

M, : M,:

o]~

Figure 1. 5°_,, &(z,y) =4

Corollary 6 Let M be a multigraph of even size e(M) and let an integer
p > 2 be the mazimum multiplicity of edges in M. Then, if M is (p+ 1)-
connected, M is P3-decomposable. D

Corollary 7 ([6, 4]) A simple graph G is P3-decomposable iff each com-
ponent of G 1s of even size. (]
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This result can also be deduced from Theorem 3 above and the following
result due to Sumner [11] and Las Vergnas [7]. Recall that a claw-free graph
is a graph without any induced subgraph isomorphic to the star Kj 3.

Theorem 8. Every connected claw-free graph of even order has a 1-factor.

It is known that a line graph of any graph (general or simple) is claw-free,
cf. [8,9]. So is a *-line graph of a simple graph but not necessarily that of
a multigraph.
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